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We wish to consider a modeling framework for continuous-time
stationary stochastic processes that has an ARMA-like structure.
Let (L:) be a Lévy process. Then this leads us to study stationary
solutions to

Yt — Ys = / Yu ¢s,t(du) + / esyt(u) dLu
R R

where 05+ = 6(t — -) — 6(s — -) for a sufficiently regular function
concentrated on [0,00) and ¢s+ = ¢(t —-) — ¢(s — ) for a
sufficiently regular signed measure ¢ concentrated on [0, 00).
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Ye— Y, = / Yo 6o.e(dur) + / 0. ¢(u) dL,
R R

For example

if ¢(du) = o o) (u)du, ¢s(du) =1 (s g(u)du and the
equation becomes of Ornstein-Uhlenbeck type.

if O(u) = Ljo,00) (1), Os,t = 15 4(u) and we get an increment
in the Lévy process as noise.

if O(u) = u?, o € (—1/2,1/2),

Os,t(u) = (t —u)f — (s —u)%

and we get a fractional Lévy process as noise.
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If ¢(du) = n((—o0, u])du for a finite signed measure 7, the
equation may be rewritten as

t
Yo — ys:/ / Yoy n(dv) du+/957t(u) dL,.
s J[0,00) R

This is known as a stochastic delay differential equation (SDDE).

Now n = dg corresponds to the Ornstein-Uhlenbeck type equation.

In the literature there have been focus on
e measures 7] concentrated on a compact set.

e the Lévy driven case.
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e 1 does not necessarily have compact support which makes it
possible to relate SDDEs and CARMA processes (more on this
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e @ is such that the moving average integral exists which gives

the possibility to introduce long-range dependence into the
model.

e L1 has first moment which is a more restrictive assumption
than otherwise needed in the literature.



SDDE
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We show existence and uniqueness of solutions to SDDEs when

e 1 does not necessarily have compact support which makes it
possible to relate SDDEs and CARMA processes (more on this
later).

e @ is such that the moving average integral exists which gives
the possibility to introduce long-range dependence into the
model.

e L1 has first moment which is a more restrictive assumption
than otherwise needed in the literature.

The solution is given by

Y, = / 0+ g(t— u)dly, Flely) = 1/(—iy — Flnl(y))
R

(under the standard assumption that iy + F[n](y) # 0 for all
y € R and the mild assumption that 1 has second moment).
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CARMA processes

A CARMA(p, q) process (Y;) is stationary and satisfies the formal
equation

P(D)Y: = Q(D)DL;, tE€R,

where P, respectively @ are polynomials of order p € N,
respectively g € Ng with p > g. Here D denotes differentiation
wrt. t. These processes have been studied extensively in the
literature and applied to model many different phenomenons e.g.
stochastic volatility, wind speed, and electricity prices.

e CARMA(1,0) is an Ornstein-Uhlenbeck process.

e CARMA(2,1) is the stationary solution to

D?Y; + a1DY; + a» Y = boDL; + D?L,.
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Inverting a CARMA process

We say that a CARMA process (Y;) is invertible if Q(z) # 0 when
Re(z) > 0. Whenever this is the case,

1

.
S Giad(DFYe) = / Yo un(dv)dt + dLs
k=0 [0,00)

p

where 7(dv) = —cydo(dv) — f(v)dv. This is a higher order SDDE.
If g = p—1 it reduces to the regular SDDE

dYt = / thv n(dV) dt+ st
[0,00)

The representation gives

e a straightforward way to recover the noise when the process
(Y:) is observed.

e an intuitive dynamical representation of CARMA processes.



MSDDE

MSDDE

A multivariate SDDE is an equation on the form
dYt = / th\,?’](dV)dt + dZt, t e R,
[0,00)

where (Y;) € R 7 is a finite signed measure with second
moment that take values in the space of n X n matrices, and

(Z:) € R¥™" is a sufficiently regular stationary increment process.
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A multivariate SDDE is an equation on the form
dYt = / th\,?’](dV)dt + dZt, t e R,
[0,00)

where (Y;) € R 7 is a finite signed measure with second
moment that take values in the space of n X n matrices, and

(Z:) € R¥™" is a sufficiently regular stationary increment process.

We can find a solution whenever

det(iyl + F[n](y)) #0, forall y € R.

The solution is given by

Yo = Zxg(t), where Flgl(y) = (=il — Flnl(y)) .

aQ/12
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dYt = / Yt_vn(dV)dt + th
[0,00)

Solutions to this equation includes

MSDDE

t € R,

FICARMA
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n = Adg for n x n matrix A.
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MSDDE

dYt = / Yt_VT](dV)dt + dZt, t e R,
[0,00)

Solutions to this equation includes

e multivariate Ornstein-Uhlenbeck processes by choosing
n = Adg for n x n matrix A.

e higher order SDDEs, and therefore also invertible CARMA
processes.

e invertible multivariate CARMA processes.

10 /19
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FICARMA

e In the CARMA setup, long-range dependence can be
introduced as by Brockwell and Marquardt.

e Let @« € (0,1/2) and (/*L;) be a fractional Lévy process.
Then a FICARMA process (Y;) satisfy the formal equation

P(D)Y; = Q(D)DI®L,.

e Taking D® on both sides of this equation gives
P(D)D*Y; = Q(D)DL;.

In other words, (D“Y;) is a CARMA process. Estimation scheme:
e Given an estimate of «, calculate (D®Y;) and estimate the
parameters in P and Q.
e Using the SDDE relation we may invert the CARMA relation
and get the increments of (/*L;). Use this to estimate « and
start over.
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Thank you for your attention!
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