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Introduction

Exponential Lévy models

In the Black-Scholes-Samuelson I

model, the distribution of price o L

returns (log-increments) is o

Gaussian, and the probability of B

extreme price moves is ]

under-estimated. S, 11111111111 N—
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Exponential Lévy models

In the Black-Scholes-Samuelson
model, the distribution of price o .
returns (log-increments) is
Gaussian, and the probability of B
extreme price moves is
under-estimated.

For this reason, it has been suggested to model prices with non-Gaussian
processes with stationary and independent increments (Lévy processes).

We assume that the price process S of the stock satisfies
as:
Sit_ - dXta

where X is a Lévy process.
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Introduction

Utility indifference pricing in exponential Lévy models

In general Lévy models perfect replication is not possible and the seller of the
option must accept some risk

= option price depends on risk preferences
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Introduction

Utility indifference pricing in exponential Lévy models

In general Lévy models perfect replication is not possible and the seller of the
option must accept some risk
= option price depends on risk preferences

Let U be the seller’s utility function (concave, increasing)

The seller, who can trade dynamically in the financial market, maximizes
expected utility of terminal wealth with and without the option
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Introduction

Utility indifference pricing in exponential Lévy models

In general Lévy models perfect replication is not possible and the seller of the
option must accept some risk
= option price depends on risk preferences

Let U be the seller’s utility function (concave, increasing)

The seller, who can trade dynamically in the financial market, maximizes
expected utility of terminal wealth with and without the option

Fair price: price at which seller is indifferent between selling and not selling
(Hodges and Neuberger '89):

T T
max E [U (Vo +/ <ptd8,>] = maxE [U (Vo +p+/ 01dS; — HT>
(] 0 ¥ 0

(the maximum is taken over a suitably defined set of admissible strategies)
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Utility indifference price with exponential utility

We are interested in the exponential utility function U(x) = —e~“¥, and define
the set of admissible strategies

0 ={pecl(S)|3L* withE[e '] < cos.t. (p-S);>L*Vte [0, T]as.}
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Introduction

Utility indifference price with exponential utility

We are interested in the exponential utility function U(x) = —e~**, and define
the set of admissible strategies

0 ={pecl(S)|3L* withE[e '] < cos.t. (p-S);>L*Vte [0, T]as.}

We make the standing assumption that the Lévy process X is not a.s.
monotone and has bounded jumps: |[AX;| <é <1 a.s. forallt € [0, T].
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Introduction

Utility indifference price with exponential utility

We are interested in the exponential utility function U(x) = —e~**, and define
the set of admissible strategies

©={pel(S)|3L* withE[e™*'] < co s.t. (p-S); > L*Vte [0, T] as.}

We make the standing assumption that the Lévy process X is not a.s.
monotone and has bounded jumps: |[AX;| <6 <1 a.s. forallt € [0, T].

Then, for a bounded contingent claim Hr, the seller’s indifference price

satisfies

1, Minyco E [exp (—a fOT <p;dst+aHr)}
P=a™® min,co E {exp <fa fOT @tds,)}
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Introduction

Pure investment problem

The pure investment problem

minE
pEO

;
exp <—a/ @tdst>1
0
admits an explicit solution:

¢; = 4— where ¥* is such that ((—a¥*) = inf, £(u) with

olu?

5 +/R(e“" — 1 — ux)v(dx).

lu)=~u+
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Introduction

Utility indifference price with exponential utility

Define a measure Q* via

dQ* B exp (—a fOT (p;kdst) - e—aﬂ*XT
dP g [exp (—a Iy g;dst)] " E[e—ev X

Then, Sis a martingale under Q* and

;
p= 1 log min EX” [exp (—a/ <ptdSt+aHT>]
0

« ¥

Q* is called minimal entropy martignale measure.
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Dual representation of the indifference price

From Bellini and Frittelli (2002) (see also Delbaen et al., 2002):

p=_ sw {9~ THE@R)}.

QEEMM(Q*)

where EMM (Q*) denotes the set of martingale measures, equivalent to Q*
and H(Q|Q*) is defined by

H(QIQ") = E* { 99, dQ]

dQ* " dQ*

whenever this quantity is finite and equals +oo otherwise.
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Introduction

Approximating the indifference price: idea

Computation of the indifference price is a stochastic control problem leading
to a nonlinear partial integro-differential equation difficult to solve in real-time

In the Black-Scholes model, the price is unique: the indifference price does
not depend on the utility function and is given by p = E2" [H].

If a Lévy model is close to Black-Scholes, in the sense that Hr is almost
replicated, can we find an approximation of the indifference price?
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Step 1: a non-asymptotic approximation of the indifference price

Reminder on quadratic hedging and martingale
representation

e Quadratic hedging (Féllmer and Sondermann ’85):
Let Hr = Hr — EX'[H], H; = EQ" [Hr|Fi] and let & be the minimizer of

.
EQ* [( / @SdSS—FIT>
0

2 ~
d{H, S):

d(S, S)

= $r=
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Step 1: a non-asymptotic approximation of the indifference price

Reminder on quadratic hedging and martingale
representation

e Quadratic hedging (Féllmer and Sondermann ’85):
Let Hr = Hr — EY [Hy], H; = EQ" [Hr|F,] and let & be the minimizer of

T 2
EY" [( / <deSS—I:IT>
0

e The process (FI,)OS,ST admits the representation

d(H,S)
d(S, S)

= pr=

t t
B — / s0XC + / / ~s(2)Ix(ds x d2),
0 0 JR

where X°€ is the continuous martingale part of the process X under Q*
and Jy is the compensated jump measure of the process X under Q*.
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Step 1: a non-asymptotic approximation of the indifference price

Non-asymptotic approximation of the indifference price

Assume that there exists a constant L < oo with 26La < 1 such that

IH-E‘H]| <L as.,
lo] <L as.foralltel0,T],

[v(2)| < L|z| a.s.forallte[0,T]andall z € suppv.
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Step 1: a non-asymptotic approximation of the indifference price

Non-asymptotic approximation of the indifference price

Assume that there exists a constant L < oo with 26La < 1 such that
|H-E*[H]|<L as,
lot] <L as. forallte]0,T],

|v(2)| < L|z| a.s.forallte [0, T]andall z € suppv.

Then there exists a constant C < oo such that for every ¢ € (0, 1] the seller's
indifference price of the claim H satisfies

)
p—E'[H] - 5B’ [(/0 350S; - Flr)

< a'teCE* [ sup

2

2+4¢

t
/ 50 — Fh
0

0<t<T
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Step 1: a non-asymptotic approximation of the indifference price

Structure of the indifference price

Seller’s price:

T
o+ 5 | (v )
0

Buyer’s price:

2
.
PP ~ B [Hy] - SEY ( | s HT)
0

Linear part (the same for all agents): E2"[Hr]

Spread between seller’s price and buyer’s price: proportional to the risk
aversion and the unhedgeable part of the risk.

T 2 T 2
CMHE(D* (;)g 453(1533 - FyT{) =« n]in HE(E* [ <;/£ 995(1635 - in:)
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Step 1: a non-asymptotic approximation of the indifference price

Relationship to the literature

e Several authors (Kallsen and Rheinlander '11; Kramkov and Sirbu '07;
Mania and Schweizer '05; Becherer '06, Delbaen et al., '02) study the
asymptotics of the indifference price as o — 0 in various settings.
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e Several authors (Kallsen and Rheinlander '11; Kramkov and Sirbu '07;
Mania and Schweizer '05; Becherer '06, Delbaen et al., '02) study the
asymptotics of the indifference price as o — 0 in various settings.

e By contrast, our approximation is non-asymptotic, and provides an error
bound for finite «, as soon as 26La < 1.
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Step 1: a non-asymptotic approximation of the indifference price

Relationship to the literature

e Several authors (Kallsen and Rheinlander '11; Kramkov and Sirbu '07;
Mania and Schweizer '05; Becherer '06, Delbaen et al., '02) study the
asymptotics of the indifference price as o — 0 in various settings.

e By contrast, our approximation is non-asymptotic, and provides an error
bound for finite «, as soon as 2jLa < 1.

e |t allows to recover a variety of asymptotic approximations, for example,

2
)
p=E'H+ SE° [(/0 550Ss — HT>

extending Kallsen and Rheinlander (11).

as a0,

+0(a?),
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Step 1: a non-asymptotic approximation of the indifference price

Non-asymptotic approximation: idea of the proof

Under the assumptions of the Theorem,

_ LUJt -l-fR Z’}/t(Z)V(dZ)
TS 2+ [, 22u(dz)

and therefore |S;_@¢| < La.s. forall t € [0, T].
Upper bound: use a suboptimal strategy:
Define

t
r—inf{t>0: /cﬁsdss—l‘:/t >1pAT.
0

Then,

/ @sdss—F/‘ <3L+1
0

and we can use the suboptimal strategy ¢: = @:1:<, and perform the Taylor
expansion of the exponential.
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Step 1: a non-asymptotic approximation of the indifference price

Non-asymptotic approximation: idea of the proof

Lower bound: use the duality formula:

p=_sup {EQ[Hl—éH(@@*)}, H(@|@*):1EQ*{

QEEMM(Q*)

dgr " dgr ]’

and take Q = DQ* with
D=1 —l—a/ $:dS; — aH,
0

and

T:inf{tZO:

t
/0 250Ss — Fiy

Zé—aL(S}/\T.
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Step 2: a Taylor expansion around the Black and Scholes model

How to measure ’closedness to Black-Scholes’

An idea proposed for smooth linear functionals by Cerny, Denkl and Kallsen
(2013).

95 = dX; Black-Scholes model: s = odW;

Lévy model: 5. 5.

Recall that X is a martingale Lévy process with diffusion coefficient A and
Lévy measure v.

Let X = AX/xe- If [ X?v(dx) < oo then

(XP)ezo A;:(; (GWh)iz0, &2 =A+ /x2u(dx).

A is an artificial small parameter allowing to expand a Lévy model around
Black-Scholes.
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Step 2: a Taylor expansion around the Black and Scholes model

A Taylor expansion of the indifference price

Let p, be the indifference price evaluated for X*. Then, p; = p is the price of
interest and py is the Black-Scholes price.

If we can find a representation

)\2
Px = Po + APy + ?Pg + 0(X?),

then p can be approximated by

/ 1
P0+Po+§,00.
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Expansion for the indifference price

Assume that

e The pay-off satisfies H = h(St) where h is bounded, satisfies |xh(x)| < L

for some constant L, is a.e. differentiable and A’ has finite variation.

. . L Jicrn x2v(dx)
e Either o > 0 or there exists 5 > 0 such that liminf, o =="/-—5— > 0.
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Expansion for the indifference price

Assume that

e The pay-off satisfies H = h(St) where h is bounded, satisfies |xh(x)| < L
for some constant L, is a.e. differentiable and /" has finite variation.

. . L Jicrn x2v(dx)
e Either o > 0 or there exists 3 > 0 such that liminf, o =—=7—— > 0.

Then,as A — 0,

xms T Xm, T
P =Pes(So) + —— S3PE(S0) + “57—S3Ped(S0)
NmET? (. ap@) 4 o(4) 5 5(5) 6 o(6)
+==2 {GSOPBS(SO) +185¢PL(So) + 95 PBS(SO)+ SEPEA(S0)}
CE)\2 mg BS 282PBS(t S[) 2

where ms = [, x3v(dx), ms = [, x*v(dx) and EBS / PBS denote the
expectation / option price in the Black-Scholes model with.volatility .
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Step 2: a Taylor expansion around the Black and Scholes model

Expansion for the linear part

No pay-off regularity is needed for this part due to the smoothing effect of the
Lévy density
Assume that

e The function his bounded measurable with polynomial growth.

. e i x2u(dx)
e Either o > 0 or there exists 3 € (0,2) with liminf *=20——— > 0.
rl0 re=p
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Step 2: a Taylor expansion around the Black and Scholes model

Expansion for the linear part

No pay-off regularity is needed for this part due to the smoothing effect of the
Lévy density
Assume that

e The function his bounded measurable with polynomial growth.

o Either o > 0 or there exists § € (0,2) with Iirm)nf f[*,]%?(dx) > 0.

Then,as A — 0,

)\mg T

EY [H}] = Pgs(So) +

2
)\m3

S2P(So) + 2”Z;‘Ts“P(“)(so)

+

{653 Bs(so)+1ss4pg‘s>(so)+9s5 P (So)+S§PEA(S0)} +0(12).

See also Cerny, Denkl and Kallsen (2013) for the case of C*> pay-offs.
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Expansion for the quadratic part

Put-style regularity needed, otherwise convergence in \ is slower
Under the assumptions of the Theorem,

.
EY [( /0 720S) —H%)

2 m2
= )\_ <m4 — _3> EBS

2

22).
5.2 +O( )

T 2 2
92Pas(t, St)
2 BS\t, ot
4 /o (S’ 0 ) o
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Expansion for the quadratic part

Put-style regularity needed, otherwise convergence in XA is slower
Under the assumptions of the Theorem,

T 2
EY [( /0 720S) —H%)

S m5\ - gs
= m, E
4 < 4T G2 )

+ 0(N\?).

3 Pes(t, S0\

In addition, for the put option,

92Pas(t, S)) 2
BS Z—BS t BEREN]
. Vo <St 082 ) dt] 27702/ V1 —t2

where d = _flog 2 — "f.
See also Cerny, Denkl and Kallsen (2013) for the case of C>° pay-offs.
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Step 2: a Taylor expansion around the Black and Scholes model

Estimation of the residual term

Put-style regularity needed

Under the assumptions of the theorem, let M} = [ 33dS2 — H} and define
M3 = supy<<7|M}|. Then Vg > 2,as A — 0

E* [(7)7] = 0(3(n 1)?)
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lllustration and extensions

Numerical illustration

In the numerical illustration, we let A = 1 and approximate the indifference
price by
myT myT
p' =Pes(So) + —— S3P3(S0) + 5y S3Pe3(S0)

2 T2
msT
+ =2

{6S3PEA(S0) + 18S3PE(So) + 9STPEY(S0) + SEPE(So) |

T/ L ?Pgs(t,S)\°
2 BS\t, ot
[ (52 50) o]

72

@ ms\ s
S ma— 22 )E
+8< 52>
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lllustration and extensions

Numerical illustration

0.13
o012 — Indifference asymptotic 0.134}|® @ PIDE price
: - - Linear exact — Asymptotic approximation
0.11 e e Indifference PDE 0.132
0.10
0.130

0.09
0.08 0.128
0.07

- 0.126
0.06 e
0.05 - - - 0.124 - - -

i.00 1.05 1.10 115 1.20 0 5 10 15 20

Risk aversion

Left: Indifference price with PIDE / asymptotic method, together with the linear
part of the price E?"[(K — St).], in Merton model as function of Sy for o = 10.

Parameters: strike K = 1, maturity T = 1, diffusion volatility o = 0.2, jump
intensity A = 5, average log jump —5%, log jump size std. dev. 10%.

Right: indifference price for ATM put as function of a.
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Spread between buyer’s and seller’s price

The (half)-spread between the buyer’s and the seller’s indifference price may

be seen as a valuation adjustment reflecting the difference between the model
value of the option and its potential market price.

In the neighborhood of the Black-Scholes model, this spread is approximately

1 m? T/ L ?Pgs(t,S)\°
Il buy 3 BS 2 BS\t, 9t
g ok (me ) e[ [ (P S)Y
Risk aversion  —— o —_—
Lévy model

Jump risk sensitivity of the option
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Spread between buyer’s and seller’s price

The (half)-spread between the buyer’s and the seller’s indifference price may
be seen as a valuation adjustment reflecting the difference between the model
value of the option and its potential market price.

In the neighborhood of the Black-Scholes model, this spread is approximately

1 m? T/ L ?Pgs(t,S)\°
Il buy 3 BS 2 BS\t, 9t
g ok (me ) e[ [ (P S)Y
Risk aversion  —— o —_—
Lévy model

Jump risk sensitivity of the option

T 82PBS 2
/0 (StZasg(t7 St)> at

can therefore be seen as a model-independent adjustment for mark to market
risk for a European option in a Lévy model in the limit of small jumps.

The factor

EBS
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Jump risk sensitivity

— K=11

0.4
0

,_.
N
wh
IS
n

Left: jump risk sensitivity as function of K, So =1, = 0.2.
Right: jump risk sensitivity as function of T, So =1, 5 = 0.4.
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Extension: Indifference price and bid-ask spread
under calibration constraints

Assume that in the market, options with pay-offs B = (B, ..., B,) are
liquidly traded, and (WLOG) their prices at time zero are equal to zero.

For liquid options bid and ask prices coincide: E*[B] = 0.

In practice, MEMM can be found by calibration to market prices.

Allowing (static) investment into the liquid options, the seller’s indifference

price becomes

;
p° = 1 log min [E* [exp (a/ ¢1dSi+aH — 04,3TB>
0

(% YEO,BERN
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Asymptotic spread of a European option under
calibration constraints

1 m2
~sell =buy 3
p P —~— 4\ 52
Risk aversion = ————_—
Lévy model

. 2
T PPps(t,S1)  ~~ , ?Pis(t,St)
. BS 4 Bs\l,ot) ) BS\!s Ot
X S E [/o Sf( 032 Z;ﬂ’ 052 ot

Jump risk valuation adjustment under calibration constraints

= the jump risk valuation adjustment and the hedge ratios /; are model
independent.
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Jump risk sensitivity reduction: hedging with options

— Stock only
6| — Stock + ATM put

0.6 0.7 0.8 0.9 1.0 1.1 1.2 13 14

Jump risk sensitivity of a European put as function of strike, hedged by an
ATM put. Parameters: Sp =1, T = 0.5, 7 = 20%.
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