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Abstract

We discuss a unifying description of the probability densities of turbulent velocity
increments for a large number of turbulent data sets that include data from low
temperature gaseous helium jet experiments, a wind tunnel experiment, an atmo-
spheric boundary layer experiment and a free air jet experiment. Taylor Reynolds
numbers range from Rλ = 80 for the wind tunnel experiment up to Rλ = 17000
for the atmospheric boundary layer experiment. Empirical findings strongly support
the appropriateness of normal inverse Gaussian distributions for a parsimonious and
universal description of the probability densities of turbulent velocity increments.
Furthermore, the application of a time change in terms of the scale parameter δ
of the normal inverse Gaussian distribution results in a collapse of the densities of
velocity increments onto Reynolds number independent distributions. We discuss
this kind of universality in terms of a stochastic equivalence class that reformulates
and extends the concept of Generalized Extended Self-Similarity.
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1 Introduction

Turbulent flows are expected to reveal universal features in the limit of large
Reynolds numbers and for scales within the inertial range [1]. The most promi-
nent example is universal scaling of velocity structure functions [2], expected to
hold in the limit of very large Reynolds numbers. To account for small or mod-
erate Reynolds number flows, the concepts of Extended Self-Similarity (ESS)
[3,4] and Generalized Extended Self-Similarity (GESS) [5,6] have been intro-
duced which considerably extend the scaling range when plotting structure
functions of different orders against each other. Recently it has been shown
that ESS and GESS are strongly related to hierarchical models introduced by
She and Leveque [7]. In fact, it has been shown in [8] that a generalization
of the She-Leveque hierarchical structure (SLHS) is equivalent to GESS, thus
unifying these basic approaches in turbulence theory.

In this paper we discuss a new type of universality of the probability densi-
ties (pdf) of turbulent velocity increments that is not restricted to the large
Reynolds number limit and holds equally well for all scales. In a previous
study [9] it has been shown that the normal inverse Gaussian (NIG) distribu-
tion approximates the pdf of turbulent velocity increments to high accuracy.
Moreover, using the estimated scale parameter δ of the approximate NIG dis-
tributions as a time change, the densities of velocity increments of different ex-
perimental situations and different Reynolds numbers collapse onto Reynolds
number independent densities.

In the present study we confirm and further support these empirical findings
for many more turbulent data sets. We also investigate the relation of the
empirically found inner time change to the statistical properties associated
with GESS and SLHS. In particular, we show that the collapse of the densities
of turbulent velocity increments onto universal densities can be expressed in
terms of a stochastic equivalence class (SEC) which, in turn, is equivalent to
GESS and SLHS. In showing this equivalence, we relate and extend GESS
and SLHS (originally formulated as statistical properties within one turbulent
experiment) to a statistical property relating different turbulent experiments.

Section 2 provides some background material on normal inverse Gaussian dis-
tributions that is essential for the analysis of the densities of velocity incre-
ments. Section 3 briefly describes the type of data we use for the analysis and
Section 4 discusses the analysis of turbulent data within the class of normal
inverse Gaussian distributions. Section 5 introduces the concept of an intrinsic
inner clock. The relation of the proposed time change to GESS and hierarchi-
cal scaling models are discussed in Sections 6 and 7, respectively. Section 8
concludes.
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2 The normal inverse Gaussian law

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the distri-
bution on the real axis R having probability density function

p(x; α, β, µ, δ) = a(α, β, µ, δ)q
(

x − µ

δ

)

−1

K1

{

δαq
(

x − µ

δ

)}

eβx (1)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(2)

and where K1 is the modified Bessel function of the third kind and index 1.
The domain of variation of the parameters is given by µ ∈ R, δ ∈ R+, and
0 ≤ |β| < α. The distribution is denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution NIG(α, β, µ, δ) then the cumulant
generating function of X, i.e. K(θ; α, β, µ, δ) = log E{eθX}, has the form

K(θ; α, β, µ, δ) = δ{
√

α2 − β2 −
√

α2 − (β + θ)2} + µθ. (3)

It follows immediately from this that if x1, ..., xm are independent normal
inverse Gaussian random variables with common parameters α and β but
individual location-scale parameters µi and δi (i = 1, ..., m) then x+ = x1 +
... + xm is again distributed according to a normal inverse Gaussian law, with
parameters (α, β, µ+, δ+).

Furthermore, the first four cumulants of NIG(α, β, µ, δ), obtained by differen-
tiation of (3), are found to be

κ1 = µ +
δρ√

1 − ρ2
, κ2 =

δ

α(1 − ρ2)3/2
(4)

and

κ3 =
3δρ

α2(1 − ρ2)5/2
, κ4 =

3δ(1 + 4ρ2)

α3(1 − ρ2)7/2
, (5)

where ρ = β/α. Hence, the standardised third and fourth cumulants are

κ̄3 =
κ3

κ
3/2
2

= 3
ρ

{δα(1 − ρ2)1/2}1/2
(6)

and

κ̄4 =
κ4

κ2
2

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
. (7)

We note that the NIG distribution (1) has semiheavy tails; specifically,

p(x; α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x| + βx) , x → ±∞ (8)
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as follows from the asymptotic relation

Kν(x) ∼
√

2/πx−1/2e−x as x → ∞. (9)

The normal inverse Gaussian law NIG(α, β, µ, δ) has the following important
characterisation in terms of the bivariate Brownian motion with drift. Let
B(t) = {B1(t), B2(t)} be a bivariate Brownian motion starting at (µ, 0) and
having drift vector (β, γ) where β ∈ R and γ ≥ 0. Furthermore, let T de-
note the time when B1 first reaches level δ > 0 and let X = B2(T ). Then
X ∼ NIG(α, β, µ, δ) with α =

√
β2 + γ2.

A systematic study of the class of normal inverse Gaussian distributions, and
of associated stochastic processes, was begun in [10–14]. Further theoretical
developments and applications are discussed in [15–28]. As discussed in the
papers cited and in references given there, the class of NIG distributions and
processes have been found to provide accurate modelling of a great variety
of empirical findings in the physical sciences and in financial econometrics.
(The wider class of generalised hyperbolic distributions, introduced in [29],
provides additional possibilities for realistic modelling of dynamical processes,
see references in the papers cited above.)

3 Description of the data

The data sets we analysed consist of one-point time records of the longitudinal
(along the mean flow) velocity component. The data are from the atmospheric
boundary layer (data set (at)) [30,31], from a gaseous helium jet flow (data
sets (h85)-(h1181)) [32], from a free air jet experiment (data set (f)) [33] and
from a wake generated by a flat plate (data set (w)) [34]. This collection of
data sets comprise a wide range of Reynolds numbers from 80 (w) up to 17000
(at). Table 1 lists the Taylor Reynolds numbers Rλ. We refer to [30–34] for
more information about the data sets.

We perform the statistical analysis of the densities of velocity increments u in
terms of temporal statistics

us = v(t + s) − v(t) (10)

where v(t) denotes the longitudinal velocity component at time t. Note that
we do not invoke Taylor’s Frozen Flow Hypothesis which translates (10) into
spatial scales u(x) = u(x− l)−u(x) (reversing the sign of the usual definition
of spatial velocity increments) where l = v̄s and v̄ denotes the mean velocity.
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Defining velocity increments us according to (10), we expect the skewness of
the distribution of velocity increments to be positive.

We furthermore normalized each data set by its standard deviation, i.e. the
variance of each velocity time series is one.

4 Distribution of velocity increments

Figure 1 shows the densities of timewise velocity increments (10) for different
data sets and various time scales s (in units of the finest resolution). The
solid lines denote the approximation of the densities within the class of NIG
distributions using maximum likelihood estimation of the four parameters α,
β, δ and µ of the NIG distribution. The NIG distributions fit the empirical
densities to high accuracy for all amplitudes u. The same high quality of the
fit holds for all scales (not shown here). We performed the same analysis for
all data sets that are listed in Table 1 and obtained similar plots for all lags s
and all amplitudes u (not shown here).

For each data set the approximation within the class of NIG distributions is
completely described by the four parameter sets α(s), β(s), δ(s) and µ(s) as
functions of the time scale s. Due to the stationarity of the velocity signal we
are able to express one of them, say µ(s) in terms of the other three parameter
sets. Stationarity implies zero mean for velocity increments. In terms of the
parameters of the NIG distributions we get from (4)

µ(s) = − δ(s)β(s)
√

α2(s) − β2(s)
. (11)

Thus, for each data set, we are left with three parameter sets to fully describe
the evolution of the densities of velocity increments across scales. To reduce
the scatter of the different parameters as a function of the scale s we introduce
as new parameters the set δ, α/δ and

ξ =
(

1 + δ
√

α2 − β2

)

−1/2

. (12)

The parameter ξ is called the steepness parameter of the NIG distribution and
it plays a role similar to the standardized fourth order cumulant.

The approximate NIG distributions have 3 free parameters for the description
of the densities of velocity increments. The appearance of an additional third
parameter, in contrast to existing approaches using two-parameter families
of log-normal distributions and stretched log-normal distributions (see [35])
is due to the fact that, in our approach, we describe the densities of pure
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velocity increments (not taking absolute values). Log-normal and stretched
log-normal distributions are only suitable for the approximation of the den-
sities of absolute values of velocity increments. The observed asymmetry in
the tails requires an additional parameter. It is also important to note that
NIG distributions are analytically tractable and the parameters of the NIG
distributions are directly related to the scale, skewness and asymmetry of
the approximated empirical distributions. In this sense, NIG distributions are
a natural substitute for the popular families of log-normal distributions and
stretched log-normal distributions when dealing with the observed asymmetry
of the distribution of pure velocity increments.

Figure 2 shows the estimated scale parameters δ(s) of the approximate NIG
distributions as a function of the lag s. Note, in particular, that the scale
parameter δ is monotonically increasing with the time scale s for all data sets.

Figures 3(a) and 4(a) show the estimated parameters α(s)/δ(s) and ξ(s), re-
spectively. The functional dependence of the parameters of the approximate
NIG distributions on the scale s changes substantially with the Reynolds num-
ber and the experimental conditions.

Figures 3(b) and 4(b) show the estimated parameters α(s)/δ(s) and ξ(s) as a
function of the estimated scale parameter δ(s), respectively. For both of the
two parameter sets there is a striking collapse onto one single curve. Note that
the various data sets cover a wide range of Reynolds numbers and widely dif-
ferent experimental situations. It is the scale parameter δ(s) that describes the
individual characteristics of each data set, but in terms of δ(s) the remaining
parameters show a universal behaviour, independent of the experimental set
up and independent of the Reynolds number.

5 Time change and universality

The collapse of the parameters α(s)/δ(s) and ξ(s) of the different data sets
onto single, apparently universal curves when plotted as a function of the scale
parameter δ(s) immediatedly implies a collapse of the corresponding densities
of velocity increments.

Figure 5 shows a collection of densities of velocity increments that correspond
to fixed values of the scale parameter δ. As expected from Figures 3(b) and
4(b) the densities collapse onto Reynolds number independent distributions
that are solely labeled by the scale parameter δ.

In other words, the densities of velocity increments of the type of data we
analyzed in this paper follow a one-parameter curve in the space of probability
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densities. Each individual data set covers a certain part of this one-parameter
curve. The parameter δ of the corresponding approximation of the densities
within the class of NIG distribution is a very good approximation of this
characteristic parameter.

The change from scale s to δ(s) in the labeling of the densities of velocity
increments corresponds to a time change such that individual characteristics of
each data set are covered by the functional dependence of δ(s) but in terms of
which the densities behave in a universal fashion. The intrinsic time change we
propose here applies equally well to all scales, providing a unified description
of dissipative, inertial and sup-inertial scales.

Of course, any statistical quantity that monotonically increases with the time
scale s is equally well suited for being a universal time change. In particular,
the variance of velocity increments increases with increasing time scale s and,
as such, may serve as a time change. However, using the scale parameter δ(s)
of the approximate NIG distributions seems to be more appropriate since it
directly relates to the parameters of the densities of velocity increments.

The collapse of the densities of velocity increments can be put into more
mathematical terms by introducing a stochastic equivalence class of the form

u(i)
s1

g(i)(s1)
d
=

u(j)
s2

g(j)(s2)
⇔ F (i)(s1) = F (j)(s2) (13)

where
d
= denotes equality in distribution and the superscripts (i) and (j) label

the different data sets. The monotonic functions F denote the intrinsic time
changes and the deterministic functions g are introduced here to account for
more general situations (see the next Section).

In the present analysis of the data sets in Table 1 we have

g(i)(s) =
√

Var(v(i)), (14)

independent of s, i.e. the functions g reduce to a constant normalization. Here
Var denotes the variance. For the intrinsic time change F we obtain from our
analysis within the class of NIG distributions

δ(i)(s) = F (i)(s) (15)

to high accuracy.

In more general situations (i.e. anisotropic flows, see next Section), the func-
tion g(i)(s) can, in principle, be estimated using cumulants of order two and
four. For that we choose a reference experiment (j) and arbitrarily set g(j)(s) ≡
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1. From (13) we get

(g(i)(s1))
2 =

c2(u
(i)(s1))

c2(u(j)(s2))
(16)

and

(g(i)(s1))
4 =

c4(u
(i)(s1))

c4(u(j)(s2))
(17)

where s1 and s2 are the corresponding time scales where the densities of veloc-
ity increments at time scale s1 of experiment (i) and time scale s2 of experiment
(j) collapse. Here cn denotes the cumulant of order n. Combining (16) with
(17) gives

c4(u
(i)(s1))

(c2(u(i)(s1)))2
= c̄4(u

(i)(s1)) = c̄4(u
(j)(s2)) (18)

where c̄4 denotes the standardized fourth order cumulant. From (18) the corre-
sponding time scales s1 and s2 can be estimated and, using (16), the function
g(i) is determined (relative to the function g(j)).

6 Time change and Generalized Extended Self-Similarity

This Section examines the relation between the stochastic equivalence class
(SEC) proposed in (13) and the concept of Extented Self-Similarity (ESS)
and its generalization to Generalized Extended Self-Similarity (GESS). We
will show that under mild conditions the SEC approach is equivalent to GESS
when g(s) depends on the scale s and SEC is equivalent to ESS when g(s)
does not depend on the scale s.

The concept of GESS [5,6] can be expressed (in the time domain, invoking
Taylor’s Frozen Flow Hypothesis) as

Sn(s) = Gng1(s)
ng2(s)

ξ(n) (19)

where g1(s) and g2(s) are scale-dependent functions and ξ(n) is an exponent
independent of scale. The constants Gn are assumed to be universal. The
structure functions Sn(s) are defined as the moments of velocity increments
of order n

Sn(s) = E {u(s)n}
where E{·} denotes the expectation.

A stronger statement is given by ESS [3,4] which may be written as

S(i)
n (s) = GnGng2(s)

ξ(n) (20)

where G is a velocity scale. ESS corresponds to GESS for g1(s) = G =
constant.
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ESS and GESS hold for scales s that considerably extend the inertial range.
While ESS applies to a wide range of isotropic flows, it is of limited use in
anisotropic flows. This inspired the study of GESS which equally well applied
to anisotropic flows.

For the comparison of SEC with ESS and GESS we will refer to another basic
concept in turbulence, the existence of a fully developed turbulent flow (FDT)
characterized as a turbulent state where scaling of structure functions of all
orders n holds within the inertial range (assumed to be very large)

Sn(s) = GnG
n
(

s

T

)ξ(n)

, (21)

where T is some reference time scale.

The scaling relation (21) corresponds to GESS with

g1(s) = G (22)

and

g2(s) =
s

T
. (23)

In its original formulation, ESS and GESS refer to spatial scales. Here we
restrict ourselves to purely temporal statistics and reformulate ESS and GESS
in the time domain, using Taylor’s Frozen Flow Hypothesis. This reformulation
is naturally adapted to our data sets consisting of time series at a fixed spatial
position.

It has been shown in [9] that SEC for a flow (i) together with (14) implies
ESS for the flow (i) under the assumption of the existence of a flow (j) which
is FDT. On the other hand, if the distribution of velocity increments is deter-
mined by all its finite moments then ESS for the flow (i) and the assumption
of FDT for some other flow (j) implies SEC for the flow (i). Here we supple-
ment these results by showing that SEC for a flow (i) with a given function
g(s) and the existence of a flow (j) which is FDT implies GESS for the flow
(i) with universal exponents ξ(n). Moreover, if the distribution of velocity in-
crements is determined by all its finite moments then GESS for a flow (i) and
the assumption of the existence of a flow (j) which is FDT implies SEC for
the flow (i).

As a first step, we prove that SEC for a flow (i) together with FDT for some
other flow (j) implies GESS. Let SEC hold for some arbitrary flow (i) and let
(j) be a fully developed turbulent flow which obeys SEC. We denote by F̄ the
inverse of F (which exists since F is assumed to be monotonic).
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It follows from (13) and (21) that

S(i)
n (s) = Gn

(

G(j)g(i)(s)

g(j)(F̄ (j)(F (i)(s)))

)n (
F̄ (j)(F (i)(s))

T (j)

)ξ(n)

. (24)

We identify

g
(i)
1 (s) =

G(j)g(i)(s)

g(j)
(

F̄ (j) (F (i)(s))
) (25)

and

g
(i)
2 (s) =

F̄ (j)
(

F (i)(s)
)

T (j)
. (26)

Inserting (25) and (26) in (24) immediatedly establishes the GESS relation
(19) for experiment (i). Therefore, SEC for the flow (i) and FDT for some
other flow (j) imply GESS for the flow (i) with universal exponents ξ(n).

To show that the definitions of the functions g1 in (25) and g2 in (26) do not
depend on the fully developed turbulent reference state (j), we apply equations
(25) and (26) to yet another fully developed turbulent state, say (k), and get,
using (22) and (23)

g
(k)
1 (s) = G(k) =

G(j)g(k)(s)

g(j)
(

F̄ (j) (F (k)(s))
) (27)

and

g
(k)
2 (s) =

s

T (k)
=

F̄ (j)
(

F (k)(s)
)

T (j)
. (28)

Consequently, we have

g
(i)
1 (s) =

G(j)g(i)(s)

g(j)
(

F̄ (j) (F (i)(s))
) =

G(j)g(i)(s)

g(j)
(

F̄ (j)(F (k)(F̄ (k) (F (i)(s))))
)

=
G(k)g(i)(s)

g(k)
(

F̄ (k) (F (i)(s))
) (29)

and

g
(i)
2 (s) =

F̄ (j)
(

F (i)(s)
)

T (j)
=

F̄ (j)(F (k)(F̄ (k)
(

F (i)(s)
)

))

T (j)

=
F̄ (k)

(

F (i)(s)
)

T (k)
. (30)

Equations (29) and (30) are equivalent to (25) and (26) and prove that the
expressions (25) and (26) do not depend on the fully developed turbulent
reference state (j).
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It is to note that the implication FDT⇒GESS is trivial. In the above reason-
ing, we show that for any flow (i), not necessarily fully developed turbulent
and which obeys SEC, we have that this flow (i) also obeys GESS under
the assumption that there exists another flow (j) which is a fully developed
turbulent flow.

We now prove that GESS for a given flow (i) together with FDT for some
other flow (j) implies SEC for the flow (i). For that, let GESS hold true for
the flows (i) and (k) and let the distribution of velocity increments of the flows
(i) and (k) be completely decribed by all their finite moments. Let, again, (j)
denote a fully developed turbulent flow obeying (21), (22) and (23). It follows
from (19) and (21) that

S(i)
n (s)

(g
(i)
1 (s))n

=
S(j)

n (g
(i)
2 (s)T (j))

(G(j))n
(31)

and
S(k)

n (s)

(g
(k)
1 (s))n

=
S(j)

n (g
(k)
2 (s)T (j))

(G(j))n
. (32)

We identify
g(i)(s) = g

(i)
1 (s) (33)

g(k)(s) = g
(k)
1 (s) (34)

and
F (i)(s) = g

(i)
2 (s) (35)

F (k)(s) = g
(k)
2 (s) (36)

and get from a comparison of (31) and (32)

S(i)
n (s1)

g(i)(s1)n
=

S(k)
n (s2)

g(k)(s2)n
⇔ F (i)(s1) = F (k)(s2). (37)

Since the distributions of u(i)
s and u(k)

s are assumed to be defined by all their
finite moments, (37) is equal to equality in distribution, i.e. SEC holds for
experiments (i) and (k).

This completes the proof that GESS and the assumption of the distribution
of velocity increments being completely described by all its finite moments
implies SEC.

Our empirical analysis showed that g(i)(s) = constant, which corresponds to
the ESS case (see (33)). In fact, the experiments we analyzed are isotropic
flows for which ESS holds true. For anisotropic flows the normalization g(i)(s)
depends on the time scale s in correspondence with the GESS relation (19).

Originally, GESS and ESS express distributional properties of single turbulent
experiments. The innovative view of GESS and ESS in terms of SEC provides
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a much broader interpretation. The scaling functions g2(s) serve as intrinsic
time changes in terms of which the normalized velocity increments, normalized
by g1(s), are universal. Thus GESS and ESS turn out to express distributional
properties relating different turbulent experiments.

7 Time change and hierarchical structures

The functions g1 and g2 in the GESS relation (19) are not unique. However,
[8] gives an interpretation of the functions g1 and g2 within the famous model
of hierarchical structure of She and Leveque [7]. The identification

g1(r) = S(∞)(r) (38)

and

g2(r) =
S3(r)

[S(∞)(r)]3
(39)

associates to g1(r) the r dependence of the strongest fluctuations and to g2(r)
the normalized r dependence of (typical) weak fluctuations. Here, the strongest
fluctuations are characterized by the finite limit

S∞(r) ≡ lim
p→∞

Sp+1(r)

Sp(r)
.

Using (38) and (39) and their interpretation within the model of hierarchical
structure of She and Leveque, we are now able to give a physical interpretation
of the normalization g(i) and the time change F (i) for the SEC relation (13)
for a given flow (i).

Within the hierarchical framework, the normalization g(i) of velocity incre-
ments in (13) is defined in terms of the strongest fluctuations (compare (38)
with (33)) and the time change F in (13) is defined solely in terms of the weak
fluctuations (compare (39) with (35)). Consequently, if the strongest fluctu-
ations do not depend on r, we arrive at a constant normalization g(i)(r) =
constant, i.e. the ESS case. Furthermore, typical weak fluctuations serve as
the intrinsic time change. All in all, SEC states that velocity increments nor-
malized by the strongest fluctuations obey a stochastic equivalence class with
an intrisic time change governed by typical weak fluctuations.
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8 Conclusions

In summary, we provide empirical evidence for the usefulness of NIG distribu-
tions for the description of the densities of velocity increments including the
asymmetry of the distributions. This clearly improves previous descriptions
using log-normal and stretched log-normal distributions for the densities of
absolute velocity increments while keeping the mathematical tractability of
the theoretical distributions.

Secondly, we provide empirical evidence for a new type of universality for
turbulent velocity increments. The densities of velocity increments obtained
from widely different experiments collapse for all scales and all amplitudes
after a proper time change in terms of the scale parameter δ of the approximate
NIG distributions.

The proposed stochastic equivalence class constitutes a reformulation and sub-
stantially new interpretation of the concept of GESS. We showed that, under
a mild moment condition on the distribution of velocity increments and the
existence of a fully developed turbulent state, GESS is equivalent to SEC. The
equivalence of GESS (and its special case ESS) and the model of hierarchi-
cal structure has already been discussed in [8]. The interpretation of GESS
in terms of SEC is not merely a reformulation but a strong extension since
SEC combines the statistics of different experiments and different Reynolds
numbers while GESS is restricted to the statistical description within one ex-
perimental situation. We strongly believe that this innovative view of SEC
will find various applications since it allows to directly compare statistical
properties of different flows.

In this paper we empirically verified SEC for a class of data sets where the
function g is constant (the ESS case). The empirical study of SEC for a scale
dependent function g(s) is currently in progress and will be published else-
where.

The authors are much indebted to K.R. Sreenivasan, J. Peinke and B. Chabaud
for allowing the use of the data sets. J.S. acknowledges support from the
Carlsberg Foundation.
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[18] E. Eberlein, in Lévy Processes - Theory and Applications, edited by O.E.
Barndorff-Nielsen, T. Mikosch, S. Resnick, Birkhäuser, Boston 2000.
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data set (at) (f) (w) (h85) (h89) (h124) (h208) (h209)

Rλ 17000 190 80 85 89 124 208 209

data set (h283) (h352) (h463) (h703) (h885) (h929) (h985) (h1181)

Rλ 283 352 463 703 885 929 985 1181

Table 1
Taylor Reynolds numbers Rλ for the 16 data sets.
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Fig. 1. Approximation of the probability densities p of velocity increments within
the class of NIG distributions for data sets h85, h463, h985 and lags s = 4, 20, 84,
s = 4, 132, 520 and s = 4, 112, 440 (in units of the finest resolution 1/f , where f
denotes the sampling frequency), respectively.
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Fig. 2. Estimated parameter δ as a function of the lag s (in units of the finest
resolution) for data set (at) (◦), (f) (△), (w) (+), (h85) (⊠), (h89) (3), h124) (∗),
(h208) (�), (h209) (⊕), (h283) (•), (h352) (⊞), (h463) (⊗), (h703) (×), (h885) (�),
(h929) (▽), (h985) (•), (h1181) (N) in double logarithmic representation.
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Fig. 3. (a) Comparison of (α/δ)(s) as a function of the lag s (in units of the finest
resolution) with (b) (α/δ)(δ) as a function of the scale parameter δ in double loga-
rithmic representation. Data sets and symbols correspond to those in Figure 2.

Fig. 4. (a) Comparison of ξ(s) as a function of the lag s (in units of the finest
resolution) with (b) ξ(δ) as a function of the scale parameter δ in double logarithmic
representation. Data sets and symbols correspond to those in Figure 2.
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Fig. 5. Collapse of the densities p(u) for various fixed values of the scale parameter
δ(s). The corresponding values of the lag s (in units of the finest resolution of the
corresponding data set) and the data sets are (a) (s = 116, at) (◦), (s = 4,h352)
(⊞), (b) (s = 440, at) (◦), (s = 8, f) (△), (s = 8,h929) (▽), (c) (s = 192,h885) (�),
(s = 88,h352) (⊞), (s = 10,w) (+), (d) (s = 380,h885) (�), (s = 410,h929) (▽),
(s = 350,h703) (×), (s = 340,h985) (•), (e) (s = 420,h703) (×), (s = 440,h929)
(▽), (s = 180,h352) (⊞), (s = 270,h283) (•), (s = 108,h124) (∗), (s = 56,h85) (⊠),
(f) (s = 470,h929) (▽), (s = 116,h124) (∗), (s = 60,h85) (⊠), (s = 188,h352) (⊞),
(s = 470,h1181) (N), (s = 140,h208) (�).
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