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Review of Black–Scholes option pricing

The Black–Scholes model
In the Black–Scholes (1973) model, under the unique pricing
measure Q, the price of the underlying follows

dSt = σStdBt,

where σ > 0 is the volatility parameter and B is a standard
Brownian motion under Q.

Consider a call option struck at K = S0ek > 0 (that is, at log
strike k ∈ Ò) at time 0, paying

(ST − K)+ = (ST − S0ek)+

units of cash at expiry T > 0.
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Review of Black–Scholes option pricing (cont’d)

The Black–Scholes pricing formula
The unique arbitrage-free price of this call option under
interest rate r ≥ 0 is

CBS(k, T;σ) = EQ[e−rT(ST − S0ek)+] = S0(Φ(d1) − Φ(d2)ek−rT),

where

d1 :=
1

σ
√
T

((
r + σ

2

2

)
T − k

)
,

d2 := d1 − σ
√
T,

and Φ is the standard normal CDF.
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Implied volatility

Black–Scholes implied volatility
The function σ 7→ CBS(k, T;σ) is increasing.

So given a market quote Ĉ(k, T), we can find σ̂ such that

CBS(k, T; σ̂) = Ĉ(k, T).

The solution σ̂ = σ̂(k, T) is the (Black–Scholes) implied
volatility of the quote Ĉ(k, T).

In practice, option traders prefer to quote prices in implied
volatilities.
But it does not mean they believe in the Black–Scholes model!
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Implied volatility smile
Indeed, the Black–Scholes model is inconsistent with typical
market prices of options.

Instead of a flat line, the graph of k 7→ σ̂(k, T) is U-shaped,
depicting a smile.
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Reproducing the smile and skew
The implied volatility smile can be reproduced by making σ
stochastic — leading to stochastic volatility models.

At-the-money skew
However, conventional stochastic volatility models, like the
Heston (1993) model, are unable to reproduce the term
structure of the at-the-money (ATM) skew

ψ(T) =
����
∂

∂k σ̂(k, T)
����k=0
,

which in equity markets typically behaves near expiry as

ψ(T) ∼ const · Tα , T → 0,

for some α slightly above − 12 .
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Rough Bergomi model
The explosive ATM skew is captured by the recent rough
volatility models, such as the rough Bergomi model (Bayer,
Friz, and Gatheral, 2016).

Rough Bergomi model
In the rough Bergomi model, under a pricing measure Q,

dSt =
√
vtStdBt,

where

vt := v0 exp
(
Zt −

η2

2 t
2α+1

)
, Zt := η

√
2α + 1

∫ t

0
(t − s)αdWs

S0, v0, η > 0, α ∈ (− 12 ,0), and B and W are standard Brownian
motions with 〈B,W〉t = ρt for some ρ ∈ (−1, 1).

8 / 24



Implied volatility modelling Intermezzo: an introduction to large deviations LDP for the rough Bergomi model

Rough Bergomi model
The explosive ATM skew is captured by the recent rough
volatility models, such as the rough Bergomi model (Bayer,
Friz, and Gatheral, 2016).

Rough Bergomi model
In the rough Bergomi model, under a pricing measure Q,

dSt =
√
vtStdBt,

where

vt := v0 exp
(
Zt −

η2

2 t
2α+1

)
, Zt := η

√
2α + 1

∫ t

0
(t − s)αdWs

S0, v0, η > 0, α ∈ (− 12 ,0), and B and W are standard Brownian
motions with 〈B,W〉t = ρt for some ρ ∈ (−1, 1).

8 / 24



Implied volatility modelling Intermezzo: an introduction to large deviations LDP for the rough Bergomi model

Rough Bergomi model (cont’d)
The instantaneous variance process v is driven by the (rough)
Riemann–Liouville process∫ t

0
(t − s)αdWs, t ≥ 0,

whose sample paths are locally α + 1
2 − ε-Hölder continuous.

The model can easily fit multiple implied volatility smiles.

The caveat is that, currently, there is no analytical approach
to pricing (or evaluating implied volatilities) under this model.

Even call and put options need to be priced by Monte Carlo —
although efficient methods are available (Bennedsen, Lunde,
and P., 2017+; McCrickerd and P., 2017).
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Example: Rough Bergomi smiles

(pictures by Ryan McCrickerd)
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Example: Rough Bergomi calibration

η = 2.54, ρ = −0.99, α = −0.43 (pictures by Ryan McCrickerd)
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Quantifying probabilities of rare events

Let Y1, . . . , Yn be iid random variables such that `Y1` ≤ 1 and
E(Y1) = 0. Moreover, let Mn be the sample mean of Y1, . . . , Yn.

By the weak law of large numbers,

Mn
P
→ 0, n→ ∞.

Hoeffding’s inequality says that, in fact, for all n ∈ Î and y > 0,

P[Mn ≥ y] ≤ exp(−ny2/2).

The probability of {Mn ≥ y} decays exponentially fast.

Large deviations theory aims to give sharp exponential
estimates of such probabilities.
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Large deviations principle

Definition
A sequence (Xn)∞n=1 of random elements in a Polish space Ø
satisfies the large deviations principle (LDP) as n→ ∞ with
speed an → ∞ and rate function I : Ø→ [0,∞] if

1. lim infn→∞ 1
an logP[Xn ∈ A] ≥ − infx∈A I(x) for open A ⊂ Ø,

2. lim supn→∞ 1
an logP[Xn ∈ B] ≤ − infx∈B I(x) for closed B ⊂ Ø.

Remark
We can also consider a family (Xε)ε>0 of random elements and
define the LDP as ε → 0 analogously.
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Example: Cramér’s theorem
Let Y1, . . . , Yn be iid rvs in Ø = Ò and Mn their sample mean.
Write ψ(θ) := log E[exp(θY1)] ∈ (0,∞] for θ ∈ Ò.

Theorem (Cramér, 1938; Varadhan, 1966)
The sequence (Mn)

∞
n=1 satisfies the LDP as n→ ∞ with speed n

and rate function

I(x) = sup
θ∈Ò

�
θx −ψ(θ)

�
, x ∈ Ò,

the Fenchel–Legendre transform of ψ .

In particular, if E[`Y1`] < ∞ and E[Y1] = 0, then

lim
n→∞

1
n logP[Mn ≥ y] ≤ −I(y), y > 0.

15 / 24



Implied volatility modelling Intermezzo: an introduction to large deviations LDP for the rough Bergomi model

Example: Cramér’s theorem
Let Y1, . . . , Yn be iid rvs in Ø = Ò and Mn their sample mean.
Write ψ(θ) := log E[exp(θY1)] ∈ (0,∞] for θ ∈ Ò.

Theorem (Cramér, 1938; Varadhan, 1966)
The sequence (Mn)

∞
n=1 satisfies the LDP as n→ ∞ with speed n

and rate function

I(x) = sup
θ∈Ò

�
θx −ψ(θ)

�
, x ∈ Ò,

the Fenchel–Legendre transform of ψ .

In particular, if E[`Y1`] < ∞ and E[Y1] = 0, then

lim
n→∞

1
n logP[Mn ≥ y] ≤ −I(y), y > 0.

15 / 24



Implied volatility modelling Intermezzo: an introduction to large deviations LDP for the rough Bergomi model

Example: Cramér’s theorem
Let Y1, . . . , Yn be iid rvs in Ø = Ò and Mn their sample mean.
Write ψ(θ) := log E[exp(θY1)] ∈ (0,∞] for θ ∈ Ò.

Theorem (Cramér, 1938; Varadhan, 1966)
The sequence (Mn)

∞
n=1 satisfies the LDP as n→ ∞ with speed n

and rate function

I(x) = sup
θ∈Ò

�
θx −ψ(θ)

�
, x ∈ Ò,

the Fenchel–Legendre transform of ψ .

In particular, if E[`Y1`] < ∞ and E[Y1] = 0, then

lim
n→∞

1
n logP[Mn ≥ y] ≤ −I(y), y > 0.

15 / 24



Implied volatility modelling Intermezzo: an introduction to large deviations LDP for the rough Bergomi model

Example: Schilder’s theorem
Let ε > 0. Define a random element Xε of Ø = C([0, 1]) by

Xεt := εWt, t ∈ [0, 1],

where W is a standard Brownian motion. Then Xε P
→ 0 in�

C([0, 1]), � · �∞
�
as ε → 0.

Theorem (Schilder, 1966)
The family (Xε)ε>0 satisfies the LDP as ε → 0 with speed ε−1
and rate function

I(x) =



1
2
∫ 1
0 x
′(t)2dt if x ∈ C([0, 1]) is absolutely continuous,

∞ otherwise.

This is an example of a functional LDP.
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Assessing implied volatility via large deviations
• In the absence of analytical methods for the evaluation
of implied volatility, it is fruitful to study it asymptotically.

• Here, we focus on the behaviour of σ̂(k, T) under the
rough Bergomi model near expiry, as T → 0.

• Jacquier and Forde (2009): If the log price Xt = log(St/S0)
satisfies the LDP as t→ 0, then the behaviour of σ̂(k, T)
as T → 0 can be determined using the LDP rate function.

• Unfortunately the exact distribution of Xt is difficult to
determine in the rough Bergomi model — so deriving the
above LDP is not straightforward.

• Which is why we make a detour and derive first a
functional LDP (à la Schilder) for a rescaled version of X.

• Related results have been recently obtained by Bayer,
Friz, Gulisashvili, Horvath, and Stemper (2017).
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Rescaled rough Bergomi model

Rescaling
We define the rescaled version of the rough Bergomi log price
Xt = log(St/S0) by

Xεt :=

∫ t

0

√
vεsdBεs −

1
2

∫ t

0
vεsds, Bεt := ε

β/2Bt,

vεt := ε1+βv0 exp
(
Zεt −

η2

2 (εt)β
)
, Zεt := ε

β/2Zt,

for any t ∈ [0, 1] and ε > 0, where β = 2α + 1 ∈ (0, 1).

The rescaled process satisfies Xε
d
= Xε1 for any ε > 0.
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Functional LDP for the rough Bergomi model

Theorem (Jacquier, P., and Stone, 2017)
The family (Xε)ε>0 satisfies the LDP as ε → 0 with speed ε−β
and rate function

I(x) =



inf
{
1
2
∫ 1
0 f (t)

2dt : f ∈ L2([0, 1]), x = I(f )
}
, x ∈ Ran(I),

∞, x < Ran(I),

where I : L2([0, 1])→ C([0, 1]) is some (quite complicated)
non-linear integral operator.

The proof is largely based on a generalised Schilder’s theorem
(Deuschel and Stroock, 1989), the contraction principle for
LDPs, and the LDP for stochastic integrals by Garcia (2008).
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Univariate LDP and implied volatility asymptotics
Since Xε

d
= Xε1 , we get by the contraction principle:

Corollary
The family (Xε)ε>0 (in Ò) satisfies the LDP as ε → 0 with speed
ε−β and rate function I1(x) = inf{I(f ) : f (1) = x}.

The methodology of Jacquier and Forde (1999) implies then:

Corollary
Under the rough Bergomi model, for x , 0,

lim
T→0

T1+β σ̂(xT−β , T)2 =



x2
2 infy≥x I1(y) , x > 0,

x2
2 infy≤x I1(y) , x < 0.
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SIAM-LMS Conference on
Mathematical Modelling in Finance 2017

London, 31 August–2 September 2017

• Keynote: Mark Davis (Imperial College London)
• 3 days with 16 invited speakers from Europe/US,
showcasing cutting-edge research in Quantitative Finance

• Minisymposia on Machine Learning and Rough Volatility
• Panel discussion on the Future of Mathematical
Modelling in Finance

• For more information or to register, visit:

https://sites.google.com/view/mmf2017
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