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Abstract

Empirical time series of turbulent flows and financial markets reveal some common
basic stylized features. In particular, the densities of velocity increments and log returns
are well fitted within the class of Normal inverse Gaussian distributions and show a similar
evolution across time scales with the heaviness of the tails decreasing with increasing time
scale. We report empirical fidings about the universality of the evolution of the densities
of velocity increments/log returns across time scales. In terms of an intrinsic deterministic
time change, the densities of velocity increments for various turbulent flows behave in a
universal fashion. The same type of universality is found in financial markets.

Keywords: FX-markets; normal inverse Gaussian; stochastic equivalence; time change; tur-
bulence; universality.

1 Introduction

The statistics of turbulent flows and financial markets share a number of stylized features
(Ghashgaie et al (1996), Peinke et al (2004) and Barndorff-Nielsen (1998a)). The counterpart
of the velocity in turbulence are log prices in finance and velocity increments play the role of
log returns. The equivalent of the intermittency of the energy dissipation in turbulence is the
strong variability of the volatility in financial markets. The most important similarities be-
tween both fields are semiheavy tails for the distributions of log returns/velocity increments,
the evolution of the densities of log returns/velocity increments across time scales with the
heaviness of the tails decreasing as the time scale increases and long range dependence of ab-
solute log returns/velocity increments. It is important to note that long range dependencies
are only observed for the absolute price process while the velocity field itself shows algebraic
decay of the autocorrelation function. Other important differences are the skewness of the
densities of velocity increments in contrast to the symmetry of the distribution of log returns
in FX markets and the different behaviour of bipower variation (Barndorff-Nielsen and Shep-
hard (2004)) due to the particular small time scale behaviour of the velocity autocorrelation
function (Barndorff-Nielsen et al (2006)).

Intermittency/volatility is related to the heaviness of the tails and the non-Gaussianity
of the distribution of velocity increments and log returns. In this respect, Normal inverse
Gaussian (NIG) distributions are a suitable class of probability distributions which fit the
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empirical densities in both systems to high accuracy (Barndorff-Nielsen (1995,1997), Rydberg
(1997), Forsberg (2002), Barndorff-Nielsen et al (2004) and Barndorff-Nielsen and Schmiegel
(2006)). Moreover, it has been shown in Barndorff-Nielsen et al (2004) and Barndorff-Nielsen
and Schmiegel (2006) that the analysis of velocity increments within the NIG class reveals
some hidden type of universality which relates the statistical properties of widely different
turbulent flows by a simple deterministic time change. In view of the similarities between
turbulence and finance, it is natural to ask about the existence of an intrinsic deterministic
time change in finance which relates the densities of log returns for different markets in an
universal way.

In this paper we investigate the existence of a stochastic equivalence class (SEC) for log
returns in financial markets. It turns out that the variance of log returns acts as an internal
clock in terms of which the densities of log returns from different markets collapse. We support
the existence of such a stochastic equivalence class by empirically studying the behaviour of
various currency returns and some metal returns.

In Section 2 we provide some background material on NIG distributions which are central
for the description of the densities of velocity increments and log returns. The notion of SEC
in turbulence is briefly outlined in Section 3. Section 4 discusses the corresponding results
for financial markets. Section 5 concludes.

2 Normal inverse Gaussian law

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the distribution on the
real axis R having probability density function

p(x;α, β, µ, δ) = a(α, β, µ, δ)q

(

x − µ

δ

)

−1
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{

δαq

(
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δ

)}

eβx (1)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(2)

and where K1 is the modified Bessel function of the third kind and index 1. The domain of
variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α. The distribution is
denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution NIG(α, β, µ, δ) then the cumulant generating
function of X, i.e. K(θ;α, β, µ, δ) = log E{eθX}, has the form

K(θ;α, β, µ, δ) = δ{
√

α2 − β2 −
√

α2 − (β + θ)2} + µθ. (3)

It follows immediately from this that if x1, ..., xm are independent normal inverse Gaussian
random variables with common parameters α and β but individual location-scale parameters
µi and δi (i = 1, ...,m) then x+ = x1 + ... + xm is again distributed according to a normal
inverse Gaussian law, with parameters (α, β, µ+, δ+).

Furthermore, the first four cumulants of NIG(α, β, µ, δ), obtained by differentiation of (3),
are found to be

κ1 = µ +
δρ

√

1 − ρ2
, κ2 =

δ

α(1 − ρ2)3/2
(4)
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and

κ3 =
3δρ

α2(1 − ρ2)5/2
, κ4 =

3δ(1 + 4ρ2)

α3(1 − ρ2)7/2
, (5)

where ρ = β/α. Hence, the standardised third and fourth cumulants are

κ̄3 =
κ3

κ
3/2
2

= 3
ρ

{δα(1 − ρ2)1/2}1/2

κ̄4 =
κ4

κ2
2

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
. (6)

We note that the NIG distribution (1) has semiheavy tails; specifically,

p(x;α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x| + βx) , x → ±∞ (7)

as follows from the asymptotic relation

Kν(x) ∼
√

2/πx−1/2e−x as x → ∞. (8)

The normal inverse Gaussian law NIG(α, β, µ, δ) has the following important characterisation
in terms of the bivariate Brownian motion with drift. Let B(t) = {B1(t), B2(t)} be a bivariate
Brownian motion starting at (µ, 0) and having drift vector (β, γ) where β ∈ R and γ ≥ 0.
Furthermore, let T denote the time when B1 first reaches level δ > 0 and let X = B2(T ).
Then X ∼ NIG(α, β, µ, δ) with α =

√

β2 + γ2.
It is often of interest to consider alternative parametrisations of the normal inverse Gaus-

sian laws. In particular, letting ᾱ = δα and β̄ = δβ, we have that ᾱ and β̄ are invariant under
location—scale changes.

NIG shape triangle For some purposes it is useful, instead of the classical skewness
and kurtosis quantities (6), to work with the alternative asymmetry and steepness parameters
χ and ξ defined by

χ = ρξ (9)

and
ξ = (1 + γ̄)−1/2 (10)

where ρ = β/α = β̄/ᾱ and γ̄ = δγ = δ
√

α2 − β2. Like κ̄3 and κ̄4, these parameters are
invariant under location-scale changes and the domain of variation for (χ, ξ) is the normal

inverse Gaussian shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}.

The distributions with χ = 0 are symmetric, and the normal and Cauchy laws occur as
limiting cases for (χ, ξ) near to (0, 0) and (0, 1), respectively. Figure 1 gives an impression of
the shape of the NIG distributions for various values of (χ, ξ).

A systematic study of the class of normal inverse Gaussian distributions, and of associated
stochastic processes, was begun in Barndorff-Nielsen (1995,1997,1998a,1998b,1998c). Fur-
ther theoretical developments and applications are discussed in Rydberg (1997,1999), Prause
(1999), Eberlein (2000), Raible (2000), Barndorff-Nielsen and Shephard (2000,2001,2002,2007),
Barndorff-Nielsen et al (2004), Barndorff-Nielsen and Schmiegel (2006), Barndorff-Nielsen and

3



Prause (2001), Barndorff-Nielsen and Levendorskĭı (2001), Asmussen and Rosinski (2001),
Cont and Tankov (2004), Forsberg (2002) and McNeil et al (2005). As discussed in the pa-
pers cited and in references given there, the class of NIG distributions and processes have been
found to provide accurate modelling of a great variety of empirical findings in the physical
sciences and in financial econometrics. (The wider class of generalised hyperbolic distribu-
tions, introduced in Barndorff-Nielsen (1977), provides additional possibilities for realistic
modelling of dynamical processes, see references in the papers cited above.)

3 Time change and universality for turbulent flows

Typical turbulent data sets consist of one-point time records of the longitudinal (along the
mean flow) velocity component and the quantity of interest are turbulent velocity increments

us = v(t + s) − v(t), (11)

where v(t) denotes the longitudinal one-point velocity component at time t.
It has been shown in Barndorff-Nielsen et al (2004) and Barndorff-Nielsen and Schmiegel

(2006) that the densities of velocity increments from different isotropic turbulent flow experi-
ments with widely different flow conditions are well fitted within the class of NIG distributions
and collapse after applying a deterministic intrinsic time change from s to δ(s), where δ(s)
denotes the scale parameter of the approximate NIG distributions at time scale s.

Obviously, any monotonically increasing function (the same for all data sets) of the scale
parameter δ(s) may equally well be used as an intrinsic time change. In particular, the
variance c2(s) of velocity increments at time scale s increase monotonically as a universal
function of the scale parameter δ(s). The universal dependence of the variance c2(s) on the
scale parameter δ(s) is a sriking property in turbulence and can not be expected in general.
In fact, for the financial data sets analyzed in Section 4, the variances depend on the scale
parameter in a non-universal way and δ(s) does not serve as an intrinsic time change. We
therefore use the variance c2(s) as the intrinsic time change for the comparison of turbulence
with financial data.

Figure 2 shows, as an example, the approximation of the densities of velocity increments
us within the class of NIG distributions for various time scales s. The data are from a helium
jet experiment. We performed the same analysis for all time scales that allow for a proper
estimation of the parameters of the approximate NIG distributions. The evolution of the
densities of velocity increments for time scales s ∈ [4, 8000] (in units of the finest resolution
of the data set) within the NIG shape triangle is shown in Figure 3. We clearly observe the
evolution from heavy tails at small time scales towards a Gaussian shape at large time scales.
In terms of the variances acting as an intrinsic time change, this evolution across time scales
is universal. Figure 4 shows the collapse of the densities of velocity increments obtained from
widely different isotropic flow experiments at time scales s where the variances c2(s) are the
same. After applying a time change from time scale s to the variance c2(s) the densities
of velocity increments from widely different data sets collapse onto universal distributions,
independent of the flow conditions (Barndorff-Nielsen and Schmiegel (2006)). The data sets
used are time series of the velocity v(t) from helium jet experiments (data sets (h85), (h124),
(h283), (h352), (h703), (h885) and (h929)), from an atmospheric boundary layer experiment
(data set (at)) and from a wind tunnel experiment (data set (w)). Each data set is normalized
by its standard deviation. For more details about the data sets we refer to Chanal et al (2000)

4



for the helium jet experiments, to Dhruva (2000) and Sreenivasan and Dhruva (1998) for the
atmospheric boundary layer experiment and to Antonia and Pearson (2000) for the wind
tunnel experiment.

The collapse of the densities of velocity increments can be put into more mathematical
terms by introducing a stochastic equivalence class of the form

u(i)
s1

d
= u(j)

s2
⇔ c

(i)
2 (s1) = c

(j)
2 (s2) (12)

where
d
= denotes equality in distribution and the superscripts (i) and (j) label different

experiments. Relation (12) states that the densities of velocity increments follow a one-
parameter curve in the space of probability densities. Each individual data set covers a certain
part of this one-parameter curve. It is the variance c2(s) that accounts for the individual
characteristics of each data set and determines the location onto this one-parameter curve.

4 Time change and universality in FX-markets

The appropriateness of NIG distributions for describing the densities of increments of both
processes, turbulent velocities and log prices in financial markets, as well as other similarities
between the turbulent and financial regimes may naturally pose the hypothesis of an intrinsic
deterministic time change in financial markets leading to a similar collapse of the marginal
densities of log returns as observed in turbulence. We would like to stress that this hypothesis,
for the time being, only adresses the evolution of the marginal densities of increments across
time scales. In Section 5 we briefly discuss the dynamic extension of the results discussed in
the present paper.

4.1 The data sets

For the empirical verification of our hypothesis about the existence of a deterministic time
change, resulting in a collapse of the marginal distributions of log returns, we analyze two
different types of financial data sets. The first group of data comprises part of the Olsen &
Associates data set HFDF96 and consists of 30 min log returns covering the year 1996. We an-
alyze 11 FX markets (AUD/USD, DEM/FIM, DEM/ITL, GBP/USD, USD/CHF, USD/FIM,
USD/FRF, USD/ITL, USD/NLG, USD/XEU, USD/ZAR) and 3 Metal markets (XAG/USD,
XPD/USD, XPT/USD). The second group of data sets consists of 5 min DEM/USD and
JPY/USD log returns with 705312 observations each. A detailed description of the data sets
can be found in Dacorogna et al (2001).

4.2 The distribution of log returns

Figure 5 shows, as an example, the log densities of DEM/USD log returns at various time
scales s and the corresponding approximation of these densities within the class of NIG
distributions obtained from maximum likelihood estimation of the four NIG parameters α, β,
δ and µ. We observe the evolution of the densities of log returns with decreasing heaviness
of the tails as the time scale s increases. This evolution across scales is analogous to what
is observed for the densities of velocity increments in a turbulent flow (see Figure 2). We
performed the same analysis for time scales s ∈ [1, 290] (in units of 5 min). Figure 6 shows
the NIG shape triangle for DEM/USD log returns. As for turbulence (see Figure 3) we observe
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the evolution towards the Gaussian limit. However, in contrast to the turbulence data sets,
the densities of log returns are symmetric (χ ≈ 0).

We compare the evolutions across time scales of log returns for all of our financial data
sets in Figure 7 which shows the variances c2(s) as a function of the time scale s in double
logarithmic representation. Note that in general the variances c2(s) are not linear in s,
otherwise we would expect the plots of the variances of the various financial data sets to be
parallel in the double logarithmic representation of Figure 7.

4.3 Collapse of densities

The empirical verification of the SEC relation (12) for financial markets requires that, when-

ever the variances c
(i)
2 (s(i)) and c

(j)
2 (s(j)) are equal, the corresponding densities of log returns

at time scales s(i) and s(j) collapse. Here the superscripts (i) and (j) denote different financial
markets. Denoting the inverse of c2 by c2 we may directly relate the time scales s(i) and s(j)

s(i) = c
(i)
2 (c

(j)
2 (s(j))). (13)

This relation establishes the intrinsic time change from market (j) to some other market (i).
Figure 8 shows the intrinsic time change between DEM/USD log returns and JPY/USD log
returns obtained from Figure 7 by fixing certain values of the variances and reading off the
time scales that correspond to these fixed variances. Note that the time change appears to

be linear. Such a linearity holds if and only if the variances behave as c
(i)
2 (as) = c

(j)
2 (s) where

a is a constant (depending on (i) and (j)).
As an illustration we refer to Figures 11(a) and 11(i) which show that the corresponding

densities of log DEM/USD returns and JPY/USD log returns indeed collapse when trans-
forming the time scales according to Figure 8.

We performed the same analysis for all our financial data sets, i.e. we fixed a certain value
of the variance in Figure 7 and read off the time scale for each market that corresponds to
this fixed variance. In accordance with the SEC relation (12), the corresponding densities
of log returns collapse for all our data sets. Figure 9 shows two examples for the collapse
of the densities of currency log returns. For USD/CHF and DEM/FIM log returns the
densities of equal time log returns are very different. Applying the time change (13) shows
that the log returns of equal variance time scales collapse. In this example the corresponding
equal variance time scales are 1 h and 4 h for the USD/CHF and DEM/FIM log returns,
respectively.

For the second example in Figure 9 the difference between equal time densities is much
smaller than for the previous example. But again, the equal variance densities collapse.

Figure 10 shows two examples for the collapse of the densities of currency log returns and
metal log returns, again confirming the SEC relation (12). The deviations at very small and
at very large log returns are negligible (compare to Figure 11(h)).

The analysis of our financial data sets confirms the existence of a SEC relation (12) for
FX markets and Metal markets. We therefore claim that to a high degree of accuracy the
marginal densities of log returns for these markets follow a one parameter curve in the space
of probability densities. The characteristic parameter for the location of the marginal distri-
butions of log returns for each data set onto this universal curve in the space of probability
densities is the variance as a function of the time scale s which comprises the individual char-
acteristics of the each market (concerning the evolution of the densities of log returns across
time scales) but in terms of which the marginal distributions of log returns are universal.

6



Figure 11 shows, by examples, the universal evolution of the densities of log returns across
time scales. Each figure in Figure 11 corresponds to a fixed value of the variance and shows
the densities of log returns of various markets at time scales that correspond to the fixed value
of the variance. For all values of the variances we were able to find time scales from Figure
7 that correspond to the fixed variance. The densities collapse onto universal densities that
are independent of the type of market considered (compare to Figure 4 for turbulent data).

5 Conclusions

In the present analysis we showed that the marginal densities of log returns for various financial
markets collapse after applying a deterministic time change in terms of the variances as a
function of time scale s. This behaviour is completely analogous to what has been earlier
demonstrated for isotropic turbulent flows and as such adds a new stylized fact to the empirical
similarities between the two fields.

The collapse of densities of log returns and velocity increments for equal variance time
scales strongly resembles a Gaussian behaviour for zero mean processes. However in finance
and turbulence the densities of log returns/velocity increments are strongly non-Gaussian
and the fact that the densities of log returns/velocity increments collapse whenever the cor-
reponding variances are the same is, in our opinion, a far–reaching result.

The time change in terms of the variances that we propose in this paper is deterministic (in
contrast to various approaches in finance dealing with stochastic time changes) and directly
accessible from data. An important issue is the clarification of whether the SEC relation is
kinematic or dynamic, i.e. can we extend the present results to a stochastic relation between
the dynamics of the log price process in different markets. An affirmative answer implies
that all markets within the SEC share the same stochastic dynamics and are only related by
deterministic time changes. To conserve the stationarity of the increments of the involved

processes, the time change c
(i)
2 (c(j)(s)) has to be linear in s. Figure 8 indicates that this is true

for financial markets. Work on a clarification of the dynamical content of the SEC relation
(12) is currently in progress.
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Figure 1: The shape triangle of the NIG distributions with the log density functions of
the standardized distributions, i.e. with mean 0 and variance 1, corresponding to the values
(χ, ξ) = (±0.8,0.999), (±0.4,0.999), (0.0,0.999), (±0.6,0.75), (±0.2,0.75), (±0.4,0.5), (0.0,0.5),
(±0.2,0.25) and (0.0,0.0). The coordinate system of the log densities is placed at the corre-
sponding value of (χ, ξ).
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Figure 5: Logarithm of the densities p(rs) of log DEM/USD returns at time scales s =
50, 250, 500, 1000 min. The solid lines denote the aapproximation within the class of NIG
distributions using maximum likelihood estimation of the parameters α, β, δ and µ.
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Figure 6: NIG shape triangle for the densities of log DEM/USD returns at time scales s ∈
[1, 290] (in units of 5 min). Each point corresponds to one time scale s with the time scales
s increasing from top to bottom.
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Figure 7: Estimated variances c2(s) as a function of the time lag s (in units of hours) in
double logarithmic representation for the data sets AUD/USD (◦, grey), DEM/FIM (△,
grey), DEM/ITL (+, grey), GBP/USD (×, grey), USD/CHF (♦, grey), USD/FIM (▽, grey),
DEM/USD (grey line), USD/FRF (◦, black), USD/ITL (△, black), XAG/USD (+, black),
XPD/USD (×, black), USD/ZAR (♦, black), XPT/USD (▽, black), JPY/USD (black line).
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Figure 9: QQ plots of log currency returns at the same time scales s1 = s2 and at time scales
where the corresponding variances are the same.
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Figure 10: QQ plots of log currency returns and log metal returns at the same time scales
s1 = s2 and at time scales where the corresponding variances are the same.
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Figure 11: Collapse of the densities p(rs) of log returns at time scales s where the correspond-
ing variances are the same. Time scales s and data sets are (a) DEM/USD (s = 45 min, ×)
and JPY/USD (s = 45 min, ◦), (b) USD/CHF (s = 1 h, ×) and DEM/FIM (s = 4 h, ◦),
(c) USD/FRF (s = 2.5 h, ×) and DEM/ITL (s = 3 h, ◦), (d) USD/ITL (s = 4 h, ×) and
GBP/USD (s = 4.5 h, ◦), (e) AUD/USD (s = 5.5 h, ×) and GBP/USD (s = 8 h, ◦), (f)
DEM/USD (s = 275 min, ×) and USD/ZAR (s = 5.5 h, ◦), (g) DEM/USD (s = 8 h, ×) and
JPY/USD (s = 525 min, ◦), (h) XAG/USD (s = 3.5 h, ×) and JPY/USD (s = 765 min, ◦),
(i) DEM/USD (s = 825 min, ×) and JPY/USD (s = 925 min, ◦),
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