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Lévy based modelling

Lévy based modelling is a flexible, yet tractable modelling tool.

Lévy based random fields - tractable extension of Gaussian
random fields (neuroscience applications)
Lévy particles - tractable model for spatial particles of varying
shape (including growth)
Lévy based Cox point processes - unification of existing models
and creation of some new ones
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Lévy based random fields

Example from brain imaging

MTT brain scan images with data Xi,j,t:
i = 1, 2 (groups of subjects)
j = 1, . . . , ni (subjects within groups)
t ∈ V (voxels of interest)
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Lévy based random fields

Standard method for group comparison
A measure for the group difference is

Tt =
X̄1·t − X̄2·t√
S2
t

(
1
n1

+ 1
n2

) ,
where {S2

t | t ∈ V } is the pooled variance map of the two
groups.

Consider the field of test statistics

T = {Tt | t ∈ V }.

Many voxels will be falsely declared significant if a marginal
threshold at each voxel is applied.
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Lévy based random fields

Using the maximum of the field for inference
Find the probability that the maximum of the random field T
exceeds a certain value

P(max
t∈V

Tt > xα) = α (say α = 0.05)

The classical procedure is to declare a voxel t significant if
Tt > xα.
One established approach is to use theory for Gaussian random
fields, involving the Euler characteristic of the thresholded
image, but then:

The original data needs to be Gaussian or at least the T–image
should be t–distributed
That is not necessarily the case...
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Lévy based random fields

We consider a Lévy based random field

Xt =

∫
R2

k(t, s) M(ds), t ∈ R2,

where M is a Lévy basis and k is a kernel function.
M can e.g. be Gaussian, Gamma, inverse Gaussian, normal
inverse Gaussian (NIG), ...
The cumulant function of Xt can be calculated using the
cumulant function for M .
It is easy to calculate the cumulants/moments of Xt.
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Lévy based random fields

Simulated NIG random field
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Lévy based random fields

Correlation structure
We assume that k has the form

k(t, s) = k(||t− s||) .

k determines the correlations Corr(Xt1 , Xt2) = ρ(||t1 − t2||):
Exponential correlation model

k(t, s) =
σ2

4π||t− s||
e−σ||t−s|| ⇒ ρ(d) = eσd

Matérn correlation model

k(t, s) = K||α(t− s)||ν/2−3/4Kν/2−3/4(α||t− s||)
⇒ ρ(d) = C(αd)νKν(αd)
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Lévy based random fields

Figure: Log–histograms for data (×) together with fitted NIG field (blue
and green) and Gaussian densities (red). Jónsdóttir et al. (2013, Scand.
J. Stat.
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Lévy based random fields

Recall the model assumption

Xt =

∫
R2

k(‖t− s‖) M(ds), t ∈ R2.

The Lévy basis M satisfies the Lévy-Khintchine representation:

logE[eiλM(A)] = iλa|A|+ |A|
∫
R

(
eiλu − 1− iλu1[−1,1](u)

)
ν(du)

We furthermore assume ν((x,∞)) ∼ Cx−δe−βx as x→∞ with
δ > 1.

We are interested in the tail behaviour of P (supt∈BXt > x) as
x→∞, where B is a bounded closed subset of R2.



CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Lévy based random fields

Recall the model assumption

Xt =

∫
R2

k(‖t− s‖) M(ds), t ∈ R2.

The Lévy basis M satisfies the Lévy-Khintchine representation:

logE[eiλM(A)] = iλa|A|+ |A|
∫
R

(
eiλu − 1− iλu1[−1,1](u)

)
ν(du)

We furthermore assume ν((x,∞)) ∼ Cx−δe−βx as x→∞ with
δ > 1.

We are interested in the tail behaviour of P (supt∈BXt > x) as
x→∞, where B is a bounded closed subset of R2.



CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Lévy based random fields

Recall the model assumption

Xt =

∫
R2

k(‖t− s‖) M(ds), t ∈ R2.

The Lévy basis M satisfies the Lévy-Khintchine representation:

logE[eiλM(A)] = iλa|A|+ |A|
∫
R

(
eiλu − 1− iλu1[−1,1](u)

)
ν(du)

We furthermore assume ν((x,∞)) ∼ Cx−δe−βx as x→∞ with
δ > 1.

We are interested in the tail behaviour of P (supt∈BXt > x) as
x→∞, where B is a bounded closed subset of R2.



CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Lévy based random fields

Theorem
For a computable constant K, we have

P (sup
t∈B

Xt > x) ∼ K · E
(
eβXt0

)
x−δ exp(−βx),

as x→∞, with t0 ∈ B arbitrarily chosen.

Rønn-Nielsen & J. (2014)

Under publication in Adv. Appl. Prob.
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Lévy particles

Joint work with Johanna F. Ziegel.

We consider a Lévy based stochastic process on the unit
sphere S2

Xu =

∫
S2
k(u, v)M(dv), u ∈ S2,

where M is a Lévy basis on S2 and k is a kernel function.
This process is used in the defininition of Lévy particles which
are random deformations of a fixed particle K0 ⊂ R3.
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Lévy particles

The Lévy particles K ⊂ R3 are star-shaped with respect to a fixed
point in R3, taken to be the origin O.

Let Ru, u ∈ S2, be the radial function of K, i.e. Ru is the distance
from O to the boundary of K in direction u.

Then,

Ru = cuXu = cu

∫
S2
k(u, v)M(dv), u ∈ S2,

where {cu : u ∈ S2} is the radial function of the fixed particle K0.
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Lévy particles

Simulated Lévy particles obtained as random deformations of an
ellipsoid K0, using a von Mises-Fisher kernel

k(u, v) = eαd(u,v), u, v ∈ S2,

and a Gamma Lévy basis M .
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Lévy particles

Parameter estimation

A method of moments for the so-called particle cover density may
be used.

The particle cover density is the probability density on R3 given by

fK(x) = P(x ∈ K)/EV (K), x ∈ R3,

where V (K) is the volume of K.

The density fK indicates how likely it is for a point in space to be
hit by the Lévy particle K.
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Lévy particles

Moment relations

Recall that the radial function of K is of the form

Ru = cuXu = cu

∫
S2
k(u, v)M(dv), u ∈ S2,

where {cu : u ∈ S2} is the radial function of the fixed particle K0.

Let µk = E(Xk
u). Then,

EV (K) = µ3V (K0).

The parameters of the process Xu is chosen such that µ3 = 1.
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Lévy particles

Moment relations

The mean µ of the cover density becomes O, due to the choice of
the reference point of K.

The covariance matrix Σ of the cover density becomes

Σ =
µ5
µ3

1

V (K0)

∫
K0

x2 dx,

where x2 is the symmetric tensor of rank 2 induced by x.

Using the two red equations, the parameters of K0 and the process
Xu can be estimated.
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Lévy particles

Profiles from 100 sampled neuron nuclei from brain cortex
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Lévy particles

Profiles from 100 simulated particles under the fitted model
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Lévy particles

Lévy particles are useful in simulation studies

Recently, non-parametric methods for estimating shape and
orientation of arbitrary particles have been developed in Ziegel,
Nyengaard & J. (2015, Scand. J. Stat.).

An efficient way of studying the statistical behaviour of these
methods is to apply them on a range of simulated Lévy particles.
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Lévy particles

Lévy based growth models

It is easy to extend the model associated with Lévy particles to a
spatio-temporal model

Xu,t =

∫
At(u)

k(u, t; v, s)M(d(v, s)), u ∈ S2, t ∈ R,

where At(u) ⊆ S2 × (−∞, t] is an ambit set associated with each
(u, t) ∈ S2 × R and M is a Lévy basis on S2 × R.

Growth relates to ∂
∂tXu,t.

Jónsdóttir, Schmiegel & J. (2008, Bernoulli).
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Lévy based Cox point processes

Joint work with Michaela Prokešová and Gunnar Hellmund.

Cox point processes - short reminder

Notation:

Φ, spatial point process on Rd.
{Xu : u ∈ Rd}, random field on Rd.

Definition Let {Xu : u ∈ Rd} be a non-negative almost surely
locally integrable random field. A point process Φ on Rd is a Cox
point process with the driving field X if conditionally on X, Φ is a
Poisson process with intensity function X.
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Lévy based Cox point processes

Definition The Lévy based Cox point process (LCP) has driving
field of the form

Xu =

∫
Rd

k(u, v)M(dv), u ∈ Rd, (1)

where M is a non-negative Lévy basis and k is a non-negative
function such that k(u, ·) is integrable w.r.t. M for each u and
k(·, v) is integrable w.r.t. the Lebesgue measure on Rd, for each v.

For the LCP to be well defined k and M are chosen in such a way
that X is locally integrable almost surely.
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Lévy based Cox point processes

The influence of the spot variable

Stationary LCPs with spot variable being (from left to right)
Poisson, gamma and inverse Gaussian distributed.
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Lévy based Cox point processes

Overview

Lévy based Cox processes

LCP LLCP

SNCP
with

random
noise

LCP
with

smoothed
DF

LCP
thinned

by
LGF

LSNCP LGCP

1


