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1. INTRODUCTION
RANDOM-COEFFICIENT AR(1) PROCESS [RCAR(1)]

X(t)=aX(t—-1)+((t), teZ, (1)
where
» i.i.d. innovations {((t), t € Z}, EC(t) =0, EC?(¢) = 1,

» random coefficient a € [0,1) with E(1 — a?)™! < oo,
independent of {((t), t € Z}.



1. INTRODUCTION

RANDOM-COEFFICIENT AR(1) PROCESS [RCAR(1)]

X(t)=aX(t—-1)+((t), teZ, (1)
where
» i.i.d. innovations {((t), t € Z}, EC(t) =0, EC?(¢) = 1,

» random coefficient a € [0,1) with E(1 — a?)™! < oo,
independent of {((t), t € Z}.

Stationary solution of (1) is given by

X(t) = Z a'=*¢(s), tez,

s<t

with
altl

EX(1) =0, EX(0)X(t)= E(m

) <o
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Motivation: explanation of long memory in macroeconomic time series
(Robinson 1978, Granger 1980, Zaffaroni 2004, Puplinskaité, Surgailis 2010).

AGGREGATION of independent copies Xi, ..., Xy of RCAR(1):
N
N7Y2N " Xi(t) —gaa X(1), N = 0,
i=1

where X := {X(t), t € Z} (= the limit aggregated process) is Gaussian
with zero mean and

ol
r(t) := EX(0)X(t) = EX(0)X(t) = E(m)
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Motivation: explanation of long memory in macroeconomic time series
(Robinson 1978, Granger 1980, Zaffaroni 2004, Puplinskaité, Surgailis 2010).

AGGREGATION of independent copies Xi, ..., Xy of RCAR(1):
N
N7Y2N " Xi(t) —gaa X(1), N = 0,
i=1

where X := {X(t), t € Z} (= the limit aggregated process) is Gaussian
with zero mean and

ol
r(t) := EX(0)X(t) = EX(0)X(t) = E(m)

Assume the AR coefficient a has a density satisfying

g(z) ~ (1 —2)’t, z—1, forsomeBe(1,2), s >0. (2
Then X has LONG MEMORY:

o]
r(t) ~const 170, t o0, = Y |r(t)| = oo

t=—o00
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Pilipauskaité, Surgailis 2014:

LetXl,...,

Xn be independent copies of RCAR(1) under (2) and

[n7]

SNn ZZX T>0

=1 t=1
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Pilipauskaité, Surgailis 2014:
Let X1,..., Xy be independent copies of RCAR(1) under (2) and

[n7]

SNn ZZX T>0

=1 t=1

» Let B € (1,2). As N,n — oo so that N/n® — p € [0, 00],
N71/2n7HSN7n(7') —fdd oo Bu(T) if u= o0,
N_l/ﬂn_l/QSNm(T) —taa WY2B(r), ifu=0,
N=YE=Y280 (1) —taa p2Z(1/u), i p € (0,00),

where By is a standard fractional Brownian motion, H € (%,1),

B is a standard Brownian motion, W =4 Sg/2(00,1,0),
Z has a Poisson stochastic integral representation.
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Pilipauskaité, Surgailis 2014:
Let X1,..., Xy be independent copies of RCAR(1) under (2) and

[n7]

SNn ZZX T>0

=1 t=1

» Let B € (1,2). As N,n — oo so that N/n® — p € [0, 00],
N~V H8y (1) —taa 0o Bu(7) if = o0,
N_l/ﬁn_l/QSNm(T) —tdd Wl/QB(T), if u=0,
N=YBp=V28y (1) —gaa p'2Z(r/p), if ue (0,00),

where By is a standard fractional Brownian motion, H € (%,1),
B is a standard Brownian motion, W =4 Sg/2(00,1,0),
Z has a Poisson stochastic integral representation.

> Let 8> 2. As N,n — oo in arbitrary way,
N71/2n71/25N7n(7_) —>fdd O’B(T).

» Related results for network traffic models:

Mikosch et al. 2002, Gaigalas, Kaj 2003, Kaj, Tagqu 2008, Dombry, Kaj 2011.
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PROBLEM
ESTIMATION of the c.d.f. of the AR coefficient

G(z)=P(a<1z), z€l[-1,1],

> from the (limit) aggregated sample:
Horvath, Leipus 2009, Chong 2006, Leipus et al. 2006, Celov et al. 2010;

» from PANEL RCAR(1) DATA {X;(1),..., X;(n)}, i=1,...,N;
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PROBLEM
ESTIMATION of the c.d.f. of the AR coefficient

G(I) = P(a < I)5 S [717 1]3

> from the (limit) aggregated sample:
Horvath, Leipus 2009, Chong 2006, Leipus et al. 2006, Celov et al. 2010;

» from PANEL RCAR(1) DATA {X;(1),..., X;(n)}, i=1,...,N;

> parametric: Robinson 1978, Beran et al. 2010;
» NONPARAMETRIC: by the empirical c.d.f.

N

o 1

G(a) = 5 D Uar < 2), € [-1,1],
=1
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PROBLEM
ESTIMATION of the c.d.f. of the AR coefficient

G(I) :P(aé‘r)a S [7171]5
> from the (limit) aggregated sample:
Horvath, Leipus 2009, Chong 2006, Leipus et al. 2006, Celov et al. 2010;
» from PANEL RCAR(1) DATA {X;(1),...,Xi(n)}, i=1,...,N;

> parametric: Robinson 1978, Beran et al. 2010;
» NONPARAMETRIC: by the empirical c.d.f.

N
1
'1") :Nzl(&’ng)a 1:6[_171]7
=1

of sample lag 1 autocorrelations (=the estimates of unobservable a;)

By = ?_11<Xz<t>1 oGO ) where X, = igxim




2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.

PANEL RCAR(1) DATA MODEL

{X;(t), t € Z}, i =1,2,...: stationary solutions of
Xi(t) = aXi(t—1)+G(1), teZ,
G(t) = bin(t) + ci&i(t), teZ,
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2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.
PANEL RCAR(1) DATA MODEL

{Xi(t), t€Z}, i=1,2,...: stationary solutions of
Xz(t) = aiXi(t — 1) + Ci(t), teZ,
G(t) = bin(t) + citi(t), tez,

under the following assumptions for some p > 1 and g € (0, 1]:

Al {n(t)} i.id., En(t) =0, Eln(t)|> < oo;

A2 {&(1)} i=1,2,... iid., BE&(t) =0, Bl&(1)]2P < oo;

A3 (b;,¢;) ", i=1,2,..., iid. random vectors with
b;, c;i: possibly dependent, P(b7 + ¢? > 0) = 1, E(b7 + ¢?) < oo;

Ad a; € (—1,1),i=1,2,..., iid. with a c.d.f. G satisfying
E(1-a?)™! < o

A5 {n(t)}, {&(t)}, (bi,ci) T, a; are independent for every i = 1,2, ...

A6 G is p-Holder continuous: 3L > 0 such that
|G({E) - G(y)‘ S L‘l’ - y|g, VZIZ, /RS [717 1};



Fix i =1,2,.... The sample lag 1 autocorrelation of {X;(1),...

L S () — XK+ 1) = X)
1 Y (Kilt) - X2

is invariant to shift and scale transformations of X;; |4;] <1 a.s.

_ 1 n
here X; = = S X,(t
,  where nz (1)
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Fix i =1,2,.... The sample lag 1 autocorrelation of {X;(1),..., X;(n)}

G — X)) = X)) (Xa(t+ 1) — X))
1 ST (K1) — X2

is invariant to shift and scale transformations of X;; |4;] <1 a.s.

_ 1 &
, Wwhere X; = — E X (),
n
t=1

THEOREM
Assume the panel RCAR(1) data model under A1-A6. If N,n — oo so

that Nrf%(%/\(p*l)) — 0, then
VN(Gy(z) — G(x)) = p_1,1) W(2),

where {W(z), z € [-1,1]} is a Gaussian process with zero mean and
EW (z)W(y) = G(z A y) — G(r)G(y); and — p[_1 1) denotes the weak
convergence in D[—1, 1] with the uniform metric.
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Fix i =1,2,.... The sample lag 1 autocorrelation of {X;(1),..., X;(n)}

S G = X) (Xt + 1) - Xi) -1
a; = ST X(E) X) , whereXi—EZ:Xi(t)

is invariant to shift and scale transformations of X;; |4;] <1 a.s.

THEOREM
Assume the panel RCAR(1) data model under A1-A6. If N,n — oo so

that Nrf%(%/\(p*l)) — 0, then
VN(Gy(z) — G(x)) = p_1,1) W(2),

where {W(z), z € [-1,1]} is a Gaussian process with zero mean and
EW (z)W(y) = G(z A y) — G(r)G(y); and — p[_1 1) denotes the weak
convergence in D[—1, 1] with the uniform metric.

» Thm. applies to long panels: if p = 1, then for very large p,
we assume N /nP/(0+P) — 0, where p/(1 + p) =~ 1.
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IDEA OF THE PROOF. It suffices to show that

sup \f)N(x)| —p 0,
z€[—1,1]

where
N

Dy(z) == N2Y "(1(a; < ) — 1(a; < 2)).

i=1
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IDEA OF THE PROOF. It suffices to show that

sup \f)N(x)| —p 0,

z€[—1,1]
where
N
Dy(z) == N2Y "(1(a; < ) — 1(a; < 2)).
=1
For £ > 0, we have
N
IDn(z)| < NTV2Y (L(z—e < a; <z 4€) + 1(|a; — ag] > 2)).
=1

Use o-Holder continuity of G with £2t? ~ n=2/(P=1) = o(1) and

PROPOSITION 1
Fix i=1,2,.... Under A1-A5, for any e € (0,1) and n =1,2,..., it
holds

P(|a; — a;| > ) < C(n 2NP=Demp 471

with C' > 0 independent of n, ¢.
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3. GOODNESS-OF-FIT TESTING

SIMPLE GoF
H()ZG:G(), HllG:G(),
with Gy completely specified.
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3. GOODNESS-OF-FIT TESTING

SIMPLE GoF
H()ZG:GQ, HliG:G(),
with Gy completely specified.

> The Kolmogorov—Smirnov test rejects Hy at level w € (0,1) if
VN sup |Gy (z) — Go(w)] > e(w),

where ¢(w) is the upper w-quantile of the Kolmogorov distribution.

> It has asymptotic size w and is consistent provided the assumptions
of Thm. hold.
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COMPOSITE GoF
Hy:GeG:={Gy, Hc(1,0)?}, H :G¢G,

with G being the family of the beta c.d.f.s parametrized by 6 = («, 8) T

1

‘ a—1 _ \B-1
7’5)/015 (1= 1dt, welo,1],

Go () = B(aw

where B(a, 3) = FF((“;JI;%) is the beta function.
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COMPOSITE GoF
Hy:GeG:={Gy, Hc(1,0)?}, H :G¢G,

with G being the family of the beta c.d.f.s parametrized by 6 = («, 8) T

1

B)/; 71— )P,z e0,1],

Go () = B(aw

where B(a, 3) = FF((“CSE(B%) is the beta function.

» The Kolmogorov—Smirnov statistic with estimated parameters
On = (an, Bn) " (by method of moments):

\/N81;p|GN(1:) — Gy, (2)]-
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Fix me N. Let = (u™,...,u(™)T and ﬂN:(Mg\/ seesfly
where

,u(“) = Ea", ﬂgf,‘) = ! Z Lou=1,...,m.
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Fix me N. Let = (u, ..., u™)7 and fiy = (ﬂg\}), . ,ﬂg\,m))-r,
where
w._ 1y
(u) . u alu) .+ A _
' = Ea", iy .—N;ai, u=1,...,m.
PROPOSITION

Assume the panel RCAR(1) data model under A1-A5. If N,n — co
so that Nn~ T332 (P=1) 5 0 then

\/N(ﬂN — K1) —a N(07 ¥),

where ¥ := (cov(a", a”))1<u,v<m-

25



Fix me N. Let = (u, ..., u™)7 and fiy = (ﬂg\}), . ,ﬂgvm))-r,
where
w._ 1y
(u) . u plu) o AU _
' = Ea", iy .—N;ai, u=1,...,m.
PROPOSITION

Assume the panel RCAR(1) data model under A1-A5. If N,n — co
so that Nn~ T332 (P=1) 5 0 then

\/N(ﬂN — K1) —a N(07 ¥),
where ¥ := (cov(a¥, a"))1<u,u<m-

» Robinson 1978: AN of a different estimator of u for fixed n as

N — oo if {¢;(t) = &(¢)} and E(1 — a?) ™2 < oo (short memory).

11/25



The method-of-moments estimator éN = (&N,BN)T of beta parameter 0:
L (1), A(1 ~(2 ~(1)y /(1 ~(2
G ) 0 - i)
~ ~(1 ’ - ~(2 ~(1
A = ()2 A = ()2
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The method-of-moments estimator éN = (&N,BN)T of beta parameter 0:
. N . ~(1)y /(1 ~(2
ay — Ay (A — ay) By = L= W)y — i)
A = ()2 A = ()2
COROLLARY

Assume the panel RCAR(1) data model under A1-A6 with G = Gp,
0 € (1,00)2. If N,n — 0o so that Nn~ 755 (3A(?=1) _5 0 then

\/N(é]v — 9) —d N(O,AQ),
where Ay := A7IS(A™) T, A :=09u/00, T as in Prop.
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The method-of-moments estimator 9N = (aN,,BN) of beta parameter 0:

D U 0 S S e 912 il )
A = ()2 A = ()2
COROLLARY

Assume the panel RCAR(1) data model under A1-A6 with G = Gp,
0 € (1,00)2. If N,n — 0o so that Nn~ 755 (3A(?=1) _5 0 then

VN(Oy — 0) —a N(0, Ay),
where Ap := A7'S(A™Y) T, A:=0u/00, ¥ as in Prop. Moreover,
VN(Gn(z) = Gy (2) = pioy Ve(@),
where {Vy(z), = € [0,1]} is a Gaussian process with zero mean and
EVo(z) Va(y) = Go(z A y) = Go(x) Goly) + 0o Go(w) " Aody Go(y)
- [t 4G wanGot) - [ a0 aGo(wonGofa)
with 99 Go () := 0Gy(2)/00, lp(z) := A~ (z — p™M), 2% — u@)T.



COMPOSITE GoF
Hy:GeG={Gy 01,002}, H:G&G

with G being the family of the beta c.d.f.s parametrized by 6§ = (o, 8) .

Hy is rejected at level w € (0,1) if

\/NSI;NC*N(«’E) — Gy, (2)] > ¢4, (w),

where
P(sup|Vy(z)| > ¢9(w)) = w.
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COMPOSITE GoF
Hy:GeG={Gy 01,002}, H:G&G

with G being the family of the beta c.d.f.s parametrized by 6§ = (o, 8) .

Hy is rejected at level w € (0,1) if
VN sup|Gy(z) — G; (z)] > ¢, (w),

where
P(sup|Va(z)| > co(w)) = w.

> The test has asymptotic size w and is consistent
(since iy —p p implies Oy —p 0 and ¢p(w) is continuous in 6)
provided the assumptions of Cor. hold.

» Parametric bootstrap can also produce asymptotically correct
critical values.
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4. SIMULATIONS

Beran et al. 2010:

> Let Xj,..., Xy be independent copies of RCAR(1) with
Ci(t) = &(t) =a N(0,1) and

P(a? <) = Go(z), z€0,1], 6€(1,00)%
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Gi(t) =&(t) =4 N(0,1) and
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» Oy is defined as a maximum likelihood estimator of 6 with
unobservable a; replaced by

a; := min(max(a;, k),1 — k), i=1,...,N,

where k > 0 is a truncation parameter.
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4. SIMULATIONS

Beran et al. 2010:

> Let Xi,..., Xn be independent copies of RCAR(1) with
Gi(t) =&(t) =4 N(0,1) and

P(a? <) = Go(z), z€0,1], 6€(1,00)%

» Oy is defined as a maximum likelihood estimator of 6 with
unobservable a; replaced by

a; := min(max(a;, k),1 — k), i=1,...,N,

where k > 0 is a truncation parameter.

> If VNE2n71 — 0, VN @B — 0 and (logr)?N~1/2 = 0
as N,n — oo, k = 0, then

VN(Oy —0) =4 N(0, A(6)).

14 /25



Simulation procedure to compare:
Tks = \/NSENGN(«T) — G, (2)],
Ture = N(On—00)" A(6)(On — o)
in testing
Hy: G= Gy, (0=06y), H:G+# Gy, (0#6p)

for 0y = (2,1.4)T.
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Simulation procedure to compare:
Tks = \/Nsup|C'N(:E) — Gy, (2)],
TMLE = N(éN - go)TA(Qo)(éN — 90)

in testing

Hy: G = Gy, (0=060), H :G# Gy, (6 0)
for 0y = (2,1.4)T.
» The same 6y, N, n as in Beran et al. 2010.
> 5 € (1,2) implies the long memory in RCAR(1).

> p-value := 1 — F;(T;), where F; := limit c.d.f. of T; under Hp,
i = KS, MLE.

» If the asymptotic size of the test is correct, then
the asymptotic distribution of the p-value is uniform on [0, 1].

15/25



0.08

0.04

empirical c.d.f. of p-values
0.0 0.2 04 06 0.8 1.0

0.00

T T T T T
0.0 02 04 06 08 10 0.00 0.04 0.08

p-value

Figure: [left] Empirical c.d.f. of p-values of Txs and T g from 5000

replications of a panel with N = 250, n. = 817 under Hy : § = (2,1.4) .

[right] Zoom-in on the region of interest: p-values smaller than 0.1.
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w=5%
B 1.2 1.3 1.4 1.5 1.6

Tks 532 137 049  .208 576
TyLE 500 104 .077 313 735

w = 10%
3 12 13 141 15 16

Tks 653 .223 .103 .315 .702
Ture  .634 .184 134 421 .827

Table: Empirical probability to reject Hy: § = (2,1.4) " at levels w = 5%, 10%.

5000 replications of a panel with N =250, n =817 and 6§ = (2,3)".
The column for 3 = 1.4 provides the empirical size.

17/25



w Q| Q
[ =
3
g o | ©
CI)_ o o
5 @ | ©
= @ ©
T o« <
o o o
8
= o | — b=0 N =14
2 . b=08 © p=15
@ o | b=1 o p=1.6
S T T T T T S T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0

p-value

Figure: Empirical c.d.f. of 5000 p-values of Tks for testing Hp: 6 = (2,1.4)7

from a panel comprising N = 250 RCAR(1) series of length

[left] n = 817 under Hy and dependence structure (b;, ¢;) " = (b, v/1— b2)T;
[right] 7 = 5500 under 6 = (2,8)" and (bi, c;)" = (1,0)7, i.e. all series are
driven by common innovations.
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CONCLUSIONS:

» We do not observe an important loss of the power for Tkg
compared to TyrE.

» Tk does not require to choose any truncation parameter contrary
to TMLE-

> We can use Txg under weaker assumptions on (moments,
dependence structure of) RCAR(1) innovations.

19/25



5. OTHER RESULTS

Assume

A6" G is continuously differentiable with derivative g.

Its KERNEL DENSITY ESTIMATOR is

N
1 x—&i
@N(fc):*g K( ), z €R,
Nh — h

where the kernel K : [—1,1] — R is Lipschitz, K(z) =0, z € R\ [-1,1]
and h > 0 is a bandwidth.

20 /25



5. OTHER RESULTS

Assume

A6" G is continuously differentiable with derivative g.

Its KERNEL DENSITY ESTIMATOR is

N
1 x—&i
inG) = o SK(S), seR,
Nh & h

where the kernel K : [—1,1] — R is Lipschitz, K(z) =0, z € R\ [-1,1]
and h > 0 is a bandwidth.

Under certain conditions on N, n — oo, h — 0,

a0y (@) i)
/_OOE|gN(m) g(z)]*dz — 0 and Veron () — N(0,1).
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Assume

A6" Je > 0 such that G is continuously differentiable on (1 —¢,1) with
derivative g satisfying

9(@) = (1 - 2)° 11+ O((L —2)")), @ =1,

for some 8 > 1 and g1 > 0.
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Assume

A6" Je > 0 such that G is continuously differentiable on (1 —¢,1) with
derivative g satisfying

9(@) = (1 - 2)° 11+ O((L —2)")), @ =1,

for some 8 > 1 and g1 > 0.
Then Y :=1/(1 — a) satisfies

P(Y >y) =(qa/B)y ?(1+0(y™)), y— oo
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Assume

A6" Je > 0 such that G is continuously differentiable on (1 —¢,1) with
derivative g satisfying

g(@) = (1 -2’11+ 0(1-2)"), z—1,
for some 8 > 1 and g1 > 0.
Then Y :=1/(1 — a) satisfies
P(Y >y)=(0/B)y "(1+0(y™")), y— oo

Goldie, Smith 1987:
Let Y, Yy,..., Yy beiid. rvs.
THE ESTIMATOR OF THE TAIL-INDEX § is given by

SN Y2 y)
SN LY > y)In(Yi/y)

where y > 0 is a threshold.

Bn =
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Le
t Gy = S 1(a > 1 0)
T SN 1@ > 1 - 6)In(3/(1 - &)

where § > 0 is a threshold close to 0 and

a; := min(a;,1 —6%), i=1,...,N.



Let

Gy i Uai>1-0)
NS Y(a > 1 66/ — @)

where § > 0 is a threshold close to 0 and

a; := min(a;,1 —6%), i=1,...,N.

THEOREM
Assume the panel RCAR(1) data model under A1-A6 and N — oo,
so that n — 0o, § — 0 and N&#+2(8") — 0, N§8 /(In6)* — oo and

VN§ByInéd — 0 ifl<p<2,
VN&B((nd?)"tvy)lnd — 0 ifp>2,

Where Y i=YN = (n(p—l)/\(p/Q)(Sp-‘rﬁ)—1/(p+1)_ Then
\V RN(BN - B) —d N(0362)7

where Ky := Zﬁvzl 1(a; >1-9).



TEST FOR LONG MEMORY:
Hy:8>2, H:p<2(RCAR(1) has long memory)
Hjy is rejected at level w € (0,1) if
Tn ==\ Kn(Bx —2)/Bn < 2(w),
where z(w) is the w-quantile of standard normal distribution.

Under assumptions of Thm.,
» Tn —a N(0,1)if 8=2and Ty —, —o0 if B < 2.
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TEST FOR LONG MEMORY:

HO : B 2 21
Hjy is rejected at level w € (0,1) if

Ty = K (B — 2)/ B < #(w),

where z(w) is the w-quantile of standard normal distribution.

Under assumptions of Thm.,
» Tn —a N(0,1)if 8=2and Ty —, —o0 if B < 2.

H; : 3 <2 (RCAR(1) has long memory)

B 1.5 1.75 2 225 25 275

iid. 0476 0.189 0.055 0.031 0.025 0.022
n=1000 0.186 0.058 0.025 0.015 0.010 0.014
n=5000 0.368 0.137 0.050 0.031 0.024 0.015
n = 10000 0.410 0.130 0.050 0.039 0.028 0.016

Table: Empirical probability to reject Hy : B > 2 at level w = 5% .

The i.i.d. row stands for testing from unobservable AR coefficients.

Three last rows correspond to panel data comprising N = 1000 independent

RCAR(1) series of length n. The AR coefficient is beta distributed wih

parameters (2, 3). Estimations are made from 1000 independent replications.
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