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Abstract. We discuss a stochastic differential equation, as a modelling framework for the timewise dynamics
of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity
increments. In particular, we focus on the evolution of the probability density of velocity increments, characterized
by a normal inverse Gaussian shape with heavy tails for small scales and approximately Gaussian tails for large
scales. In addition, we show that the proposed model is in accordance with the experimental verification of
Kolmogorov’s refined similarity hypotheses.
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1. Introduction. The present paper proposes a class of stochastic differential equations
aimed at modelling the timewise development of the main (longitudinal) component of the velocity
vector, at a single location, in a turbulent fluid field. It represents a step in a project to formulate a
fullfledged tempo-spatial stochastic process model for the three dimensional velocity field. Previous
parts of this project are discussed in Barndorff-Nielsen et al (2004) and Barndorff-Nielsen and
Schmiegel (2004). The full model should ideally accord with the theory of homogeneous and
isotropic turbulence, due to Kolmogorov and Obhukov, and with further key phenomenological
features, stylised from detailed studies of major empirical data sets, such as those discussed in
Barndorff-Nielsen et al (2004).

In order to make the considerations in the paper more directly accessible for physicists, our
style of writing deviates somewhat from the traditional mathematical style of ‘TPA’.

We stress that the model type here presented is only for the timewise dynamics, at a single
location, of the velocity component in the mean flow direction. However, most of the reliable and
extensive data sets available are precisely for this component and, in fact, as concerns measure-
ments of spatial variations very little empirical evidence exists, due to the difficulty of measuring
this; see however, van de Water (1996) and Staicu and van de Water (2003).

On the other hand, the Kolmogorov hypotheses are formulated in terms of the spatial varia-
tions. To connect to the timewise regime the generally adopted approach is to translate results
from the spatial setting to the temporal via Taylor’s Frozen Field Hypothesis, as will be described
in Section 4.1.

It is also important to underline that Kolmogorov’s theory concerns the asymptotic behaviour
as the Reynolds number tends to infinity. But, with the ample empirical evidence presently
available it is clear that even for very large, but realistic, Reynolds numbers the hypothesized
asymptotic regime has not been reached. Thus Kolmogorov’s hypotheses give only a rough guide
to the statistical properties of the velocities, and it is pertinent to seek extensions of his results
that can cover a much wider spectrum of Reynolds numbers and timewise or spatial ranges. In
fact, a universality result of the kind in question was established in Barndorff-Nielsen et al (2004),
and is briefly described in Section 2 below.

The outline of the paper is as follows. Section 2 provides some background on the phenomenol-
ogy of turbulent flows. In Section 3 we present our stochastic framework for the timewise dynamics
of turbulent velocities. Section 4 indicates the necessary mathematical background on quadratic
variation, (Brownian) semimartingales, infinitely divisible distributions and Lévy processes, which
are the main building blocks of the model. Quadratic variation is proposed as a natural sub-
stitute for the usual definition of the integrated energy dissipation, which is not applicable for
non-differentiable stochastic processes. Section 5 discusses the timewise dynamics of the model
for the turbulent velocity. The focus is on the evolution of the pdf of velocity increments across
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scales and on statistics related to Kolmogorov’s refined similarity hypotheses. The theoretical
results are illustrated and supplemented in Section 6 through simulations. Section 7 concludes
with an outlook.

2. Phenomenological background. Since the pioneering work of Kolmogorov (1962) and
Obukhov (1962), intermittency of the turbulent velocity field is of major interest in turbulence
research. From a probabilistic point of view, intermittency refers, in particular, to the increase of
the non-Gaussian behaviour of the probability density function (pdf) of velocity increments with
decreasing scale. A typical scenario is characterized by an approximately Gaussian shape for the
large scales (larger than scales at the so-called inertial range), turning to exponential tails within
the inertial range and stretched exponential tails for dissipation scales (below the inertial range)
(Castaing et al (1990) and Vincent and Meneguzzi (1991)).

It was reported in Barndorff-Nielsen et al (2004) that the evolution of the pdf of velocity
increments for all amplitudes and all scales can be described within one class of tractable distribu-
tions, the normal inverse Gaussian (NIG) distributions. Figure 2.1 shows, as an example, the log
densities of velocity increments ∆us = ut+s − ut measured in the atmospheric boundary layer for
various time spans s. The solid lines denote the approximation of these densities within the class of
NIG distributions. NIG distributions fit the empirical densities equally well for all time scales s
(for a more detailed verification, see Barndorff-Nielsen et al (2004)). Furthermore, the subsequent
analysis of the observed parameters of the NIG distributions revealed that the pdf’s of different
data sets with different Taylor based Reynolds numbers (ranging from Rλ = 80 up to Rλ = 17000)
all collapse after applying a scale transformation that is related to one of the parameters of the
estimated NIG distributions. As a consequence, the collapse of pdf’s immediately resulted in a
broader and more general reformulation of the concept of Extended Self Similarity (Benzi et al
(1993)) in terms of a stochastic equivalence class.

The analysis in Barndorff-Nielsen et al (2004) is to a large extent based on key empirical facts,
without providing a theoretical model for the turbulent velocity field. In view of the significance
of the derived results, a theoretical basis is clearly asked for. In the present paper we propose
a stochastic differential equation framework for modelling the timewise dynamics of the main
component of the velocity, that is able to reproduce the observed evolution of the pdf of turbulent
velocity increments.

The second point we want to make in this paper is to show that our model is, to a large extent,
in accordance with the experimental verification of Kolmogorov’s refined similarity hypotheses
(K62) (Kolmogorov (1962)). In essence, Kolmogorov refined his 1941 theory (Kolmogorov (1941a))
by taking into account the strong variability of the local energy dissipation.

The first refined hypothesis states that the pdf of the stochastic variable

Vr =
∆u(r)

(rεr)1/3
(2.1)

depends, for r ≪ L, only on the local Reynolds number Rer = r(rεr)
1/3/ν. Here, ∆u(r) denotes a

spatial velocity increment at scale r, ν is the viscosity, L the integral scale and rεr is the integrated
energy dissipation over a spatial domain of linear size r.

The second refined hypothesis states that, for Rer ≫ 1, the pdf of Vr does not depend on Rer,
either, and is therefore universal. Although, for small r, an additional r dependence of the pdf of
Vr has been observed (Stolovitzky et al (1992)), the validity of several aspects of K62 has been
verified experimentally and by numerical simulation of turbulence (Stolovitzky et al (1992), Zhu
et al (1995), Hosokawa et al (1994) and Stolovitzky and Sreenivasan (1994)).

3. Modelling framework. The present Section introduces the general type of stochastic
process we have in mind for the description of turbulent velocities. The mathematical tools
needed for the more detailed specifications made later are outlined in the next Section.

We propose to model the dynamics of the main component of the velocity (i.e. the component
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in the direction of the mean flow) as a stochastic integral

ut = ū+

∫ t

−∞

g(t− s)dYs, (3.1)

where ū is a constant, g is a deterministic kernel and the process Y satisfies a stochastic differential
equation

dYt = βεtdt+
√
εtdBt (3.2)

where β is a constant, ε denotes a positive stationary process and B is a Brownian motion. This
type of process Y is often encountered in other areas of application. In particular, a modelling
framework rather similar to the one proposed here has been demonstrated to allow for a model
specification that captures the key stylised features of the time evolution of stock prices and
exchange rates and is very tractable analytically and numerically, see Barndorff-Nielsen and Shep-
hard (2001,2006) and references given there. The aim here is to show that suitable choices of g
and ε can reproduce key stylized features of the time-wise behaviour of the velocity.

Combining (3.1) and (3.2) we get

ut = ū+ β

∫ t

−∞

g(t− s)εsds+

∫ t

−∞

g(t− s)
√
εsdBs. (3.3)

In the present context of turbulence we conceive of ε as expressing the time varying intermittency
while B generates independent innovation impulses.

The decomposition of the velocity ut in (3.3) is reminiscent of the Reynolds decomposition
(Monin and Yaglom (1975)), with

∫

g(t− s)εsds playing the role of the slowly varying component
and

∫

g(t− s)
√
εsdBs reflecting the strongly varying component (with mean zero).

A strength of the modelling framework (3.3) lies in the fact that the intermittency generating
term ε and the function g can, to a large extent, be chosen arbitrarily. In the next Section we
identify ε with the local energy dissipation. Therefore, the model (3.3) establishes a framework
that derives the model for the velocity field directly from the presumed model for the local energy
dissipation. The calculations in Section 5 show that a considerable part of the statistics of the
velocity field are independent of the specific choice of the model for the energy dissipation. In
particular, both the evolution of the pdf of velocity increments from heavy tails to an approximate
Gaussian shape with increasing scale and the statistics related to K62 are predominantly mediated
by the structure of (3.3).

Remark 3.1. The framework (3.1) can be generalized to a model for the full velocity vector
ut(σ) at time t and position σ

ut(σ) = ū+

∫ t

−∞

∫

S

g(t− s; |ρ− σ|)dMs(dρ) (3.4)

where M is a random measure on R×S, S denoting the space of possible locations. For an initial
discussion of this more general framework we refer to Barndorff-Nielsen and Schmiegel (2006).

4. Mathematical background. This Section outlines the mathematical tools we require for
the more detailed modelling of the turbulent velocity process ut. The basic notions are semimartin-
gales, Lévy processes and quadratic variation. For later purposes we also provide the definitions
and basic properties of normal inverse Gaussian distributions and inverse Gaussian distributions.
While the former approximates the distribution of temporal velocity increments for all time scales
and all amplitudes, the latter will be used to explicitely model the intermittency of the velocity.

The stochastic processes we propose as a model for the turbulent velocity are nowhere differ-
entiable, thus the definition of the energy-dissipation as the square of velocity derivatives does not
make sense in this context. As an alternative definition of the energy-dissipation we propose to
use the concept of quadratic variation, as outlined below.
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4.1. Semimartingales and quadratic variation. In the language of stochastic analysis
the process u, as given by (3.3), is – subject to minor regularity conditions on g and ε – a Brownian
semimartingale. Specifically we assume that ε is càdlàg, i.e. it is a stochastic process whose sample
paths at all time points are continuous from the right and have limits from the left. Furthermore,
we require that ε has finite mean and that the deterministic function g is nonnegative and bounded
by 1 with g(0) = 1 and that it is differentiable and square integrable on [0,∞).

A key result of stochastic analysis states that for any semimartingale u, whether Brownian or
not, the limit

[u]t = lim
n→∞

n
∑

j=1

(

utj/n − ut(j−1)/n

)2
(4.1)

exists, as a limit in probability. The derived process [u] expresses the cumulative variation ex-
hibited by u and is called the quadratic variation (QV). The monograph Protter (2004) is a
comprehensive account of basic parts of stochastic analysis. For further properties, see Jacod and
Shiryaev (2003).

We may calculate [u] from (3.3) using Ito algebra. Specifically, the stochastic differential of u
is

dut = atdt+
√
εtdBt (4.2)

where

at = βεt + β

∫ t

−∞

g′(t− s) (εsds+
√
εsdBs) (4.3)

and At =
∫ t

0
asds is of finite variation. Thus

(dut)
2 = a2

t (dt)
2 + 2at

√
εtdtdBt + εt(dBt)

2. (4.4)

By Ito algebra (dt)2 = 0, dtdBt = 0 while (dBt)
2 = dt. All in all, we obtain

(dut)
2 = εtdt (4.5)

and

[u]t =

∫ t

0

(dut)
2 =

∫ t

0

εsds. (4.6)

In the setting of stochastic differential equations of the Brownian semimartingale type the quantity
(dut)

2/dt is the natural analogue of the squared first order derivative of the velocity, which in the
classical formulation is taken to express the local energy dissipation. Consequently, the quadratic
variation [u]t is the stochastic analogue of the integrated energy dissipation and εt can be identified
with the local energy dissipation.

It is to note that the quadratic variation [u]t is independent of β, i.e. independent of the second
term in (3.3). That term is responsible for the skewness of velocity increments. The skewness of
the distribution of ut − u0 has a relatively complicated expression, and in this paper we restrict
attention to the infinitesimal skewness E{(dut)3}, noting that E{dut} = 0 due to the stationarity
of ut. Here, E{} denotes the expectation.

For simplicity, from now on we assume that the processes ε and B are independent.
In particular, we then, using (4.2), obtain the following formula for the infinitesimal skewness.

From the differential of u (4.2) we then get

E{(dut)3} = 3β

[

E{ε20} +

∫

∞

0

g′(t)E{ε0εt}dt
]

(dt)2. (4.7)

4



Under the additional simplifying (weak) assumptions

∫

∞

0

|g′(t)|dt = 1 (4.8)

and

E{ε20} − E{ε0εt} > 0 (4.9)

and g monotonically decreasing, we finally get

E{(dut)3} = 3β(dt)2
∫

∞

0

|g′(t)|
[

E{ε20} − E{ε0εt}
]

dt > 0. (4.10)

This result is in accordance with the positive skewness of temporal turbulent velocity increments as
follows from the famous 4/5-law of Kolmogorov (Kolmogorov (1941b)), invoking Taylor’s Frozen
Flow Hypothesis (Taylor (1938)). In our stochastic framework (3.3), the positive skewness of
temporal velocity increments is directly related to the positive autocorrelation (4.9) of the local
energy dissipation.

Remark 4.1. Kolmogorov’s 4/5-law predicts a negative skewness for the distribution of spatial
velocity increments u(x + r) − u(x) where r is a spatial distance along the direction of the mean
flow. Timewise velocity increments ut+s − ut, where s is a positive time lag, show a positive
skewness (Barndorff-Nielsen et al (2004) and Frisch (1995)). This change of sign of the skewness
by going from spatial to temporal statistics can be explained using Taylor’s Frozen Flow hypothesis
stating that the temporal variation ut+s − ut at a fixed spatial location can be interpreted as a
spatial variation u(x) − u(x + r) at a fixed time by setting r = Us where U denotes the mean
velocity. Here it is important to note that ut+s corresponds to u(x) and ut to u(x+ r) (for positive
r in the direction of the mean flow), which is the correspondance responsible for the change of sign
of the skewness.

4.2. Lévy processes and OU processes. Besides the Brownian semimartingales two other
basic types of semimartingales are Lévy processes and Ornstein-Uhlenbeck (OU) processes. These
are also central to our general modelling approach.

A Lévy process is a stochastic process with càdlàg sample paths and independent and identi-
cally distributed increments. The Poisson process and the stable processes (Lévy flights) as well
as Brownian motion are of this type. But the class of Lévy processes is much wider than this,
the inverse Gaussian and the normal inverse Gaussian Lévy processes being important examples;
these are Lévy processes for which the laws of the increments are, respectively, inverse Gaussian
and normal inverse Gaussian (For definition and properties of these laws, which are denoted IG
and NIG, respectively, see subsection 4.3 below).

The Lévy processes, other than Brownian motion, enter our modelling framework only in-
directly via the concept of OU processes. An OU process is a stationary process Z satisfying a
stochastic differential equation of the form

dZt = −λZtdt+ dLλt (4.11)

where L is a Lévy processes, called the background driving Lévy process (BDLP). This equation
has a stationary solution for any Lévy process L such that E {log(1 + |L1|)} < ∞. In particular,
taking L to be an inverse Gaussian Lévy process we obtain as solution Z the so called OU-IG
process, which will be applied in the sequel, as a model for the intermittency.

OU-IG processes have positive sample paths. Integrated with respect to Brownian motion,
they have the property to show a pronounced NIG-shape with heavy tails for the increments at
small scales. For the large scales, the pdf of increments tends to a Gaussian-like shape. This is
the property we want to model for the turbulent velocity.
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4.3. Normal inverse Gaussian and inverse Gaussian distributions. The normal in-
verse Gaussian law, with parameters α, β, µ and δ, is the distribution on the real axis R having
probability density function

p(x;α, β, µ, δ) = a(α, β, µ, δ)q

(

x− µ

δ

)

−1

K1

{

δαq

(

x− µ

δ

)}

eβx (4.12)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(4.13)

and where K1 is the modified Bessel function of the third kind and index 1. The domain of
variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α. The distribution is
denoted by NIG(α, β, µ, δ).

The standardised third and fourth order cumulants are

c̄3 =
c3

c
3/2
2

= 3
ρ

(δα(1 − ρ2)1/2)1/2

c̄4 =
c4
c22

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
(4.14)

where ρ = β/α. We note that the NIG distribution (4.12) has semiheavy tails; specifically,

p(x;α, β, µ, δ) ∼ const. |x|−3/2
exp (−α |x| + βx) , x→ ±∞. (4.15)

NIG shape triangle For some purposes it is useful, instead of the classical skewness and
kurtosis quantities (4.14), to work with the alternative asymmetry and steepness parameters χ
and ξ defined by

χ = ρξ (4.16)

and

ξ = (1 + γ̄)−1/2 (4.17)

where γ̄ = δ
√

α2 − β2. Like c̄3 and c̄4, these parameters are invariant under location-scale changes
and the domain of variation for (χ, ξ) is the normal inverse Gaussian shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}. (4.18)

The distributions with χ = 0 are symmetric, and the normal law occurs as limiting case for
(χ, ξ) near to (0, 0). Figure 4.1 gives an impression of the shape of the NIG distributions for
various values of (χ, ξ). The dashed line in Figure 4.1 corresponds to ρ = 0.1 and represents
the approximate location of the pdf of temporal turbulent velocity increments, as reported in
Barndorff-Nielsen et al (2004).

As discussed in the papers cited in Barndorff-Nielsen et al (2004), the class of NIG distribu-
tions and processes have been found to provide accurate modelling of a great variety of empirical
findings in the physical sciences and in financial econometrics.

As a second infinitely divisible distribution we need the inverse Gaussian distribution (IG).
This distribution will be used to model the intermittency of the velocity field. The inverse Gaussian
law, with parameters δ and γ, is the distribution on the positive real axis R+ having probability
density function

p(x; δ, γ) =
δ√
2π
eδγx−3/2 exp{−[δ2x−1 + γ2x]/2} (4.19)

where the parameters δ and γ satisfy δ > 0 and γ ≥ 0.
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5. Temporal model for the turbulent velocity field. Section 3 introduced the modelling
framework for the turbulent velocity in its full generality. Here, we focus on two specific properties
of the turbulent velocity, namely the evolution of the pdf of velocity increments across time scales,
and statistics related to K62.

For mathematical convenience we neglect the skewness of the velocity field, setting β = 0 in
(3.3). The skewness of the velocity field is not essential for the evolution of the pdf of velocity
increments from heavy tails at small scales to an approximate Gaussian shape at large scales. We
also expect that neglecting the skewness of the velocity field does not alter the basic statistical
properties of the Kolmogorov variable (2.1), in particular its conditional distributions. A more
detailed discussion of the influence of the skewness term will be given elsewhere.

5.1. Evolution of the pdf of velocity increments. We discuss the pdf of velocity incre-
ments ut − u0, where t > 0, in terms of cumulants. In our non-skewed set-up, i.e. (3.3) with
β = 0, the third order cumulant is zero for all scales t. Therefore, the fourth order cumulant is the
first order that distinguishes between a Gaussian like shape for the large scales and heavy tails
for small scales. Without specifying the function g and the local energy dissipation process ε in
detail, the large scale limit of ut − u0 approaches a Gaussian shape. Note however that under
model (3.3) the limit law of ut − u0 for t → ∞ can never be Gaussian unless the intermittency
process ε is deterministic. In general, ut − u0 will tend in law to a random variable of the form
v0 −u0 where v0 is an independent copy of u0, and the law of v0 −u0 is mixed Gaussian when ε is
independent of the Brownian motion B. In addition, we are able to show analytically, for specific
choices of g and εt, that the small scale limit has pronounced heavy tails.

We shall denote the m-th order cumulant of an arbitrary random variable u by cm(u) and
write the cumulant function of u as

C{ζ ‡ u} = log E
{

eiζu
}

. (5.1)

Furthermore, for any positive random variable X we define the kumulant function K̄ of X by

K̄{θ ‡X} = log E
{

e−θX
}

. (5.2)

To get some insight into the statistical properties of the stationary increments ut − u0, we first
calculate the cumulant function. We have

ut − u0 =

∫ t

−∞

[

g(t− s) − 1(−∞,0](s)g(−s)
]√

εsdBs, (5.3)

where 1I denotes the indicator function on an interval I. Since, conditionally on ε, the process u
is Gaussian, we get for the cumulant function of ut − u0 the form

C{ζ ‡ ut − u0} = K̄{1

2
ζ2 ‡Q(t)} (5.4)

where

Q(t) = c2 (ut − u0|ε) =

∫ t

−∞

[

g(t− s) − 1(−∞,0](s)g(−s)
]2
εsds (5.5)

is the conditional variance of ut − u0 given ε.
Differentiating the cumulant function (5.4) gives

c2(ut − u0) = E {Q(t)} = c1(ε0)G(t) (5.6)

where

G(t) =

∫ t

−∞

[

g(t− s) − 1(−∞,0](s)g(−s)
]2

ds. (5.7)
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Furthermore,

1

3
c4(ut − u0) = c2 (Q(t)) = c2 (ε0) 〈g, τ〉(t) (5.8)

where

〈g, τ〉(t) =

∫ t

−∞

∫ t

−∞

[(

g(t− s) − 1(−∞,0](s)g(−s)
) (

g(t− s′) − 1(−∞,0](s
′)g(−s′)

)]2

τ(|s− s′|)dsds′ (5.9)

and where τ is the autocorrelation function of ε.
It follows that

c̄4(ut − u0) =
c4(ut − u0)

c2(ut − u0)2
= 3

c2(ε0)

c1(ε0)2
D(t) (5.10)

where

D(t) =
〈g, τ〉(t)
G(t)2

. (5.11)

For the small scale limit we get from (5.7), (5.9) and (5.11)

lim
t→0

D(t) = τ(0) = 1. (5.12)

For the large scale limit we get

lim
t→∞

D(t) =

∫

∞

0

∫

∞

0

ḡ2(s)ḡ2(s′)τ(|s− s′|)dsds′ ≤ 1 (5.13)

where

ḡ2(t) =
g2(t)

∫

∞

0
g2(s)ds

. (5.14)

Consequently, c̄4(ut−u0) will be small for large t if either c2(ε0)/c1(ε0)
2 is small or if the interplay

between the decrease of g and τ results in limt→∞D(t) ≪ 1. In both cases we may expect the
law of ut − u0 to be close to Gaussian for large t (without being strictly Gaussian).

In the case where c2(ε0)/c1(ε0)
2 is not small, but g or τ decrease fast enough for

limt→∞D(t) ≪ c1(ε0)
2/(3c2(ε0)) we may expect our model (3.3) to show the evolution of the

pdf of temporal velocity increments from heavy tails at small scales to an approximate Gaussian
shape at large scales.

5.2. Statistics of the Kolmogorov variable. We now turn to the discussion of the statis-
tics of the Kolmogorov variable V of (2.1) within our stochastic framework (3.3) with β = 0. In
particular, we show that the Kolmogorov variable V can be represented as the product of two
independent variates, namely a standard normal random variable and a process that completely
contains the dependence of V on the integrated energy dissipation. Based on this decomposition,
some analytical results concerning the conditional pdf of V for the small and large scale limits can
be derived.

Following the discussion in Section 4.1 we replace the integrated energy dissipation in (2.1)
by the quadratic variation and define the stochastic analogue of the classical Kolmogorov (1962)
variable V as

Vt =
ut − u0

{ū [u]t}
1/3

. (5.15)

The introduction of the mean velocity ū turns Vt into a non-dimensional stochastic process.
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To reveal the basic statistical properties of the process Vt we note that (5.15) may be rewritten
as

Vt =
ut − u0

Q(t)1/2
Q(t)1/2

{ū [u]t}
1/3

= URt (5.16)

where

U =
ut − u0

Q(t)1/2
(5.17)

and

Rt =
Q(t)1/2

{ū [u]t}
1/3

. (5.18)

The variable U is a standard normal random variable and independent of Rt. The dependence of
Vt on [u]t - or, equivalently, εt - is thus completely contained in the process Rt.

To proceed further, we specify the function g to be of the form

g(t) = e−ψt (5.19)

We gain some insight into the properties of the process Rt for t→ 0 noting the decomposition of
the conditional variance of velocity increments

Q(t) =
[

1 − e−ψt
]2

∫ 0

−∞

e2ψsεsds+

[
∫ t

0

e−2ψ(t−s)εsds− [u]t

]

+ [u]t. (5.20)

Focusing on the first term on the right hand side of (5.20) we get in leading order for t→ 0

E

{

[

1 − e−ψt
]2

∫ 0

−∞

e2ψsεsds

}

= c1(ε0)[2ψ]−1
[

1 − e−ψt
]2 ∼ c1(ε0)ψ

2
t2. (5.21)

For the second term in (5.20) we have, by (4.6)

∫ t

0

e−2ψ(t−s)εsds− [u]t = −
∫ t

0

[

1 − e−2ψ(t−s)
]

εsds (5.22)

and in the limit t→ 0, to leading order

E

{
∫ t

0

[

1 − e−2ψ(t−s)
]

εsds

}

= c1(ε0)
[

t− (2ψ)−1
(

1 − e−2ψt
)]

∼ 2c1(ε0)ψt
2. (5.23)

Since the first term in (5.20) is strictly positive and the second one is strictly negative we conclude
that they are both predominantly of order t2 for small t. Therefore, since the mean of [u]t is linear
in t, we conclude that the quadratic variation dominates in (5.20) for small t and consequently

Vt ∼ U [u]
1/6
t . (5.24)

The small scale dependence of Vt on the integrated energy dissipation is in conformity with the
corresponding result for the turbulent velocity field that follows from kinematic considerations at
scales smaller than dissipation scales.

We can also draw a conclusion for the large scale limit t→ ∞. If we assume the intermittency
process εt to be ergodic, we get [u]t ∼ tc1(ε0). Furthermore, since

E {Q(t)} = c1(ε0)ψ
−1

[

1 − e−ψt
]

(5.25)

we get for t→ ∞

E {|Vt|} ∼ t−1/3. (5.26)
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The behaviour E{|Vt|} ∝ t−0.4 is reported for high Reynolds number atmospheric data in
Stolovitzky et al (1992). In their analysis the range of t where the exponent 0.4 holds is small.
For larger t an exponent of 1/3 seems to better fit their data.

The small scale limit (5.24) and the large scale limit (5.26) are both in accordance with the
corresponding experimental results. For the time being we are not able to analytically treat the
case of moderate t which is the most interesting in view of K62. For these scales we have to refer
to the simulation in the next Section.

6. Simulation. The analytical results in the last Section mainly concern the statistics of ve-
locity increments and the statistics of the Kolmogorov variable for the small and large scale limits.
The corresponding results for moderate scales are only accessible through numerical simulation.

For the simulations we use a discretised version of the non-skewed model (3.3) with β = 0.
For the weight function we set

g(t) = e−ψt1[0,T ]. (6.1)

where ψ and T are positive numbers. The introduction of T associates a finite decorrelation time
to the velocity field u. We further specify the process ε as a truncated OU-IG process, i.e.

εt =

∫ t

t−T̄

e−λ(t−s)dLλs, (6.2)

where L is an IG(δ, γ)-Lévy process. The assumption (6.2) coincides for T̄ → ∞ with the definition
of an ordinary OU-IG process.

The values for the parameters of the simulation of u are ū = 1, λ = 1, T̄ = 100, ψ = 0.1,
δ = 1, γ = 1 and T = 40 and we discretised all stochastic integrals with a finite step size ∆t = 1.
Hence we simulated, for t = 0, 1, . . . , N with N = 2 · 106,

εt =

t−1
∑

j=t−T̄

e−λ(t−j) (Lj+1 − Lj) (6.3)

and

ut =

t−1
∑

j=t−T

e−ψ(t−j)√εj (Bj+1 −Bj) . (6.4)

For the quadratic variation we used the approximation

[u]t =

t−1
∑

j=0

(uj+1 − uj)
2

(6.5)

which coincides with the usual definition of the energy dissipation for the temporal resolution
∆t = 1.

Figure 6.1 shows the evolution of the probability densities of the simulated increments ut−u0

for various scales t. We clearly observe heavy tails for the small scales and an approximately
Gaussian shape for the large scales. The solid lines denote the approximation of the densities within
the class of NIG-distributions. The densities of ut−u0 qualitatively display the empirical findings
about the evolution across time scales of turbulent velocity increments reported in Barndorff-
Nielsen et al (2004).

We further substantiate the scale dependence in Figure 6.2 which shows the NIG shapes
for the densities as displayed in Figure 6.1. The parameter χ is zero for all scales reflecting the
symmetry of the densities. The steepness parameter ξ decreases with increasing scale. Noting the
expression ξ = [1+3/c4]

−1/2 for symmetric NIG-distributions, Figure 6.2 visualizes the evolution
from heavy tails (large ξ) to an approximately Gaussian shape (in the limit (ξ, χ) → (0, 0)). These
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findings are very similar to the corresponding results for the turbulent velocity field as reported
in Barndorff-Nielsen et al (2004) (see also Figure 4.1).

We now turn to the investigation of the Kolmogorov variable Vt. Figure 6.3 shows the un-
conditional densities of Vt. We first note that the unconditional densities at moderate and large
scales are approximately Gaussian, in accordance with the findings in Stolovitzky and Sreenivasan
(1994), Stolovitzky et al (1992), Zhu et al (1995) and Hosokawa et al (1994). For not too large
scales, the densities collapse for small amplitudes while for large amplitudes, the densities are
scale dependent. For the very small scales, a bimodal distribution is observed. The bimodality is
related to the heavy tails of the pdf of velocity increments at small scales (in this connection see
the mathematical study Logan et al (1973)).

Comparable results are reported in Zhu et al (1995). The authors discuss the evolution of
the second order empirical moments of Vt across scales, showing an increase with increasing scale,
reaching a plateau at intermediate scales and finally a decrease with further increasing scale. The
same behaviour holds for the simulation of our model. Figure 6.4 shows the second order moments
of Vt as a function of scale t.

Figures 6.5-6.7 show the conditional densities p(Vt|[u]t) for various scales t and various values

of [u]
1/3
t . For small t, the conditional densities strongly depend on [u]t. With decreasing values

of [u]
1/3
t , the dependence gets smaller and for large enough t (t ≈ 16 in our simulation), the

conditional densities do not depend on [u]t. This independence also holds for the larger scales
16 ≤ t < T̄ (not shown here). These findings agree well with results reported for the turbulent
velocity field (Stolovitzky and Sreenivasan (1994), Stolovitzky et al (1992) and Zhu et al (1995))
and embody the gist of K62.

7. Conclusion. Summarizing the main results, we state that our proposed semimartingale
framework allows modelling in conformity with the observed evolution of the pdf of temporal
velocity increments across time scales and with the experimental verification of Kolmogorov’s
refined similarity hypotheses. The relation between general stochastic processes and K62 is also
discussed in Stolovitzky and Sreenivasan (1994). These authors propose fractional Brownian
motion (fBm) as a stochastic process that diplays the main properties of K62. However, the use
of fBm there is accompanied with a mathematical inconsistency, connected to the fact that for
fBm (except Brownian motion itself) the quadratic variation is either identically 0 or ∞. (This,
incidentally, implies that fBm is not a semimartingale.) Furthermore, fBm is a non-stationary
Gaussian process and does not capture the heavy tails for the pdf of velocity increments at small
time scales. Thus, to our knowledge, the model (3.3) seems to be the first approach to the turbulent
velocity field that comprises both, the evolution of the density of temporal velocity increments
across time scales and the statistics of the Kolmogorov variable V .

For the simulation we restricted to a very simple form of the intermittency term εt as an
OU-IG process which is easy to implement but not realistic for the turbulent energy dissipation
field. A realistic approach would be to use a more advanced model for the energy dissipation. In
particular we think of Lévy based models that allow to explicitely control the correlation structure
of the energy dissipation field (Barndorff-Nielsen et al (2003), Barndorff-Nielsen and Schmiegel
(2004), Schmiegel et al (2004) and Schmiegel (2005)). Controlling the correlation structure of the
energy dissipation seems to enable to model the evolution of the density of velocity increments in
a way that displays the detailed behaviour reported in Barndorff-Nielsen et al (2004). A detailed
discussion of this will be given elsewhere.

The fact that using an OU-IG process for εt works so surprisingly well indicates that models
of the form (3.3) are the appropriate framework in the turbulence context. In particular, the
calculations in Section 4.1 and Section 5 show that main parts of the turbulence statistics can be
reproduced without specifying the intermittency term ε and the weight function g. In this respect,
only a more detailed modelling of the correlation structure of the intermittency can narrow these
degrees of freedom.
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Fig. 2.1. Approximation of the pdf of velocity increments within the class of NIG distributions (solid lines,
fitting by maximum likelihood) for data from the atmospheric boundary layer (kindly provided by K.R. Sreenivasan)
with Rλ = 17000 and time scales s = 4, 52, 600, 8000 (in units of the finest resolution).
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Fig. 4.1. The shape triangle of the NIG distributions with the log density functions of the standardized
distributions, i.e. with mean 0 and variance 1, corresponding to the values (χ, ξ) = (±0.8,0.999), (±0.4,0.999),
(0.0,0.999), (±0.6,0.75), (±0.2,0.75), (±0.4,0.5), (0.0,0.5), (±0.2,0.25) and (0.0,0.0). The coordinate system of
the log densities is placed at the corresponding value of (χ, ξ). Furthermore, the line corresponding to ρ = 0.1, i.e.
χ = 0.1ξ, is shown.
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