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Introduction

We wish to consider a modeling framework for continuous-time
stationary stochastic processes that has an ARMA-like structure.

Let (Lt) be a Lévy process. Then this leads us to study stationary
solutions to

Yt − Ys =

∫
R
Yu φs,t(du) +

∫
R
θs,t(u) dLu

where θs,t = θ(t − ·)− θ(s − ·) for a sufficiently regular function θ
concentrated on [0,∞) and φs,t = φ(t − ·)− φ(s − ·) for a
sufficiently regular signed measure φ concentrated on [0,∞).
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Introduction

Yt − Ys =

∫
R
Yu φs,t(du) +

∫
R
θs,t(u) dLu

For example

• if φ(du) = 1[0,∞)(u)du, φs,t(du) = 1(s,t](u)du and the
equation becomes of Ornstein-Uhlenbeck type.

• if θ(u) = 1[0,∞)(u), θs,t = 1(s,t](u) and we get an increment
in the Lévy process as noise.

• if θ(u) = uα+, α ∈ (−1/2, 1/2),

θs,t(u) = (t − u)α+ − (s − u)α+

and we get a fractional Lévy process as noise.
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SDDE

If φ(du) = η((−∞, u])du for a finite signed measure η, the
equation may be rewritten as

Yt − Ys =

∫ t

s

∫
[0,∞)

Yu−v η(dv) du +

∫
R
θs,t(u) dLu.

This is known as a stochastic delay differential equation (SDDE).

Now η = δ0 corresponds to the Ornstein-Uhlenbeck type equation.
In the literature there have been focus on

• measures η concentrated on a compact set.

• the Lévy driven case.
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SDDE

We show existence and uniqueness of solutions to SDDEs when

• η does not necessarily have compact support which makes it
possible to relate SDDEs and CARMA processes (more on this
later).

• θ is such that the moving average integral exists which gives
the possibility to introduce long-range dependence into the
model.

• L1 has first moment which is a more restrictive assumption
than otherwise needed in the literature.

The solution is given by

Yt =

∫
R
θ ∗ g(t − u)dLu, F [g ](y) = 1/(−iy −F [η](y))

(under the standard assumption that iy + F [η](y) 6= 0 for all
y ∈ R and the mild assumption that η has second moment).
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CARMA processes

A CARMA(p, q) process (Yt) is stationary and satisfies the formal
equation

P(D)Yt = Q(D)DLt , t ∈ R,

where P, respectively Q are polynomials of order p ∈ N,
respectively q ∈ N0 with p > q. Here D denotes differentiation
wrt. t.

These processes have been studied extensively in the
literature and applied to model many different phenomenons e.g.
stochastic volatility, wind speed, and electricity prices.

• CARMA(1, 0) is an Ornstein-Uhlenbeck process.

• CARMA(2, 1) is the stationary solution to

D2Yt + a1DYt + a2Yt = b0DLt + D2Lt .
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Finding the solution

To get a heuristic argument for a solution, take the Fourier
transform on both sides to get

P(−iy)F [Y ](y) = Q(−iy)F [DL](y), (1)

and therefore, whenever P(iy) 6= 0 for all y ∈ R,

F [Y ](y) =
Q(−iy)

P(−iy)
F [DL](y) = F [g ∗̇DL](y)

where g ∈ L2 is a function with Fourier transform Q(−i ·)/P(−i ·)
and g ∗̇DL(t) =

∫
R g(t − u)dLu. This agrees with the solution

given in the literature. If P(z) 6= 0 whenever Re(z) ≥ 0, g(t) = 0
for t < 0.

M
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Inverting a CARMA process

We say that a CARMA process (Yt) is invertible if Q(z) 6= 0 when
Re(z) ≥ 0. Whenever this is the case,

p−q−1∑
k=0

ck+1d(DkYt) =

∫
[0,∞)

Yt−vη(dv)dt + dLt

where η(dv) = −c0δ0(dv)− f (v)dv .

This is a higher order SDDE.
If q = p − 1 it reduces to the regular SDDE

dYt =

∫
[0,∞)

Yt−v η(dv) dt + dLt

The representation gives

• a straightforward way to recover the noise when the process
(Yt) is observed.

• an intuitive dynamical representation of CARMA processes.
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MSDDE

A multivariate SDDE is an equation on the form

dYt =

∫
[0,∞)

Yt−vη(dv)dt + dZt , t ∈ R,

where (Yt) ⊆ R1×n, η is a finite signed measure with second
moment that take values in the space of n × n matrices, and
(Zt) ⊆ R1×n is a sufficiently regular stationary increment process.

We can find a solution whenever

det(iyI + F [η](y)) 6= 0, for all y ∈ R.

The solution is given by

Yt = Z ∗ g(t), where F [g ](y) = (−iyI −F [η](y))−1.
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MSDDE

dYt =

∫
[0,∞)

Yt−vη(dv)dt + dZt , t ∈ R,

Solutions to this equation includes

• multivariate Ornstein-Uhlenbeck processes by choosing
η = Aδ0 for n × n matrix A.

• higher order SDDEs, and therefore also invertible CARMA
processes.

• invertible multivariate CARMA processes.
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FICARMA

• In the CARMA setup, long-range dependence can be
introduced as by Brockwell and Marquardt.

• Let α ∈ (0, 1/2) and (IαLt) be a fractional Lévy process.
Then a FICARMA process (Yt) satisfy the formal equation

P(D)Yt = Q(D)DIαLt .

• Taking Dα on both sides of this equation gives

P(D)DαYt = Q(D)DLt .

In other words, (DαYt) is a CARMA process. Estimation scheme:

• Given an estimate of α, calculate (DαYt) and estimate the
parameters in P and Q.

• Using the SDDE relation we may invert the CARMA relation
and get the increments of (IαLt). Use this to estimate α and
start over.
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J. Bus. Econom. Statist. 29(2), 250–259.

Brockwell, P. and T. Marquardt (2005).
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