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Introduction

We consider two models of observed processes (Xt)t≥0 driven by
Brownian motion (Bt)t≥0.

Model A: (Part I)

Xt = μt+Bt or, in differentials, dXt = μdt+ dBt,

where μ is a random parameter which does not depend on B.

Model B: (Part II)

Xt = μ(t− θ)+ +Bt or dXt =

⎧⎨⎩dBt, t < θ,

μ dt+ dBt, t ≥ θ,

where (μ, θ) are random parameters which do not depend on B.
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Our presentation are based on the recent works:

• U. Cetin, A. A. Novikov, A. Shiryaev. A Bayesian estimation
of drift of fractional Brownian motion
(Preprints, LSE, UTS.)

• A. Shiryaev, M. Zhitlukhin. A Bayesian sequential testing
problem of three hypotheses for Brownian motion.
(Statistics & Risk Modeling, 2011, No. 3)

• M. Zhitlukhin, A. Shiryaev. Bayesian disorder problems on
filtered probability spaces
(TPA, 2012, No. 3)
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• A. Aliev Towards a problem of detection of a disorder which
depends on trajectories of the process (TPA, 2012, No. 3)

• M. Zhitlukhin, A. Muravlev. Solution of a Chernoff problem
of testing hypotheses on drift of Brownian motion
(TPA, 2012, No. 4)

• A. Shiryaev, M. Zhitlukhin. Optimal stopping problems for a
Brownian motion with a disorder on a finite interval
(TPA, 2013)
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I. Estimation of the drift coefficient

We observe a process X = (Xt)t≥0

Xt = μt+Bt

where μ is a random parameter which does not depend on B.

Decision rule based on FX-observations (FX = (FX
t )t≥0, FX

t =

σ(Xs, s ≤ t)), is a pair δ = (τ, d), where

� τ is a FX-stopping time (i.e., {τ ≤ t} ∈ FX
t for any t ≥ 0);

� d is a FX
τ -measurable function (taking values in R).
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The Bayesian risk which we consider is given by

R = inf
(τ,d)

E[cτ +W (μ, d)],

where

� E is the mean with respect to the measure generated by
(independent) μ and B;

� W is a penalty function; Eτ <∞.

Due to the representation

E[cτ +W (μ, d)] = E
{
E
[
cτ +W (μ, d)

∣∣∣FX
τ

]}
and the FX

τ -measurability of τ and d, we need to find

E
[
W (μ, d)

∣∣∣FX
τ

]
.
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The conditional distribution of μ is determined by

P
(
μ ≤ y

∣∣∣FX
t

)
=

y∫
−∞

dP(Xt
0 |μ = z)

dP(Xt
0 |μ = 0)

dPμ(z)

∞∫
−∞

dP(Xt
0 |μ = z)

dP(Xt
0 |μ = 0)

dPμ(z)

,

with the Radon–Nikodým derivative

dP(Xt
0 |μ = z)

dP(Xt
0 |μ = 0)

of the measure of the process Xt
0 = (Xs, s ≤ t) with μ = z w.r.t.

the measure of the process Xt
0 = (Xs, s ≤ t) with μ = 0.
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Calculating explicitly the Radon–Nykodým derivative, we find

P
(
μ ≤ y

∣∣∣FX
t

)
=

y∫
−∞

ezXt−z2t/2 dPμ(z)
∞∫

−∞
ezXt−z2t/2 dPμ(z)

.

If Pμ(z) has a density, dPμ(z) = p(z)dz,
then the conditional density μ admits the representation

p(y,Xt; t) :=
dP(μ ≤ y | FX

t )

dy
=

eyXt−y2t/2p(y)
∞∫

−∞
ezXt−z2t/2p(z) dz

.
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Thus, for d = d(τ) we have

E[W (μ, d) | FX
τ ] =

∫
R

W (y, d(τ)) · p(y,Xτ, τ) dy.

If for each τ there exists an FX
τ -measurable function d∗(τ) such

that

inf
d∈FX

τ

∫
R

W (y, d) · p(y,Xτ ; τ)dy =

=
∫
R

W (y, d∗(τ)) · p(y,Xτ ; τ)dy (≡ G(τ,Xτ)) ,

then (with the notation p = Lawμ)

inf
(τ,d)

E[cτ +W (μ, d)] = inf
τ

E[cτ +G(τ,Xτ)] (≡ V (p)).

If τ∗ is an optimal time for the right-hand side,
then (τ∗, d∗(τ∗)) is an optimal solution of the initial problem.
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EXAMPLE 1 (classical mean-square criterion)

W (μ, d) = (μ− d)2 and μ ∼ N (m,σ2)

In this case

V (p) = inf
τ

E[cτ + v(τ)], where v(t) = 1/(t+ σ−2).

The optimal time τ∗ is deterministic, at that

(a) if
√
c < σ2, then τ∗ is a unique solution to the

equation v(τ∗) =
√
c, i.e., τ∗ = c−1/2 − σ−2;

(b) if
√
c ≥ σ2, then τ∗ = 0.

Optimal d∗ coincides with the a posteriori mean E(μ | FX
τ∗):

(c) d∗ =

⎧⎨⎩
√
cXτ∗ +m

√
c/σ2, if

√
c < σ2,

m, if
√
c ≥ σ2.
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How can one get the representation

V (p) = inf
τ

E[cτ + v(τ)] for v(t) = 1/(t+ σ−2) ?

Consider

inf
(τ,d)

E[cτ + (μ− d)2].

For a given τ the optimal d∗(τ) is E(μ | FX
τ ):

d∗(τ) =
∫
R

y · p(y,Xτ ; τ) dy.
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It is interesting to observe that if we denote

A(t, x) =
∫
R

y · p(y, x; t) dy,
then from the explicit form of p(y, x; t) we can see that

A′
x(t, x) =

∫
R

y2 · p(y, x; t) dy −A2(t, x).

So, A′(t, Xt) = E
[
(μ− E(μ | FX

t ))2
∣∣∣ FX

t

]
. Thus,

A′
x(t, Xt) is the variance of μ conditioned on FX

t .

Consequently,

V (p) = inf
τ

E[cτ +A′
x(τ,Xτ)]

(
≡ inf

τ
E[cτ +G(τ,Xτ)]

)
.
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If μ ∼ N (m,σ2), then the conditional variance has the form

Ax(t,Xt) = v(t),

where v(t) solves the Riccati equation (Kalman–Bucy filter)

v′(t) = −v2(t), v(0) = σ2,

i. e.,

v(t) =
1

t+ σ−2
.

Thus,

V (p) = inf
τ

E
[
cτ +

1

t+ σ−2

]
,

which proves (a) and (b) for τ∗.
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Representation (c) for d∗ = E(μ | FX
τ∗) follows from the formula

d∗(τ∗) =
∫
R

yp(y,Xτ∗; τ
∗) dy

= Xτ∗v(τ
∗) +m exp

(
−
∫ τ∗
0

v(s) ds

)

= Xτ∗
σ2

1 + σ2τ∗
+

m

1 + σ2τ∗
,

whence we find

d∗(τ∗) =

⎧⎨⎩
√
cXτ∗ +m

√
c/σ2, if

√
c < σ2 (τ∗ = c−1/2 − σ−2),

m, if
√
c ≥ σ2 (τ∗ = 0).
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EXAMPLE 2 (criterion connected with the precise detection,

when d∗ = μ)

W (μ, ·) = −εμ(·)

where εμ is a Dirac function. In this case∫
R

W (μ, d)p(τ, Xτ , y) dy = −p(τ,Xτ , d) = − p(d) exp(Xτd− 1
2τd

2)∫
R p(z) exp(xz − 1

2τz
2) dz

.

Thus, d∗(τ) is a mode of the conditional density p(τ,Xτ , ·) (i.e.,
any point of local maximum p(τ,Xτ , ·)).

If the support of p is R and the function p is differentiable,
then d∗(τ) solves the equation

p′(d)
p(d)

− τd = −Xτ.
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In normal case μ ∼ N (m,σ2) the mode coincides

with the conditional mean (see Example 1):

d∗(τ) =

⎧⎨⎩
√
cXτ +m

√
c/σ2, if

√
c < σ2 (τ = c−1/2 − σ−2),

m, if
√
c ≥ σ2 (τ = 0).

In this case

G(τ,Xτ) = −p(τ,Xτ ; d∗(τ)) = − 1√
2πv(τ)

.
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Taking into account that E(cτ +G(τ,Xτ)) = E(cτ − 1/
√

2πv(τ)),
we obtain the equality that τ∗ = t∗, where

c− 1

2

√
v(t∗)
2π

= 0.

Consequently,

t∗ =

⎧⎨⎩1/(8πc2) − 1/σ2, if 8πc2 < σ2,

0, if 8πc2 ≥ σ2.

The corresponding function d∗ is given by

d∗ = v(τ∗)Xτ∗ +m
v(τ∗)
σ2

= 8πc2Xτ∗ +m
8πc2

σ2
.

Of great interest are problems, where μ lies in a finite interval

[μ1, μ2] with, e.g., uniform distribution. In this case optimal
time τ∗ is NOT deterministic.
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It is interesting that the same method of estimation can be
applied to model

Xt = μt+BHt ,

where BH is a fractional Brownian motion with 0 < H < 1. For
this case a key Radon–Nikodým formula is

dP
(μ)
t

dP
(0)
t

= exp
{
μMt − μ2

2
〈M〉t

}
,

where M = (Mt)t≥0 is a fundamental martingale with independent
increments whose quadratic characteristic has the form

〈M〉t = EM2
t = C2

2t
2(1−H), C2 =

CH

2H(2 − 2H)1/2
.
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From this formula we find that the density

p(y,X; t) =
dP(μ ≤ y | FX

t )

dy

admits the representation

p(y,X; t) =
p(y) exp{yMt − μ2〈M〉t/2}∫∞−∞ p(y) exp{yMt − μ2〈M〉t/2} dy

.

We have

E(μ | FX
t ) =

∫ ∞
−∞

y2p(y,X; t) dy −
(∫ ∞

−∞
yp(y,X; t) dy

)2
,

consequently, with p(y) = e−y2/2/
√

2π, we find

E(μ | FX
t ) =

Mt

1 + 〈M〉t
, D(μ | FX

t ) =
1

1 + 〈M〉t
.
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So,

inf
δ=(τ,d)

E[cτ + |μ− d|2] = inf
τ

E
[
cτ +

1

1 + 〈M〉τ
]
. (∗)

Here 〈M〉t = C2
2t

2(1−H), which together with (∗) shows that
optimal stopping time τ∗ is deterministic. (This value can easily
be found by minimizing the function ct+ 1/(C2

2t
2(1−H)).)

I-20



II. Sequential distinguishing between hypotheses

We observe a random process

Xt = μt+Bt

The classical Wald problem deals with distinguishing between
two simple hypotheses H+:μ = μ+ and H:μ = μ− under assumption
μ(ω) ∈ {μ+, μ−}.

More complicated cases:

Chernoff’s problem on distinguishing between compound hypotheses
H+:μ > 0 and H:μ ≤ 0 under assumption μ ∼ N (μ0, σ

2
0).

(Chernoff, Brickwell, 1961–1965; Zhitlukhin, Muravlev, 2011–2012)

Problem on distinguishing between three hypotheses H+:μ =
μ+, H0:μ = μ0, H−:μ = μ− under assumption μ(ω) ∈ {μ+, μ0, μ−}.
(Zhitlukhin, Shiryaev, 2011)
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II.1. Chernoff’s problem

We observe a random process

Xt = μt+Bt,

where μ ∼ N (μ0, σ
2
0) does not depend on B.

Bayesian risk:

R(τ, d) = E[cτ + k|μ| I{d 
= sgn (μ)}]

where d is a FX
τ -measurable function taking values ±1:

if d = +1, then we accept the hypothesis H+:μ > 0

if d = −1, then we accept the hypothesis H−:μ ≤ 0.

Quantities c, k > 0 are given constants.
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In a remarkable way, the Chernoff problem reduces to a problem

on optimal stopping of the absolute value of Wiener process.

For fixed μ0 and σ2
0, introduce a process W = (Wt)t≤1,

Wt = σ0(1 − t)Xt/σ2
0(1−t) − tμ0/σ0

where W1 is defined as the limit of Wt as t→ 1.

One can prove that W is a Wiener process,
EWt = 0, EW2

t = t and W0 = 0.
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The theorem below shows that to find an optimal decision rule
in the initial problem

inf
(τ,d)

R(τ, d) = inf
τ,d

E[cτ + k|μ| I{d 
= sgn (μ)}] (A)

it suffices to find

Vμ0,σ0 = inf
τ≤1

E

[
2

σ3
0(1 − τ)

− |Wτ + μ0/σ0|
]
. (B)

(This “Vμ0,σ0-problem” was widely propagandized by L. Shepp
and A. N. Shiryaev as an interesting nonlinear optimal stopping
problem for Brownian motion, independently of Chernoff’s problems.)

In the sequel we assume without loss of generality that c = k = 1.
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THEOREM

1) Let τ∗B be an optimal time in problem (B).
Then optimal decision rule (τ∗A, d∗A) in problem (A) has the form

τ∗A =
τ∗B

σ2
0(1 − τ∗B)

, d∗A = sgn (Xτ∗B + μ0/σ
2
0).

2) Optimal time τ∗B in problem (B) has the form

τ∗B = inf{0 ≤ t ≤ 1 : |Wt + μ0/σ0|≥ aσ0(t)},
where aσ0(t) is a nonincreasing function on [0,1] such that aσ0(t) >

0 for t < 1 and aσ0(1) = 0.
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THEOREM (continued)

3) Function aσ0(t) is a unique continuous solution of the integral
equation

G(1 − t, a(t))

1 − t
=
∫ 1

t

2

σ3
0(1 − s)2

×

×
[
Φ

(
a(s) − a(t)√

s− t

)
− Φ

(−a(s) − a(t)√
s− t

) ]
ds

in the class of functions a(t) such that a(t) ≥ 0 for t < 1 and
a(1) = 0.

Here function G(t, x) is defined in the following way:

G(t, x) =
1√
t
ϕ

(
x√
t

)
− |x|

t
Φ
(−|x|√

t

)
, t > 0, x ∈ R,

where ϕ(x), Φ(x)is are standard normal density and distribution
function.
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REMARK

Chernoff has considered the process X ′
t = Xt−1/σ2

0
+ μ0/σ

2
0,

which satisfies the equation

dX ′
t =

X ′
t

t
dt+ dB′

t, t ≥ 1/σ2
0,

with some Brownian motion B′.

Then the optimal decision rule in problem (A) is obtained by
finding the optimal time τ∗C in the problem

V ′(t, x) = inf
τ≥tEt,x[τ −G(τ,X ′

τ)] (C)

for t = 1/σ2
0, x = μ0/σ

2
0.

Optimal times τ∗A and τ∗C are connected by τ∗A = τ∗C − 1/σ2
0.

Optimal d∗A equals sgn (X ′
τ∗C

).
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REMARK (continued)

Optimal time τ∗C = τ∗C(x, t) in problem (C) is

τ∗C = inf{s ≥ t : |X ′
s|≥ γ(s)},

where γ(s) is a certain strictly positive function for t > 0 (which
does not depend on parameters μ0, σ0.)

From the construction of processes W and X ′ we find that

γ(t) = σ0t · aσ0(1 − 1/(σ2
0t)), t ≥ 1/σ2

0.
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NUMERICAL SOLUTION
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PROOF of the THEOREM

Step 1 (reduction to problem for Wiener process).

It suffices to consider decision rules (τ, d) with Eτ < ∞. For any
such rule we have

R(τ, d) = E[τ + E(μ− | Fτ)I{d = +1} + E(μ+ | Fτ)I{d = −1}].

Thus, we need to find time τ∗ which minimizes the value

E (τ) = E[τ + min{E(μ− | Fτ), E(μ+ | Fτ)}],
and to put

d∗ =

⎧⎨⎩+1, E(μ− | Fτ∗) ≤ E(μ+ | Fτ∗),
−1, E(μ− | Fτ∗) > E(μ+ | Fτ∗).
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By the normal correlation theorem,

E (τ) = E[τ +G(τ + 1/σ2
0, Xτ + μ0/σ

2
0)]

where G(t, x) is the function

G(t, x) =
1√
t
ϕ(x/

√
t) − |x|

t
Φ(−|x|/√t),

already introduced above.

The innovation representation for X implies

dXt = E(μ | Ft) dt+ dB̄t ⇒ dXt =
Xt + μ0/σ

2
0

t+ 1/σ2
0

dt+ dB̄t.

with Brownian motion B̄t = Xt −
∫ t
0 E(μ | Fs) ds.

In particular, X is a Markov process.
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Direct calculations yield

Lt,x[G(t, x) + |x|/2t] = 0

where

Lt,x =
∂

∂t
+
x+ μ0/σ

2
0

t+ 1/σ2
0

· ∂
∂x

+
1

2

∂2

∂x2
.

Then for any stopping time τ , Eτ < ∞, by applying the Itô
formula to the expression

E (τ) = E[τ +G(τ + 1/σ2
0, Xτ +m0/σ

2
0)],

we find

E (τ) = E

[
τ − |Xτ +m0/σ

2
0|

2(τ + 1/σ2
0)

]
+G

(
1

σ2
0
,
m0

σ2
0

)
+

|m0|
2

.
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Also by direct calculation we get that

the process Mt =
Xt +m0/σ

2
0

σ0(t+ 1/σ2
0)

− m0

σ0
is a martingale.

Using a change of time, we find that

the process Wt = Mt/σ2
0(1−t) is a Brownian motion.

Then for any stopping time τ such that Eτ <∞ we have

E (τ) =
σ0
2

E

[
2

σ3
0(1 − τB)

− |WτB + μ0/σ0|
]

+ . . . . . .

where . . . . . . is the deterministic part which does not depend on τ ,
τB is a stopping time associated with τ by the formula

τB =
σ2
0τ

1 + σ2
0τ
.
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Thus, to find optimal decision rule (τ∗A, d∗A) in the initial problem
of distinguishing between H+ and H− it suffices to find optimal
time τ∗B in problem

Vμ0,σ0 = inf
τ≤1

E

[
2

σ3
0(1 − τ)

− |Wτ + μ0/σ0|
]

(B)

and to put

τ∗A =
τ∗B

σ2
0(1 − τ∗B)

, d∗A = sgn (Xτ∗B + μ0/σ
2
0).
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Step 2 (analysis of the structure of the optimal time in problem
(B)).

For the solution of problem (B) consider the value function

V (t, x) = inf
τ≤1−t E

[
2/σ2

0

1 − (τ + t)
− |Wτ + x|

]
− 2/σ2

0

1 − t
,

letting V (1, x) = 0 for all x.

One can prove that V (t,x) is continuous, and optimal stopping
time has the form

τ∗(t, x) = inf{s ≥ 0 : (s+ t,Ws + x) 
∈ C},
where C is the set of continuation of observation:

C = {(t, x) : V (t, x) < −|x|}
(−|x| is a gain from instantaneous stopping).
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Analyzing the structure of V (t, x), we establish that

C = {(t, x) : t ∈ [0,1), |x|< a(t)} ,

where a(t) is some nonincreasing function on [0,1] such that
a(t) > 0 for t < 1 and a(1) = 0.

Moreover, one can prove that a(t) is continuous on [0,1].
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Step 3 (integral equation).

Using the general theory of optimal stopping, one can prove that
V (t, x) solves the following problem for the operator Lt,x:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Lt,xV (t, x) = − 2/σ3
0

(1 − s)2
, |x|< a(t),

∂V

∂x
(t, x) = −sgn (x), x = ±a(t),

V (t, x) = −|x|, |x|≥ a(t).

Applying the Itô formula gives

EV (1,W1−t + x) = V (t, x)

+
∫ 1

t
Lt,xV (s,W1−s + x) · I(|W1−s + x|
= a(s)) du.
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Using equalities V (1, x) = −|x| for all x ∈ R,
Lt,xV (t, x) = 0 for |x|> a(t), we get

V (t, x) = −E|W1−t + x|+
∫ 1

t

2/σ2
0

(1 − s)2
P(|W1−s + x|< a(s)) ds.

Using equality V (t, a(t)) = −a(t), we find

E|W1−t + a(t)|−a(t) =
∫ 1

t

2/σ2
0

(1 − s)2
P(|W1−s + a(t)|< a(s)) ds,

which, after calculation of E|. . . | and P(. . .), turns into the required
equation.
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Step 4 (uniqueness of solution of the integral equation).

Proof follows the method of:

P.V.Gapeev, G.Peskir. The Wiener disorder problem with finite
horizon (Stochastic Process. Appl. 116:2 (2006))

G.Peskir, A.N.Shiryaev. Optimal stopping and free-boundary problems
(Birkhäuser, 2006)

I-39



II.2. Distinguishing between three hypotheses

We observe a random process

Xt = μt+Bt,

where μ is a random variable, which does not depend on B and
takes values m0, m1, m2 with probabilities π0, π1, π2.

Bayesian risk:

R(τ, d) = E[cτ +W (μ, d)]

where c > 0 is a constant, W (μ, d) is a penalty function:

W (mi,mi) = 0, i = 0,1,2,

W (mi,mj) = aij, i, j = 0,1,2, i 
= j,

with aij > 0.
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For simplicity, let m1 = −1, m0 = 0, m2 = 1, aij = 1, πi = 1/3.

Introduce the process of a posteriori probabilities πi = (πit)t≥0:

πit = P(μ = mi | FX
t ), i = 0,1,2.

Then for any decision rule (τ, d), R(τ, d) takes the form

R(τ, d) = Eπ
[
cτ + 1 −∑

i

πiτI{d = μi}
]

Consequently, we must find a time τ∗ which minimizes

Eπ[cτ + 1 − max{π0
τ , π

1
τ , π

2
τ }]

and define d∗ by the formula

d∗ = mi, where i = argmaxi π
i
τ
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Our problem reduces to the problem of optimal stopping of

the observed process X.

From the innovation representation for X we obtain

dXt = E(μ | FX
t ) dt+ dB̄t,

where B̄t = Xt −
∫ t
0 E(μ | FX

s ) ds is a Brownian motion.

The properties of conditional expectation yield

E(μ | FX
t ) = μ0π

0
t + μ1π

1
t + μ2π

2
t = π2

t − π1
t .

Calculating πit by means of the Bayes formula gives

dXt =
e−t/2(eXt − e−Xt)

1 + e−t/2(eXt + e−Xt)
dt+ dB̄t.
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Thus, the problem

infτ E[cτ +G(π0
τ , π

1
τ , π

2
τ )]

with

G(π0
τ , π

1
τ , π

2
τ ) = min{π1

τ + π2
τ , π

0
τ + π2

τ , π
0
τ + π1

τ }
is replaced by the problem

infτ E[cτ +G(τ,Xτ)]

with

G(t, x) =
min(ex + e−x,1 + ex,1 + e−x)

1 + e−t/2(ex + e−x)
.
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Following the general theory, introduce the value function in
problem

V (t, x) = inf
τ

Et,x[cτ +G(τ + t, Xt+τ)]

Optimal stopping time is

τ∗(t, x) = inf
τ
{s ≥ 0 : V (t+ s,Xt+s) = G(t+ s,Xt+s)}.

Now we characterize the set of continuation of observation

C = {(t, x) : V (t, x) < G(t, x)}
for “large” t.
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THEOREM 1 (qualitative behavior of stopping boundaries)

There exist T0 > 0 and functions f(t), g(t) such that the set

C≥T0
= {(t, x) ∈ C : t ≥ T0}

admits the representation

C≥T0
=
{
(t, x) : t ≥ T0 and |x|∈ (g(t), f(t))

}
.

Functions f(t) and g(t) are such that

f(t) = t/2 + b+O(e−t), g(t) = t/2 − b+O(e−t),

where the constant b is a unique solution of the equation

eb − e−b + 2b = 1/(2c).
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OPTIMAL STOPPING BOUNDARIES

x

t

g(t)

−g(t)

f(t)

−f(t)

T0

0

H2

H1

H0

x =
t/2

x = −t/2

The set of continuation of observation has the property

C≥T0
= {(t, x) : t ≥ T0 and |x|∈ (g(t), f(t))}.
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THEOREM 2 (integral equations)

For all t ≥ T0 stopping boundaries f(t), g(t) satisfy the system
of integral equations⎧⎪⎪⎨⎪⎪⎩

c
∫ ∞
t

K1(f(t), t, s, f(s), g(s))ds =
∫ ∞
t

K2(f(t), t, s)ds

c
∫ ∞
t

K1(g(t), t, s, f(s), g(s))ds =
∫ ∞
t

K2(g(t), t, s)ds

where function K1 and K2 are defined by

K1(x, t, s, f, g) =
∑
i[Φs−t(f−x−μi(s−t))−Φs−t(g−x−μi(s−t))]ϕt(x−μit)∑

j ϕt(x−μjt)

K2(x, t, s) =
∑
i ϕs−t(μi(s−t)−s/2+x)ϕt(x−μit)

2(2+e−s)
∑
j ϕt(x−μjt)

,

where ϕr(y) = 1√
2πr

e−y2/(2r) and Φr(z) =
∫ z−∞ϕr(y)dy.
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Part II.

Disorder problems in Model B
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Introduction

We consider a Brownian motion with disorder Xt = (Xt)t≥0

given on a probability space (Ω,F ,P):

Model B: Xt = μ(t− θ)+ +Bt

or, in differentials,

dXt =

⎧⎨⎩dBt, t < θ,

μ dt+ dBt, t ≥ θ,

where B = (Bt)t≥0 is standard Brownian motion,

θ ≥ 0 is a random variable (disorder time, change-point),

μ 
= 0 is a known constant.

The general problem consists in finding a stopping time τ which
would be adapted to filtration (FX

t )t≥0 and “close” to θ.
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Example

In the graph below a disorder occurs at θ = 0.5 and μ = 4.
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Recall that standard Bayesian setting of the disorder problem
is based on the following assumption (Shiryaev, Optimal stopping
rules):

θ ∼ exp(λ), θ does not depend on B.

There was considered a problem of minimization of both the
probability of a false alarm and average delay time:

V1 = inf
τ

[
P(τ < θ) + cE(τ − θ)+

]
(c > 0).

It turned out that optimal stopping time has the form

τ∗1 = {inf t ≥ 0 : πt ≥ A1}, A1 = A1(λ, c),

where π = (πt)t≥0 is the process of a posteriori probabilities:

πt = P(θ ≤ t | FX
t ).
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To the problem V1 one can reduce a problem of minimization of
the average time “miss”:

V2 = inf
τ

E|τ − θ|.

Optimal stopping time for V2 has the form

τ∗2 = {inf t ≥ 0 : πt ≥ A2}, A2 = A1(λ, λ).
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The presentation below concerns the following

THREE DISORDER PROBLEMS:

• Problem of disorder on finite intervals

M. Zhitlukhin, A. Shiryaev. Bayesian problems on disorder on filtered

probability spaces (TPA, 2012, no. 3);

• Problems of optimal stopping of Brownian motion

with disorder on an interval

M. Zhitlukhin, A. Shiryaev. Problems of optimal stopping for Brownian

motion with disorder (TPA, 2013);

A. Shiryaev, M. Zhitlukhin, W. Ziemba. When to sell Apple? Trading

financial bubbles with a stochastic disorder model (2013);

• Problem of disorder when θ depends on B

A. Aliev. Towards a problem of detection of a disorder which depends on

trajectories of the process (TPA, 2012, no. 3).
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I. Disorder problem on finite intervals

We observe a process X = (Xt)t≥0,

Xt = μ(t− θ)+ +Bt
,

where θ is a random variable which does not depend on B and
is UNIFORMLY distributed on [0,1].

We consider the following problems:

V1 = inf
τ≤1

[
P(τ < θ) + cE(τ − θ)+

]
,

V2 = inf
τ≤1

E|τ − θ|.
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The key point to solution of problems V1 and V2 is reduction to

Markovian problems of optimal stopping.

Introduce the Shiryaev–Roberts statistic ψ = (ψt)t≥0:

ψt = eμXt−μ2t/2
∫ t
0
e−μXs+μ2s/2 ds,

or, in differentials,

dψt = dt+ μψt dXt, ψ0 = 0.

Process ψt is related to process of a posteriori probabilities

πt = P(θ ≤ t | FX
t ) by the following formula:

ψt =
πt

1 − πt
(1 − t).
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Lemma

The following representations hold:

V1 = inf
τ≤1

E∞
[∫ τ

0
(cψs − 1) ds

]
+ 1,

V2 = inf
τ≤1

E∞
[∫ τ

0
(ψs − (1 − s)) ds

]
,

where E∞[ · ] stands for the expectation in absence of disorder
(i. e., when X is a Brownian motion).

Proof is based on the following equalities:

E(τ − θ)+ = E∞ [
∫ τ
0ψs ds] ,

P(τ < θ) = 1 − E∞τ,

E(τ − θ)− = E∞(1 − τ)2/2.
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Proof of the lemma

1) Rewrite the average time of delay E(τ − θ)+:

E(τ − θ)+ =
∫ 1

0
E[(τ − u)+ | θ = u] du

=
∫ 1

0

∫ 1

u
E[I(s ≤ τ)|θ = u] ds

=
∫ 1

0

∫ 1

u
E∞[I(s ≤ τ)eμ(Xs−Xu)−μ2(s−u)/2] ds

= E∞
∫ τ
0

∫ s
0
eμ(Xs−Xu)−μ2(s−u)/2 ds

=
∫ τ
0
ψs ds.
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2) Rewrite the probability of a false alarm P(τ < θ):

P(τ < θ) =
∫ 1

0
P(τ < u | θ = u) du

=
∫ 1

0
P∞(τ < u) du

= E∞τ

3) Rewrite the average time after a false alarm E(τ − θ)−:

E(τ − θ)− =
∫ 1

0
E[(τ − u)− | θ = u] du

=
∫ 1

0
E∞(τ − u)− du

= E∞(1 − τ)2/2

�
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Thus, for the initial problems

V1 = inf
τ≤1

[
P(τ < θ) + cE(τ − θ)+

]
, V2 = inf

τ≤1
E|τ − θ|

we got the representations

V1 = inf
τ≤1

E∞
[∫ τ

0
(cψs − 1) ds

]
+ 1,

V2 = inf
τ≤1

E∞
[∫ τ

0
(ψs − (1 − s)) ds

]
,

where ψ has the differential

dψt = dt+ μψt dXt, ψ0 = 0,

and Xt is a Brownian motion w.r.t. P∞.
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Introduce functions f1(t) = 1/c and f2(t) = 1 − t.

Theorem

Optimal stopping times for V1 and V2 are

τ∗i = inf{t ≥ 0 : ψt ≥ a∗i (t)} ∧ 1, i = 1,2

where a∗i (t) is a unique continuous solution of the equation∫ 1

t
E∞

[
(ψs − fi(s))I{ψs ≤ a∗i (s)}

∣∣∣ψt = a∗i (t)
]
ds = 0,

satisfying the conditions

a∗i (t) ≥ fi(t) for t < 1, a∗i (1) = fi(1).
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Theorem (continued)

Values V1 and V2 are given by

V1 =
∫ 1

0
E∞(cψs − 1)I{ψs < a∗1(s)} ds+ 1,

V2 =
∫ 1

0
E∞[ψs − (1 − s)]I{ψs < a∗2(s)} ds.
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Proof of the theorem

For the solution of the problem, consider the value function

Vi(t, x) = inf
τ≤1−t E

∞
x

[∫ τ
0

(ψs − fi(t+ s)) ds
]
, i = 1,2.

where E∞x [ · ] stands for expectation under assumption ψ0 = x.

One can prove that Vi(t, x) are continuous, and optimal stopping
times have the form

τ∗i (t, x) = inf{s ≥ 0 : (t+ s, ψs) 
∈ Ci},
where Ci is the set of continuation of observations:

C = {(t, x) : Vi(t, x) < 0}
(here 0 is a gain from instantaneous stopping).
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Analyzing the structure of functions Vi(t, x), we establish that

Ci = {(t, x) : t ∈ [0,1), x < a∗i (t)},
where a∗i (t) are unknown nonincreasing functions on [0,1],
at that ai(t) ≥ fi(t) for t < 1 and ai(1) = fi(1).

One can prove that ai(t) are continuous on [0,1].
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One can prove also that Vi(t, x) solves a free-boundary problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V ′
t (t, x) + LψV (t, x) = fi(t) − x, x < ai(t),

V (t, x) = 0, x ≥ ai(t),

V (t, x−) = 0, x = ai(t),

V ′
x−(t, x) = 0, x = ai(t),

where

Lψ =
μ2x2

2

∂2

∂x2
+

∂

∂x
.
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Applying the Itô formula to Vi(s, ψs), we get

E∞x V (1,ψ1−t) = V (t, x)

+ E∞x
∫ 1−t
0

[V ′
t + LψV ](t+ s, ψs) · I(ψs < a(t+ s)) ds

Since Vi(1, ·) ≡ 0, and Vi(t, x) = 0 for x = a∗i (t), we find

V (t, x) = −E∞x
∫ 1−t
0

[V ′
t + LψV ](t+ s, ψs) · I(ψs < a(t+ s)) ds,

which gives, after substitution of [V ′
t +LψV ](t, x) = fi(t)−x, the

required equation.

Proof of uniqueness of solution of the integral equations is
given in (Zhitlukhin, Shiryaev, TPA, 2012).
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Numerical results

Integral equation∫ 1

t
E∞

[
(ψs − fi(s))I{ψs ≤ a∗i (s)}

∣∣∣ψt = a∗i (t)
]
ds = 0 (∗)

can be solved numerically by “backward induction” :

1. Fix the partition 0 = t0 < t1 < . . . < tn = 1;

2. Take a∗i (tn) = fi(1) (by the theorem);

3. If a∗i (tk), . . . , a∗i (tn) are calculated, then we find a∗i (tk−1) by

• calculating integral
∫ 1
tk−1

in (∗) with stepwise function equal to
a∗i (·) in points tk, . . . , tn and

• solving the resulting algebraic equation w.r.t. a∗i (tk−1).
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Example

For μ = 4 consider the problem

V2 = inf
t≤1

E|τ − θ|.
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process Xt; θ = 0.5. process ψt and boundary a∗2(t).
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II. Optimal stopping of process with disorder

We observe Brownian motion with disorder (Xt)t≥0:

dXt = [μ1I(t < θ) + μ2I(t ≥ θ)] dt+ σ dBt

where θ ∼ U [0,1], μ1 > 0 > μ2 (in case of long position), μ1 <
0 < μ2 (in case of short position), σ > 0 (drift changes from μ1
to μ2). We restrict our analysis to the case of long position only.

Below we consider problems of optimal stopping:

HI = sup
τ≤1

EXτ, HII = sup
τ≤1

E exp(Xτ − σ2τ/2).

Earlier problems of such type were considered in (Beibel, Lerche,
1997), (Shiryaev, Novikov, 2008), (Ekström, Lindberg, 2012).
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Application in mathematical finance

Let the price of an asset be modeled by geometrical Brownian
motion with disorder St = exp(Xt − σ2t/2):

dSt = [μ1I(t < θ) + μ2I(t ≥ θ)]St dt+ σSt dBt, S0 = 1,

i. e., the price in average grows up “till” time θ, and falls down
“after” θ.

Problem HI consists in maximization of logarithmic utility of
selling asset:

HI = sup
τ≤1

E(logSτ), [для μ′i = μi − σ2/2].

Problem HII consists in maximization of linear utility of selling
asset:

HII = sup
τ≤1

ESτ.
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Solution of the problem Hl

Since Xt = μ1t+(μ2−μ1)(t−θ)++σBt, we have for any stopping
time τ ≤ 1

EXτ = E[μ1τ − (μ1 − μ2)(τ − θ)+].

Denoting μ = (μ1 − μ2)/σ and X̃ = (Xt − μ1t)/σ, we find

ψt = e−μX̃t−μ2t/2
∫ t
0
eμX̃s+μ2s/2 ds.

Analogously to the result above,

HI = sup
τ≤1

E∞
[∫ τ

0
(μ1 − (μ1 − μ2)ψs) ds

]
,

where E∞[ · ] stands for expectation under assumption that X̃ is
a standard Brownian motion.
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Theorem

Optimal stopping time in problem HI is

τ∗l = inf{t ≥ 0 : ψt ≥ a∗l (t)} ∧ 1

where a∗l (t) is a unique continuous solution of the equation∫ 1

t
E∞

[
(μ1 − (μ1 − μ2)ψs)I(ψs ≤ a∗l (s))

∣∣∣ψt = a∗l (t)
]
ds = 0,

satisfying the conditions

a∗l (t) ≥ μ1

μ1 − μ2
for t < 1, a∗l (1) =

μ1

μ1 − μ2
.

The value HI = EXτ∗l can be found by the formula

HI =
∫ 1

0
E∞[μ1 − (μ1 − μ2)ψs]I(ψs < a∗l (s)) ds.
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Solution of problem Hg

We introduce a new measure P̃ such that

(X̃t − σt) is a P̃-Brownian motion,

where X̃ = (Xt − μ1t)/σ.

We establish that for any stopping time τ ≤ 1

EPSτ = EP̃

[
Sτ × dPτ

dP̃τ

]
= EP̃

[
eμ1τ(ψτ + 1 − τ)

]
,

at that process ψ has differential

dψt = [1 − (μ1 − μ2)ψt] dt+ μψt d(X̃t − σt), ψ0 = 0.

Applying the Itô formula, we get

EPSτ = EP̃
[∫ τ

0
eμ1s(μ2ψs + μ1(1 − s)) ds

]
+ 1.
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Theorem

Optimal stopping time in problem HII is

τ∗g = inf{t ≥ 0 : ψt ≥ a∗g(t)}

where a∗g(t) is a unique continuous solution of the equation∫ 1

t
EP̃
[
(μ2ψs + μ1(1 − s))I(ψs ≤ a∗g(s))

∣∣∣ψt = a∗g(t)
]
ds = 0,

satisfying the conditions

a∗g(t) ≥ μ1

|μ2|
(1 − t) for t < 1, a∗g(1) = 0.

The value HII = ESτ∗g van be found by the formula

HII =
∫ 1

0
EP̃[μ2ψs + μ1(1 − s)]I(ψs < a∗g(s)) ds+ 1.

II-26



Example

Consider problems HI and HII for μ1 = −μ2 = 2, σ = 1.
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process St; θ = 0.5. ψt and boundaries a∗l (t), a∗h(t).
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III. When to sell Apple?

Let us apply our results to problems of mathematical finance
based on real asset prices.

Consider two “bubbles” on financial markets:

• Increase of prices of Apple assets from 2009 to 2012.

• Increase of prices of Internet companies assets at the end of
1990’s.

Problem consists in choosing optimal time of exit from “bubble”
with maximum gain.
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REMARK. The basic idea of bubbles is that there is a FAST

rate of growth in prices, then PEAK, and then a fast DECLINE.
There are several papers of Robert Jarrow and Philip Protter
(see, e.g., SIAM J. Financial Math., 2 (2011), 839–865), where they
developed the “martingale theory of bubbles”. Their analysis is
based on idea that prices of bubbles behave similarly to the

path behavior of the “strict nonnegative continuous local

martingale” . A typical path of such processes is to shoot up to
high value and then quickly decrease to small values and remain
at them. Jarrow and Protter proposed some “stochastic volatility
models”, saying that appearing of bubbles in prices relates with
increasing of the volatility.
Our analysis of bubbles is based on idea of work with drift terms

(increasing/decreasing).
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Example 1. Increase of Apple asset prices

In 2009–2012 prices on Apple assets grew up in almost 9 times.
Minimum equals $82.33 (6/03/09), maximum equals $705.07
(21/09/12).

However, already on 15/11/12 the price fell down to $522.62.
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The fall down at the end of
2012 was expected already
at the beginning of the year.
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Setting of the problem of optimal exit from “bubble”

Agents on the market might not be aware of existence of a
probability-statistical model of price evolution.

From their point of view, the question considered sounds as
follows:

1. One observe a sequence of prices

P0, P1, . . . , PN,

where P0 is price on 6/03/09 and PN is price on 31/12/12.

2. One expect prices to fall down at the end of 2012

3. For a given date n0 < N of buying asset, one wants to find a
time of selling it which would maximize the gain.
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Representation of observed prices by process with disorder

1. We project dates n0, . . . , N onto the interval [0,1], since one
market day has length Δt = 1/(N − n0).

Assume that prices are modeled by process

dSt = [μ1I(t < θ) + μ2I(θ ≥ t)]St dt+ σSt dBt,

where SkΔt = Pk/P0 and θ ∼ U [0,1].

2. Parameters μ1 and σ are estimated from data P0, . . . , Pn0.

The choice of μ2 is subjective but μ2 = −μ1 is proved empirically
to be good (one can see it from other cases).

3. Then one applies results on solution of the problem of maximization
of ESτ .

II-32



Results of choice of time for selling Apple

Buy Sell

3-Jan-11 ($ 329.57) 9-Oct-12 ($ 635.85)

1-Jul-11 ($ 343.26) 8-Oct-12 ($ 638.17)

3-Jan-12 ($ 411.23) 8-Oct-12 ($ 638.17)

1-May-12 ($ 582.13) 9-Oct-12 ($ 635.85)

3-Jul-12 ($ 599.41) 9-Oct-12 ($ 635.85)

1-Aug-12 ($ 606.81) 11-Oct-12 ($ 628.10)
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Results of the work of our method in case when assets were
bought on 3 January 2012.

On the left are prices (red point = time of selling).

On the right are statistic ψ and optimal stopping boundary.
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Example 2. Rise of NASDAQ index

• From the beginning of 1994 till March
2000, NASDAQ-100 grew up in more
than 12 times, from 395.53 to 4816.35.
Then it fell down in 6 times, to 795.25,
by October 2002

• For example, the Soros Foundation
has lost $ 5 bln. of $ 12 bln.
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Results of choice of time for selling NASDAQ-100

Buy Sell

2-Jul-98 ($ 1332.53) 12-Apr-00 ($ 3633.63)
4-Jan-99 ($ 1854.39) 13-Apr-00 ($ 3553.81)
1-Jul-99 ($ 2322.32) 13-Apr-00 ($ 3553.81)
1-Oct-99 ($ 2404.45) 14-Apr-00 ($ 3207.96)
3-Jun-00 ($ 3790.55) 14-Apr-00 ($ 3553.81)

Results are obtained under assumption that prices begin to fall
down before the end of 2001 (this was really expected by most
traders).
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IV. Disorder depending on the process trajectory

One consider process X = (Xt)t≥0,

Xt = μ(t− θ)+ +Bt
,

where B = (Bt)t≥0 is standard Brownian motion,

θ ≥ 0 is an exponentially distributed random variable with
local intensity λt = λ(Xt),

μ > 0 is a constant.

we consider the problem

V = inf
τ

[P(τ < θ) + cE(τ − θ)+]
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How one can construct a process Xt?

Let Bt be Brownian motion given on a probability space (Ω,F ,P).

Consider an extended measurable space (Ω′,F′):

Ω′ = Ω × R+, F′ = F ⊗ B(R+),

and define a measure P′ on this space by

P′(A× (t,∞)) = EP
[
I(A)e−

∫ t
0 λ(Bs) ds

]
, A ∈ F .

Let θ(ω, s) = s, then нужно задать

Xt = μ(t− θ)+ +Bt.
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Solution of the problem

Our problem

V = inf
τ

[
P(τ < θ) + cE(τ − θ)+

]
can be reduced by standard methods to the following optimal
stopping problem for the process πt = P(θ ≤ t | FX

t ):

V = inf
τ

E
[
(1 − πτ) + c

∫ τ
0
πs ds

]
One can prove that the pair (X, π) form a Markov process which
satisfies the system of equations⎧⎨⎩ dXt = μπtt+ dW̃t,

dπt = λ(Xt)(1 − πt) dt+ μπt(1 − πt) dW̃t,

where W̃ is an innovation Wiener process.
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Following the general theory, we introduce value function

V (x, π) = inf
τ

Ex,π

[
(1 − πτ) + c

∫ τ
0
πs ds

]
.

Then optimal stopping time has the form

τ∗ = inf{t ≥ 0 : (Xt, πt) 
∈ C}

where C is set оf continuation of observations:

C = {(x, π) : V (x, π) < 1 − π}.
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Numerical calculation of the value function

It is convenient to introduce process r = (rt)t≥0:

rt = log(1/πt − 1) + μXt ⇔ πt = (1 + exp(rt − μXt))
−1.

One can prove that pair (Xt, rt) satisfies the equation⎧⎨⎩ dXt = μπtt+ dW̃t,

drt = (μ2 − λ(Xt)/πt)dt,

where πt = π(Xt, rt).

To calculate the value function numerically, we cover the domain

E = {(x, π) : |x|≤M, ε ≤ π ≤ 1 − ε}
by a lattice with step M/K in x and 2 log(1/ε − 1)/N in r, the
process (X, r) is approximated by random walk over points of
this lattice.

II-41



In discrete problem for fixed M , ε, N , and K, we introduce the
value function

V d(x, r) = inf
τ

Ex,r

[
1 − πt + c

∫ τ
0
πs ds

]
.

From the general results it follows that

V d(x, r) = lim
t→∞QnG(x, r)

where G(x, r) = 1 − π(x, r) and operator Q is given by

Qf(x, r) = min {Ex,rf(X1, r1) + cΔt, f(x, r)} ,
where Δt = Δt(x, r) is time which the process passes in point (x, r).
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Example

We solve the problem with parameters μ = c = 1, λ(x) = x+.

Figure shows stopping boundary in coordinates (x, π).
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