
Superpositions and Products of
Ornstein-Uhlenbeck Type Processes:

Intermittency and Multifractality

Nikolai N. Leonenko
School of Mathematics

Cardiff University

The second conference on Ambit Fields and Related Topics
Aarhus

August 15



Abstract

Superpositions of stationary processes of Ornstein-Uhlenbeck
(supOU) type have been introduced by Barndorff-Nielsen. We
consider the constructions producing processes with long-range
dependence and infinitely divisible marginal distributions.

We consider additive functionals of supOU processes that satisfy
the property referred to as intermittency.

We investigate the properties of multifractal products of supOU
processes. We present the general conditions for the Lq
convergence of cumulative processes and investigate their q-th
order moments and Rényi functions. These functions are nonlinear,
hence displaying the multifractality of the processes.

We also establish the corresponding scenarios for the limiting
processes, such as log-normal, log-gamma, log-tempered stable or
log-normal tempered stable scenarios.
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OU type process

I OU Type process is the unique strong solution of the SDE:

dX (t) = −λX (t)dt + dZ (λt)

where λ > 0, {Z (t)}t≥0 is a (non-decreasing, for this talk)
Lévi process, and an initial condition X0 is taken to be
independent of Z (t). Note, in general Zt doesn’t have to be a
non-decreasing Lévy process.

I For properties of OU type processes and their generalizations
see Mandrekar & Rudiger (2007), Barndorff-Nielsen (2001),
Barndorff-Nielsen & Stelzer (2011).

I The a.s. unique solution is of the form:

X (t) = e−λtX0 +

∫ t

0
e−λ(s−t)dZ (λs), t ≥ 0.



Infinite superposition of OU type process

Let {X (k)(t)}k≥1 be a sequence of independent OU type
processes. Define an infinite superposition as:

X∞(t) =
∞∑
k=1

X (k)(t)

Infinite superpositions are well defined under the following
assumption:

(A):
∞∑
k=1

EX (k)(t) <∞ and
∞∑
k=1

VarX (k)(t) <∞.



Infinite superposition of OU type process

Assumption (B): (B1): The self decomposable distributions of
X (k) have all moments and cumulants of all orders.

(B2): The marginal distributions of X (k) are closed under
convolution with respect to at least one parameter δk , and all
cumulants are proportional to that parameter.



Covariance structure of infinite supOU processes

The covariance function is of the form

RX∞(t) = cov(X∞(0),X∞(t)) =
∞∑
k=1

Var(X (k)(t))e−λk t ,

Assumption (B) implies that: Var(X
(k)
t ) = δkC , where C is a

constant, reflects parameters of the marginals of X (k). For the
specific choice of parameters δk = k−(1+2(1−H)), 1/2 < H < 1,
and λk = λ/k, λ > 0, we get

RX∞(t) = C2

∞∑
k=1

1

k1+2(1−H)
e−λt/k .

The covariance function RX∞(t) is not integrable for the chosen
parameters δk and λk , i.e. the infinite supOU exhibits long-range
dependence (LRD), as we show next.



Covariance structure of infinite supOU processes

For the infinite superposition of OU type processes that satisfy
condition (B) and condition (A), the covariance function of X∞(t),
with specific λ(k) = λ/k and δk = k−(1+2(1−H)), 1

2 < H < 1, can
be written as

RX∞(t) =
L(t)

t2(1−H)
, t > 0

where function L is a slowly varying at infinity function. Observe
that, for given H, the covariance function is not integrable at
infinity, hence infinite supOU process is long-range dependent
(LRD).



Scaling function and intermittency

For a process {Y (t)}t≥0, denote
q = sup{q > 0 : E |Y (t)|q <∞, ∀t} and assume that for the
function below limit exists and is finite for every q ∈ [0, q). Then
define a scaling function at point q ∈ [0, q) as:

τ(q) = lim
t→∞

log E |Y (t)|q

log t
, q ∈ [0, q).

We say a stochastic process {Yt}t≥0 is intermittent if there exist
two points p, r ∈ (0, q) such that τ(p)/p < τ(r)/r .

Note: Scaling function is convex and non-decreasing function. The
function τ(q)/q is always non-decreasing, and what makes the
process Yt intermittent is the existence of points of strict increase.



Example of a non-intermittent sequence

Slow moment growth: Denote the sum of positive, independent
and identically distributed (iid) random variable with finite
moments: Sn =

∑n
i=1 ξi . Then its q-th moment grows as: E (Sn)q

∼ nq(Eξ1)q, and the scaling function of Sn is of the form:

τ(q) = lim
t→∞

logE|S(n)|q/ log n = lim
t→∞

(q log n+q log Eξ1)/ log n = q.

Remark: Intuitively, the scaling function shows how q-th moment
of the process {Y (t)}t≥0 asymptotically behaves as a function of
time:

E|Y (t)|q ∼ tτ(q), t →∞.



Intermittency as multifractality

Theorem. Let {X∞(t), t ≥ 0} be a non-Gaussian (discrete)

supOU process such that the cumulant function κX (ζ) of the
OU process {X (t), t ≥ 0} is analytic in the neighborhood of

the origin and κ
(1)
X = 0 and κ

(2)
X 6= 0. If τY is the scaling

function of

Y = {Y (t) =

[t]∑
i=1

[X∞(i)− EX∞(i)], t ≥ 0},

then for every q ≥ q∗

τY (q) = q − α,

where q∗ is the smallest even integer greater than 2α,
α = 2(1− H). Thus Y is intermittent.



Note that for self-similar processes Y

τY (q) = qH,

Moreover, the function

τY (q)

q
= 1− 2(1− H)

q
= H(q)

is strictly increasing in q :

τY (1) <
τY (2)

2
<
τY (3)

3
< ... <

τY (q)

q
<

The term H(q) in the exponent of the asymptotic behavior of the
q-th cumulant of Y (tN) :

κ
(q)
Y (Nt) = CqL(N)[Nt]qH(q)(1 + o(1)), N →∞,

that is supOU processes are intermittent.

Thus, intremittency can be interpreted as special case of
multifractality defined below.



Multifractal products of stochastic processes
Kahane (1985, 1987), Mennersalo, Norros and Reidi (2002): for
an independent copies Λ0(s), ...,Λn(s) of the mother process Λ(s) :

A(t) = lim
n→∞

t∫
0

[Λ0(s) · · · ·Λn(s)]ds, t ∈ T ∈ R+

where {A(t), t ≥ 0} is maltifractal, that is for some non-linear
function ζ(q), q ∈ Q ⊆ R

EAq(t) ∼ tζ(q),

for example (Kolmogorov’s lognormal scenario):

ζ(q) = −aq2 + (a + 1)q, a > 0.

For a monofractal processes ζ(q) is a linear function, for example

ζ(q) = qH,

where H ∈ (0, 1) is the Hurst exponent (FBM, α-stable motion,
and α-stable subordinator and its inverse).



Examples:
1) Binomial cascade: Λn(s) is constant on dyadic intervals;
2) Martingale de Mandelbrot: EΛn(s) = 1;
3) Stationary cascade: Λn(s) is stationary:

i) conservation
EΛn(s) = 1

ii) ”self-similarity”

Λn(s) =d Λ1(sbn), b > 1.

We consider the case

Λ(t) = eX∞(t)−cX ,

where X∞(t) is supOU stationary process with marginal
distributions:

Gaussian, Gamma, IG ,NIG ,TS ,NTS ,VG , ...



Product process
The conditions A′-A′′′ yield

EΛ
(i)
b (t) = M(1) = 1;

VarΛ
(i)
b (t) = M(2)− 1 = σ2

Λ <∞;

Cov(Λ
(i)
b (t1),Λ

(i)
b (t2)) = M(1, 1; (t1 − t2)bi )− 1, b > 1.

We define the finite product processes

Λn(t) =
n∏

i=0

Λ
(i)
b (t) = exp

{
n∑

i=0

X (i)(tbi )

}
, t ∈ [0, 1],

and the cumulative processes

An(t) =

∫ t

0
Λn(s)ds, n = 0, 1, 2, . . . , t ∈ [0, 1],

where X (i)(t), i = 0, ..., n, ...., are independent copies of a
stationary process X (t), t ≥ 0.



Random measures

We also consider the corresponding positive random measures
defined on Borel sets B of R+ :

µn(B) =

∫
B

Λn(s)ds, n = 0, 1, 2, . . .

Kahane (1987) proved that the sequence of random measures µn
converges weakly almost surely to a random measure µ. Moreover,
given a finite or countable family of Borel sets Bj on R+, it holds
that limn→∞ µn(Bj) = µ(Bj) for all j with probability one.



Random measures continued

The almost sure convergence of An (t) in countably many points of
R+ can be extended to all points in R+ if the limit process A (t) is
almost surely continuous. In this case, limn→∞ An(t) = A(t) with
probability one for all t ∈ R+. As noted in Kahane (1987), there
are two extreme cases:
(i) An(t)→ A(t) in L1 for each given t, in which case A(t) is not
almost surely zero and and is said to be fully active
(non-degenerate) on R+;
(ii) An(1) converges to 0 almost surely, in which case A(t) is said
to be degenerate on R+.
Sufficient conditions for non-degeneracy and degeneracy in a
general situation and relevant examples are provided in Kahane
(1987). The condition for complete degeneracy is detailed in
Theorem 3 of Kahane (1987).



Conditions

We introduce the following conditions:

A′ Let Λ(t), t ∈ R+ = [0,∞), be a measurable, separable,
strictly stationary, positive stochastic process with EΛ(t) = 1.
We call this process the mother process and consider the
following setting:

A′′ Let Λ(t) = Λ(i), i = 0, 1, ... be independent copies of the

mother process Λ, and Λ
(i)
b be the rescaled version of Λ(i) :

Λ
(i)
b (t)

d
= Λ(i)(tbi ), t ∈ R+, i = 0, 1, 2, . . . ,

where the scaling parameter b > 1, and
d
= denotes equality in

finite-dimensional distributions.



Conditions continued

Moreover, in the examples, the stationary mother process satisfies
the following conditions:

A′′′. Let Λ(t) = exp{X (t)}, t ∈ R+, where X (t) is a strictly
stationary process, such that there exist a marginal probability
density function π(x) and a bivariate probability density
function p(x1, x2; t1 − t2). Moreover, we assume that the
moment generating function

M(ζ) = E exp{ζX (t)}

and the bivariate moment generating function

M(ζ1, ζ2; t1 − t2) = E exp{ζ1X (t1) + ζ2X (t2)}

exist.



The Rényi function

The Rényi function of a random measure µ, also known as the
deterministic partition function, is defined for t ∈ [0, 1] as

T (q) = lim inf
n→∞

logE
∑2n−1

k=0 µq
(
I

(n)
k

)
log
∣∣∣I (n)
k

∣∣∣
= lim inf

n→∞

(
−1

n

)
log2 E

2n−1∑
k=0

µq
(
I

(n)
k

)
,

where I
(n)
k = [k2−n, (k + 1)2−n] , k = 0, 1, . . . , 2n − 1,

∣∣∣I (n)
k

∣∣∣ is its

length, and logb is log to the base b.



We establish convergence

An(t)
Lq→ A(t), n→∞.

For the limiting process we show that for some constants C and C ,

Ctq−logb EΛq(t) 6 EAq(t) 6 Ctq−logb EΛq(t),

which will be written as

EAq(t) ∼ tq−logb EΛq(t).

This allows us to find the scaling function

ς(q) = q − logb EΛq (t) = q − logb M(q).

As is shown in Leonenko and Shieh (2012) for q ∈ [1, 2] there is a
connection between Rényi function and the scaling function given
by

T (q) = ς(q)− 1.



Remark

The multifractal formalism for random cascades and other
multifractal processes can be stated in terms of the Legendre
transform of the Rényi function:

T ∗(α) =min
q∈R

(qα− T (q)) .

In fact, let f (α) be the Hausdorff dimension of the set

Cα =

t ∈ [0, 1] : lim
n→∞

logµ
(
I

(n)
k (t)

)
log
∣∣∣I (n)
k

∣∣∣ = α

 ,

where I
(n)
k (t) is a sequence of intervals I

(n)
k that contain t. The

function f (α) is known as the singularity spectrum of the measure
µ, and we refer to µ as a multifractal measure if f (α) 6= 0 for a
continuum of α.



Martingales

Consider the cumulative process An(t) For fixed t, the sequence
{An(t),Fn}∞n=0 is a martingale. It is well known that for q > 1, Lq
convergence is equivalent to the finiteness of

sup
n

EAq
n(t) <∞.



Condition for Log-normal scenario

B′. Consider a mother process of the form

Λ(t) = exp

{
X (t)− 1

2
σ2
X

}
,

where X (t), t ∈ [0, 1] is a zero-mean Gaussian, measurable,
separable stochastic process with covariance function

RX (τ) = σ2
XCorr(X (t),X (t + τ))



Moment generating functions

Under condition B′, we obtain the following specifications of the
moment generating functions:

M(ζ) = E exp

{
ζ

(
X (t)− 1

2
σ2
X

)}
= e

1
2
σ2
X (ζ2−ζ), ζ ∈ R1,

M(ζ1, ζ2; t1 − t2) = E exp

{
ζ1

(
X (t1)− 1

2
σ2
X

)
+ ζ2

(
X (t2)− 1

2
σ2
X

)}
= exp

{
1

2
σ2
X

[
ζ2

1 − ζ1 + ζ2
2 − ζ2

]
+ ζ1ζ2RX (t1 − t2)

}
,

ζ1, ζ2 ∈ R1,

where σ2
X ∈ (0,∞).



Moment generating functions continued

It turns out that, in this case,

M(1) = 1; M(2) = eσ
2
X ; σ2

Λ = eσ
2
X − 1;

Cov(Λ(t1),Λ(t2)) = M(1, 1; t1 − t2)− 1

= eRX (t1−t2) − 1

≈ RX (t1 − t2)

and

logb EΛ(t)q =
(q2 − q)σ2

X

2 log b
, q > 0.



Theorem
Suppose that condition B′ holds with the correlation function

Corr(X (t),X (t + τ)) ≤ Cτ−α, α > 0,

for sufficiently large τ , and for some a > 0,

1− Corr(X (t),X (t + τ)) ≤ C |τ |a ,

for sufficiently small τ . Assume that

b > exp
{
q∗σ2

X/2
}
,

where q∗ > 0 is a fixed integer. Then the stochastic processes

An(t) =

∫ t

0

n∏
j=0

Λ(j)
(
sbj
)
ds, t ∈ [0, 1]

converge in Lq, 0 < q ≤ q∗ to the stochastic process
A(t), t ∈ [0, 1], as n→∞, such that

EA(t)q ∼ t−aq
2+(a+1)q, q ∈ [0, q∗],



Theorem continued

The Rényi function is given by

T (q) = −aq2 + (a + 1)q − 1, q ∈ (0, q∗) ∩ [1, 2],

where

a =
σ2
X

2 log b
.



Theorem continued

Moreover, if

Corr(X (t),X (t + τ)) =
L(τ)

|τ |α
, α > 0,

where L is a slowly varying at infinity function, then

VarA(t) > t2−ασ2
X

∫ 1

0

∫ 1

0

L(t |u − v |)dudw
L(t) |u − w |α

, 0 < α < 1,

and

VarA(t) > 2tσ2
X

∫ t

0
(1− τ

t
)
L(τ)

|τ |α
dτ, α ≥ 1.



Remark

We interpret the inequality as a form of long-range dependence of
the limiting process in the following sense: one can replace the
interval [0, 1] into more general interval [0, t], and for a large t we
have the following:

VarA(t) ≥ lim
t→∞

∫ t

0

∫ t

0

L(|u − v |)dudw
|u − w |α

= lim
t→∞

t2−ασ2
X

∫ 1

0

∫ 1

0

L(t |u − v |)dudw
L(t) |u − w |α

,

and

lim
t→∞

∫ 1

0

∫ 1

0

L(t |u − v |)dudw
L(t) |u − w |α

=

∫ 1

0

∫ 1

0

dudw

|u − w |α
=

2

(1− α)(2− α)
,

for 0 < α < 1.



LRD sup OU processes

We are going to consider an infinite superposition of the OU
processes, which corresponds to m =∞, that is now

X∞(t) =
∞∑
j=1

Xj(t),

assuming that

∞∑
j=1

EXj(t) <∞,
∞∑
j=1

VarXj(t) <∞,



LRD sup OU processes

In this case

R∞(t) =
∞∑
j=1

σ2
j exp {−λj |t|} ,

and if we assume that for some δj > 0

EXj(t) = δjC1,VarXj(t) = σ2
j = δjC2, δj = j−(1+2(1−H)),

1

2
< H < 1,

where the constants C1 ∈ R and C2 > 0 represent some other
possible parameters, then

EX∞(t) = C1

∞∑
j=1

δj = C1ζ(1 + 2(1− H)) <∞,



LRD sup OU processes

We are going to make an additional assumption that there exist
parameters δj such that

EeζXj (0) = EeζδjY

for some random variable Y . The sum

∞∑
j=1

δj <∞

must be finite. We obtain

R∞(t) = C2

∞∑
j=1

δj exp {−λj |t|} ,

for some C2 > 0. This approach allows also to treat the case of
several parameters.



LRD geometric sup OU processes

Define the mother process as geometric process

Λ(t) = eX∞(t)−cX , cX = logEeX∞(0),M(ζ) = Eeζ(X∞(0)−cX ),

where X∞(t), t ∈ R, is the infinite superposition process.
Denote

M(ζ1, ζ2; t1−t2) = exp {−cX (ζ1 + ζ2)}E exp{ζ1X∞(t1)+ζ2X∞(t2)}.



Theorem

Let X∞(t), t ∈ R+ be an infinite superposition of OU-type
stationary processes. Assume that the Lévy measure ν of the
random variable Xsup(t) satisfies the condition that for a positive
integer q∗ ∈ N, ∫

|x |≥1
xeq

∗xν(dx) <∞.

Then, for any fixed b such that

b >

{
M(q∗)

M(1)q∗

} 1
q∗−1

,



Theorem continued

the stochastic processes

An(t) =

∫ t

0

n∏
j=0

Λ(j)
(
sbj
)
ds, t ∈ [0, 1]

converge in Lq to the stochastic process A(t) ∈ Lq, t ∈ [0, 1], as
n→∞. The limiting process A(t) satisfies

EAq(t) ∼ tq−logb EΛq(t), q ∈ [0, q∗].



Theorem continued

The Rényi function is given by

T (q) = q − 1− logb EΛq (t) , q ∈ [0, q∗] ∩ [1, 2], t ∈ [0, 1].

In addition,

VarA(t) >
∫ t

0

∫ t

0
M(ζ1, ζ2; s1 − s2)ds1ds2

≈
∫ t

0

∫ t

0
RX (s1 − s2)ds1ds2,

where M(ζ1, ζ2; s1 − s2) is the bivariate moment generating
function.



Log-gamma scenario
The log-gamma multifractal scenario is well-known in the theory of
turbulence and multiplicative cascades (Saito 1992). In this
section, we propose a stationary version of the log-gamma scenario
with LRD.
We will use a stationary OU type process X (t), t ∈ R+, with
marginal gamma distribution Γ(β, α). It is known that the gamma
distribution with the moment generating function

E exp{ζX (t)} =

(
1− ζ

α

)−β
, ζ < α, α > 0, β > 0,

is self-decomposable. The Lévy triplet is of the form (0, 0, ν),
where

ν(du) =
βe−αu

u
1[0,∞)(u)du.

The covariance function is then

rX (t) = (β/α2) exp (−λ |t|) .



One can construct supOU processes X∞(t), where Xj(t), j = 1, ...,
are independent stationary processes with marginals
Γ(βj , α), j = 1, 2... Then

X∞(t) =
∞∑
j=1

Xj(t) ∼ Γ(
∞∑
j=1

βj , α),

assuming β∞ =
∑∞

j=1 βj <∞.
Consider a mother process of the form

Λ(t) = exp (X∞ (t)− cX ) , cX = log
1(

1− 1
α

)β∞ , α > 1.



We obtain the following moment generating functions:

M (ζ) = E exp (ζ (X∞ (t)− cX )) =
e−cX ζ(

1− ζ
α

)β∞ , ζ < α, α > 1,

M (ζ1, ζ2; (t1 − t2)) = E exp {ζ1 (X∞(t1)− cX ) + ζ2 (X∞(t2)− cX )}
= e−cX (ζ1+ζ2)E exp {ζ1X∞(t1) + ζ2 (X∞(t2)} ,

where

logE exp{ζ1X∞(t1)+ζ2X∞(t2)} =
∞∑
j=1

logE exp{ζ1Xj(t1)+ζ2Xj(t2)},

and

logE exp
(
ζ1Xj(t1) + ζ2 (Xj(t2)

)
=

=

∫
R

βj
∑2

j=1 ζje
−λ(tj−s)1[0,∞)(tj − s)

α−
∑2

j=1 ζje
−λ(tj−s)1[0,∞)(tj − s)

ds.



It turns out that, in this case,

logb EΛ (t)q =
1

log b∞

(
−q log

1(
1− 1

α

)β∞ − β∞ log
(

1− q

α

))
,

and∫
|u|≥1

ueq
∗uν(du) =

αβ∞β∞
Γ (β∞)

∫ ∞
1

eq
∗ue−αudu <∞, q∗ < α.



We formulate the following
Theorem. Let X (t) be a stationary gamma supOU stochastic
process and let

Q = {q : 0 < q < q∗ < α,α > 2, β∞ > 0},

where q∗ is a fixed integer. Then, for any

b >

[(
1− 1

α

)β∞q∗

/

(
1− q∗

α

)β∞] 1
q∗−1

,

the stochastic processes An (t) defined as in condition B′′′

converge in Lq to the stochastic process A(t) as n→∞, such that
A (t) ∈ Lq and

EA(t)q ∼ tς(q),

where the scaling function ς (q) is given by

ς (q) = q

(
1 +

1

log b
log

1(
1− 1

α

)β∞
)

+
β∞

log b
log
(

1− q

α

)
, q ∈ Q.



Log-NIG scenario
As an example consider a stationary OU-type process X (t) with
marginal normal inverse Gaussian distribution NIG (α, β, δ, µ),
which is self-decomposable, and hence infinitely divisible. The
moment generating function of NIG (α, β, δ, µ) is given by the
formula:

logM(ζ) = µζ + δ

[√
α2 − β2 −

√
α2 − (β + ζ)2

]
, |β + ζ| < α,

and the set of parameters satisfies the following constraints

δ > 0, 0 ≤ |β| ≤ α, µ ∈ R, γ2 = α2 − β2.

The Lévy triplet is of the form (a, 0, ν), where

a = µ+ 2π−1δα

∫ 1

0
sinh (βx)K1 (αx) dx , ν(du)

= π−1δα |u|−1 K1 (α |u|) eβudu,
The covariance function is then

rX (t) = (δα2/γ3) exp (−λ |t|) .



One can construct supOU processes X∞(t), where Xj(t), j = 1, ...,
are independent stationary processes with marginals
NIG (α, β, δj , µj), j = 1, 2... Then

X∞(t) =
∞∑
j=1

Xj(t) ∼ NIG (α, β,
∞∑
j=1

δj ,

∞∑
j=1

µj)

assuming δ∞ =
∑∞

j=1 δj <∞, µ∞ =
∑∞

j=1 µj <∞.
Consider a mother process of the form

Λ(t) = exp (X∞ (t)− cX ) , cX = log
1(

1− 1
α

)β∞ , α > 1.

Consider a mother process of the form

Λ(t) = exp {X∞ (t)− cX} , cX = µ∞+δ∞
√
α2 − β2−

√
α2 − (β + 1)2,

where |β + 1| < α. Let q∗ ≤ α− |β| be an integer and put

Q = {q : 0 < q < q∗, |β + 1| < α, µ∞ ∈ R, δ∞>0}



If b > exp

{
−δ∞

√
α2 − β2 +

δ∞
√
α2−(β+q∗)2−q∗δ∞

√
α2−(β+1)2

1−q∗

}
,

then the statement of main Theorem holds for q ∈ Q with the
scaling function

ς(q) =

1−
δ∞

[√
β2 + γ2 − (β + 1)2 − γ

]
log b

 q

+
δ∞

log b

√
β2 + γ2 − (β + q)2 − δγ

log b
− 1.



Log-tempered stable (log-IG) scenario

The cumulant transform of a random variable X ∼ TS(κ, δ, γ) is
of the form.

logEeζX = δγ − δ
(
γ

1
κ − 2ζ

)κ
, 0 < ζ <

γ1/κ

2
.

Note that

EX (t) = 2κδγ
κ−1
κ ,VarX (t) = 4κ (1− κ) δγ

κ−2
κ .

We will consider a stationary OU type process with marginal
distribution TS(κ, δ, γ). This distribution is self-decomposable
(and hence infinitely divisible) with the Lévy triplet (a, 0, ν), where

ν(du) = b(u)du, b(u) = 2κδ
κ

Γ (1− κ)
u−1−κe−

uγ1/κ

2 , u > 0.

Then

X∞(t) =
∞∑
j=1

Xj(t) ∼ TS(κ,
∞∑
j=1

δj , γ),

if δ∞ =
∑∞

j=1 δj <∞.



Consider a mother process of the form

Λ(t) = exp {X∞ (t)− cX}

with
cX =

[
δ∞γ − δ∞

(
γ

1
κ − 2

)κ]
, γ > 2κ,

and if
Q = {q : 0 < q < γ1/κ

2 , γ ≥ max{(2q∗)κ, 4κ}, κ ∈ (0, 1), δ∞ > 0} ∩ [0, q∗],

where q∗ is a fixed integer. Then, for any

b > exp

{
−γδ∞ +

δ∞
1− q∗

(
γ

1
κ − 2q∗

)κ
− q∗

1− q∗
δ∞

(
γ

1
κ − 2

)κ}
,

γ ≥ max{(2q∗)κ, 4κ}, the stochastic processes An(t) converge in
Lq to the stochastic process A(t) for each fixed t ∈ [0, 1] as
n→∞ such that, Aq (1) ∈ Lq, for q ∈ Q, and EAq(t) ∼ tς(q),
where the scaling function ς (q) is given by

ς(q) = q
(

1 + δ∞γ
log b −

δ∞
log b

(
γ

1
κ − 2

))κ
+ δ∞

log b

(
γ

1
κ − 2q

)κ
− δ∞γ

log b , q ∈ Q.



In this particular when κ = 1/2, we arrive to log-inverse Gaussian
scenario where the scaling function is of the form:

ς (q) = q

1 +
δ∞

[
γ −

√
γ2 − 2

]
log b

+
δ∞

log b

√
γ2 − 2q− γδ∞

log b
, q ∈ Q,

and

Q = {q : 0 < q <
γ2

2
, γ ≥ 2, δ∞ > 0} ∩ (0, q∗)

if

b > exp

{
−γδ∞ −

δ∞
1− q∗

√
γ2 − 2q − q∗

1− q∗
δ∞
√
γ2 − 2

}
and q∗ is a fixed integer.



Some other multifractal scenarios related to supOU
processes:

1) Log-NTS

2) Log-VG

3) Log-Euler’s gamma

4) Log-z scenario
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