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The data in our hand: price process

Low latency data, recorded to 1/1000 of a second.
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Data is always discrete. Academic TAQ will mislead you, aggregates to 1
second.
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Contribution: modelling the data in our hand

Continuous time model for prices (or best bid). Like the data:

prices are discrete (tick structure);
prices change in continuous time;
a high proportion of price changes are reversed in a fraction of a second.

Model is analytically tractable: role of the calendar time is explicit.

Formulated in terms of a “price impact curve”.

Price is càdlàg, piecewise constant semimartingale with finite activity,
finite variation and no Brownian motion component.

For futures data sets: describes the observed dynamics of price
changes over three diferent orders of time

0.1 seconds, 1 seconds, 10 seconds and 1 minute.
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Why study?

Trading at high frequency (prediction and control)

Minimising trading costs for fundamental trader (your pension)
Statistical arbitrage
Risk management

Information extraction from high frequency data

Time-varying vol and correlation
Skews and statistical leverage

For policy

Advantages/disadvantages of multiple exchanges
(fragmentation/competition), dark pools, etc

Regulation (e.g. auction each second, not continuously?)

Forensic finance

Does some trading systems create a false market.
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Existing analysis

Much econometrics focused on very short-term predictive models

next trade or quota update
change in price or time between event
reviews in Engle (2000), Engle & Russell (2010) and Hautsch (2012)

Relatively little about discreteness

Rydberg & Shephard (2003), Russell & Engle (2006), Liesenfeld, Nolte,
& Pohmeier (2006), Large (2011), Oomen (2005), Oomen (2006) and
Griffin & Oomen (2008). Early work includes Harris (1990), Gottlieb &
Kalay (1985), Ball, Torous, & Tschoegl (1985) and Ball (1988)

Rounding, rounding plus measurement error

Hasbrouck (1999), Rosenbaum (2009), Delattre & Jacod (1997),
Jacod (1996) and Li & Mykland (2014).
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Similar themes: discreteness in continuous time

Small literature on moves in our direction.

Barndorff-Nielsen (BN), Pollard & Shephard (2012). Lévy process.

Difference of two subordinators (non-negative Lévy processes). e.g.
count up moves, modelled as Poisson process. Likewise downs.
Difference is price and is Skellam Lévy process. Extends to non-single
tick markets.

Bacry, Delattre, Hoffman & Muzy (2013a,b)

For single tick markets: extend Lévy process to difference of two
Hawkes processes (up and down moving counting processes).

Fodra and Pham (2013a,b).
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Work draws on math in

Deeper parts of the math used here draws on

Barndorff-Nielsen (BN), Pollard & Shephard (2012). Lévy process.
Barndorff-Nielsen, Lunde, Shephard & Veraart (2014). Stationary
model.

Related to Wolpert & Taqqu (2008) and Wolpert & Brown (2012)
Related to M/G/∞ queues, e.g. Lindley (1956), Reynolds (1968) and
Bartlett (1978, Ch. 6.31)
Related to mixed moving average models of Surgailis, Rosinski,
Mandrekar, and Cambanis (1993).

Related to discrete time integer valued processes.
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Core model: Poisson random measure

The basic framework:
(i) events arriving in continuous time,
(ii) some events have fleeting impact, some permanent
(iii) events of variable size and direction.

Minimal mathematical core: 3 dim Poisson random measure N with
intensity measure

E {N(dy , dx ,ds)} = ν(dy)dxds.

ν(dy) is a Lévy measure.

s is time (with arrivals randomly scattered on R) and
x is a random height (uniformly scattered over [0, 1]): random source
for the degree of fleetingness of the event and
y marks the variable size and direction of the integer events.

Zero chance two points with common height or time.

8 / 39



Lévy basis

The Lévy basis records the value of the y variable at each point in
time s (which lives on R) and height x (which lives on [0, 1]). It is
given by

L(dx , ds) =

∫ ∞
−∞

yN(dy , dx ,ds), (x , s) ∈ [0, 1]× R.

The Lévy process

Lt =

∫ t

0

∫ 1

0
L(dx , ds) (1)

= L(Dt), Dt , [0, 1]× (0, t]. (2)

Here Dt is a rectangle which grows with t. Thus the Lévy process
counts up all the points in the Lévy basis with heights under 1 and
from time 0 to time t.
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Example: Skellam basis and Skellam process

L(dx ,ds), s time, x height. Black: +1, Red: -1.

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

0 1 2 3 4 5

0.
0

0.
4

0.
8

Levy basis

H
ei

gh
t

0 1 2 3 4 5

−
2

−
1

0
1

2
3

Levy process

L_
t

10 / 39



Drivers of price process

Lévy process: apply increasing rectangle Dt to Lévy basis L

Lt = L(Dt), Dt , [0, 1]× (0, t].

Need fleeting component too. Multiple shapes

Drag through time a fixed shape

A ⊆ [b, 1]× (−∞, 0] , where b ∈ [0, 1]

At , A + (0, t) .

Build an increasing rectangle Bt , [0, b)× (0, t].

Union of two shapes

Ct , At ∪ Bt , At ∩ Bt = ∅.

Price
Pt = V0 + L(Ct) = V0 + L(At) + L(Bt).

Lévy process L(Bt) independent of fleeting L(At).
leb(Ct) = leb(A) + tb.

11 / 39



−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Levy basis and Squashed trawl: A+(0,t)

Time

H
ei

gh
t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
3

6 Fleeting process

L(
A

_t
)

−
2

6

Levy process

x[, 1]

L(
B

_t
)

12 / 39



Trawl function

At , A + (0, t) ,

Shape A?

Curve denoted d . Called a “trawl function”.

A , {(x , s) : s ≤ 0, b ≤ x < d(s)} . (3)

Here makes sense for d to be monotonic.

Write
G (s) = 1− d(−s), s ≥ 0.

Lifetime of j-th arrival is

G−1(Uj), Uj
iid∼ U(0, 1).

G−1(Uj) =∞ permanent

G−1(Uj) <∞ temporary

Hence trawl function parameterises a “price impact curve”.
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Stochastic analysis

Like the data:

Price is càdlàg,

Piecewise constant semimartingale with

finite activity (so the Blumenthal-Getoor index is always zero)
finite variation and

No Brownian motion component.
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Jump probabilities of prices

For this model

P (∆Pt = y |∆Pt 6= 0) =
ν (y) + ν (−y) (1− b)

(2− b) ‖ν‖
. (4)
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Price moves

Pt = V0 + L(Ct) = V0 + L(At) + L(Bt), t ≥ 0,

Pt − P0 = L(Ct)− L(C0), t > 0.

Theorem

Let A\B be set subtraction (all of set A except those also in B). Then

Pt − P0 = L (Ct\C0)− L(C0\Ct),

where L (Ct\Cs) is independent of L(Cs\Ct). Characteristic function of
returns is

M (θ ‡ Pt − P0) , logE
{
e iθ(Pt−P0)

}
, i ,

√
−1,

= btM (θ ‡ L1) + leb(At\A) {M (θ ‡ L1) + M (−θ ‡ L1)} ,

where Lt is the corresponding Lévy process.

16 / 39



Thm continued: Furthermore, if the j-th cumulant of L1 exists and is
written as κj (L1), then

κj(Pt − P0) = btκj(L1), j = 1, 3, 5, ...

κj(Pt − P0) = {bt + 2leb(At\A)}κj(L1), j = 2, 4, 6, ....

Notice that Ct\C0 has the physical interpretation of arrivals since time 0.
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Long run returns

If κ2 (L1) <∞, then

t−1/2 (Pt − P0 − btκ1 (L1))
L→ N (0, bκ2 (L1)) as t →∞.

This is the obvious result that the fleeting returns have no impact in
the long run and that the non-Gaussian becomes irrelevant.
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Theorem

Assume that κ2(L1) <∞. Then the gross returns have the autocorrelation
structure, for some sampling interval δ > 0 and k = 1, 2, ...

γk , Cov
((
P(k+1)δ − Pkδ

)
, (Pδ − P0)

)
=

(
leb(A(k+1)δ\A)− 2leb(Akδ\A) + leb(A(k−1)δ\A)

)
κ2(L1),

ρk , Cor
((
P(k+1)δ − Pkδ

)
, (Pδ − P0)

)
=

leb(A(k+1)δ\A)− 2leb(Akδ\A) + leb(A(k−1)δ\A)

bδ + 2leb(Aδ\A)
.

Corollary

ρk ≤ 0 for all k = 1, 2, .... This inequality becomes strict when d is strictly
increasing (i.e. d (s1) < d (s2) for all s1 < s2 ≤ 0).
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g-variation

Quadratic variation plays a large role in modern financial econometrics
(e.g. ABDL (01), BNS (02)). Extensions to power variation were
rationalised in econometrics by BNS(04,06). More general functions were
introduced by BN, Graversen, Jacod, S (06a,b). Here

Recall the Lévy basis is

L(dx , ds) =

∫ ∞
−∞

yN(dy , dx ,ds), (x , s) ∈ [0, 1]× R.

Define the g -Lévy basis as

Σ(dx ,ds; g) =

∫ ∞
−∞

g(y)N(dy ,dx , ds),

with mean measure

µ(dx ,ds; g) = dxds

∫ ∞
−∞

g(y)ν(dy),

assuming
∫∞
−∞ g(y)ν(dy) <∞.
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g-variation

Then the unnormalised g-variation is

{P; g}t = lim
δ→0

t/δ∑
k=1

g
(
Pkδ − P(k−1)δ

)
=
∑

0<s≤t
g(∆Ps).

This is always finite.

Quadratic case: many econometric researchers in effect assume a
priori that this is infinity. This does not match the data or the
predictions from our model.
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{P; g}t = Σ(Bt ; g) + Zt(g), Bt , [0, b)× (0, t],

where the impact of the fleeting events is Zt(g)

Zt(g) = Σ(Ht ; g) + Σ(Gt ; g), Ht , [b, 1]× (0, t], Gt , (Ht ∪ A) \At .

Further,

E [{P; g}t ] = (2− b)t

∫ ∞
−∞

g(y)ν(dy) = E [{P; 1}t ]
∫∞
−∞ g(y)ν(dy)

‖ν‖
.
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Example: realized variance

The realized variance (ABDL (01), BNS(02)) is

RV (n) ,
n∑

k=1

(Pkδn − P(k−1)δn)2, δn ,
T

n
.

Assume that κ2(L1) <∞. Then

E
(
RV (n)

)
=

(
b + 2

leb (Aδn\A)

δn

)
Tκ2 (L1) + b2T δnκ

2
1 (L1) .

For n = 1, as T →∞,

E
(
RV (1)

)
=

(
b + 2

leb (AT\A)

T

)
Tκ2 (L1)+b2T 2κ21 (L1) ≈ E

(
L (BT )2

)
.

For n→∞ and a fixed T ,

lim
n→∞

E
(
RV (n)

)
= (2− b)Tκ2 (L1) .

The QV is highly distorted by the fleeting component.
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Model of trawl function

Example

A class of squashed monotonic trawls is the superposition model

d(s) = b + (1− b)

∫ ∞
0

eλsπ(dλ), s ≤ 0, (5)

where π is an arbitrary probability measure on (0,∞). Then

leb(A) = (1−b)

∫ ∞
0

1

λ
π(dλ), leb(At\A) = (1−b)

∫ ∞
0

1− e−tλ

λ
π(dλ).

Special cases

single atom (exponential trawl function)

gamma (allow long memory for some parameters)

GIG (which includes inverse gamma)
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Empirical analysis using moment based estimates

In this Subsection, we employ the moment-based estimation for empirical
analysis. Four data set are studied here:

1 the Ten-Year US Treasury Note future contract delivered in June
2010 (TNC1006) during March 22, 2010;

2 the International Monetary Market (IMM) Euro-Dollar Foreign
Exchange (EUC1006) future contract during March 22, 2010;

3 TNC1006 during May 7, 2010;

4 EUC1006 during May 7, 2010. Figure From now on, we will no longer
mention the delivery date of each data set and the year 2010.

25 / 39



All of these four data sets use all the trading activity from 00:00 to 21:00.
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Large time scale: trace plots look like a continuous diffusion process. At a
much smaller time scale (within one hour).
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See several multiple ticks jump in the two EUC data sets.
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Summary statistics

Table summarizes some basic features of these four data set.
(in ticks):

Contract, Day Tick Size ($) # Jumps SD. Min. Max.

TNC, 03/22 1/64 3, 249 1.000 −1 1

EUC, 03/22 0.0001 13, 943 1.012 −2 3

TNC, 05/07 1/64 12, 849 1.035 −13 15

EUC, 05/07 0.0001 55, 379 1.077 −13 15
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Estimation: exponential trawl

Here d(s) = b + (1− b) exp(λs), ν+ ,
∑∞

y=1 ν (y) and

ν− ,
∑−1

y=−∞ ν (y).

Core results:

Contract, Day b ν+ ν− λ

TNC, 03/22 0.396 0.014 0.013 0.68

EUC, 03/22 0.654 0.069 0.068 2.47

TNC, 05/07 0.574 0.059 0.060 3.88

EUC, 05/07 0.694 0.282 0.279 4.03

TNC, 03/22 estimate 40% of price moves are permanent.
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Estimation: sup GIG trawl

Core results: Then

π (dλ) =
(γ/δ)ν

2Kν (γδ)
λν−1e−(γ2λ+δ2λ−1)/2, γ, δ > 0, ν ∈ R,

where Kν (x) is the modified Bessel function of the second kind.
Implies

d (s) =

(
1− 2s

γ2

)−ν/2 Kν (γδ√1− 2s/γ2
)

Kν (γδ)
.

Contract, Day b ν+ ν− γ δ ν

TNC, 03/22 0.186 0.013 0.011 0 0.453 -0.604

EUC, 03/22 0.528 0.063 0.062 0 0.604 -0.453

TNC, 05/07 0.440 0.054 0.055 0 0.583 -0.332

EUC, 05/07 0.648 0.272 0.269 0 1.525 -0.741
GIG is collapsing to inverse gamma trawel.
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Scaled variogram
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Scaled variogram — log time
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Autocorrelation at 0.1sec lags
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Autocorrelation at 1 second lags
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Autocorrelation at 10 second lags

Cor
{(

P(k+1)δ − Pkδ

)
, (Pδ − P0)

}

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

5 10 15 20 25

−
0.

25
−

0.
15

−
0.

05
0.

05 TNC, 03/22

Lag (k)

A
ut

oc
or

re
la

tio
n

Exp trawl
Gamma trawl
supGIG trawl

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

5 10 15 20 25

−
0.

08
−

0.
04

0.
00

EUC, 03/22

Lag (k)

A
ut

oc
or

re
la

tio
n

Exp trawl
Gamma trawl
supGIG trawl

●

●
●

● ●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

5 10 15 20 25

−
0.

10
−

0.
05

0.
00

TNC, 05/07

Lag (k)

A
ut

oc
or

re
la

tio
n

Exp trawl
Gamma trawl
supGIG trawl

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

5 10 15 20 25

−
0.

03
−

0.
01

0.
01

0.
03

EUC, 05/07

Lag (k)

A
ut

oc
or

re
la

tio
n

Exp trawl
Gamma trawl
supGIG trawl

Lag ( 10 sec.)

A
ut

oc
or

re
la

tio
n

ACF is non-monotonic. Consistent with the models.
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Log-probability at 0.1 seconds

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
6

−
5

−
4

−
3

−
2

−
1

0

TNC, 03/22

Ticks

lo
g−

de
ns

ity

Exp trawl
Gamma trawl

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
12

−
8

−
6

−
4

−
2

0

EUC, 03/22

Ticks

lo
g−

de
ns

ity

Exp trawl
Gamma trawl

●

●
●

●

●

●

●

●

● ● ● ●

−6 −4 −2 0 2 4 6

−
14

−
10

−
6

−
4

−
2

0

TNC, 05/07

Ticks

lo
g−

de
ns

ity

Exp trawl
Gamma trawl

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

−15 −10 −5 0 5 10 15

−
14

−
10

−
6

−
4

−
2

0

EUC, 05/07

Ticks

lo
g−

de
ns

ity

Exp trawl
Gamma trawl

Ticks

lo
g−

de
ns

ity

Circles: raw log histogram
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Log-probability at 1 seconds
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Log-probability at 10 seconds
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Circles: raw log histogram
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Conclusions

For high frequency data, discreteness is dominant.

build models for the data we have in our hand
model structure determined by the specifics of the problem.

Continuous time, non-stationary discrete model

Flexible memory, analytically tractable & easy to simulate

Moment based estimation is easy.

Nice cumulant functions (stochastic discount factors).

Extensions being worked on

Understanding impotence of robust measures (kernels, 2 scale,
preaveraging, etc) and what to do (with Mikkel Bennedsen)
Filtering (is a new price arrival fleeting or permanent)
Multi case (random delay Lévy process) to capture Epps effects.
Allow parameters of the model to wobble through time

Conditioning on other information, e.g. order book
Stochastic processes, e.g. stochastic volatility
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