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Introduction

Let ξ be a R-valued Lévy process killed at an independent exponential
time of parameter q ≥ 0. −∞ is the cemetery state and

ζ = inf{t > 0 : ξt = −∞}.

The law of ξ is characterised by

IE (exp{iλξt}, t < ζ) = exp{−tΨ(λ)}, t ≥ 0, λ ∈ R,

where Ψ : R→ C, is the characteristic exponent and has the form

Ψ(λ) = q + iaλ+
1
2
σ2λ2 +

∫
R \{0}

(
1− eiλx + iλx

)
Π(dx), λ ∈ R,

with q ≥ 0, a ∈ R, σ ∈ R, and Π is a measure on R \{0} such that∫
R \{0}

1 ∧ x2Π(dx) <∞.

(q, a, σ2,Π) is the characteristic quadruple.



3/ 29

Exponential functionals of Lévy and Markov additive processes

Introduction

We assume that either
q > 0

or
q = 0 and lim

t→∞
ξt = −∞, P−a.s.

Under these conditions the exponential functional associated to ξ, is
finite a.s.

I :=
∫ ∞

0

eξsds <∞, P−a.s.

The strong law of large numbers implies that, if q = 0, ξ grows at least
linearly, and hence the above are NASC for I to be finite a.s.
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Introduction

Applications to:
• Self-similar Markov processes;
• Brownian diffusions in random environment;
• Mathematical finance, computation of price of asian options;
• Self-similar fragmentations and coalescence;
• Composition structures.

There is just a small number of processes for which the law of I is
explicitly known.
Ignited by a seminal paper by Carmona, Petit and Yor in 1997 the
obtainment of distributional properties of exponential functionals has
generated a big research activity in the last two decades.
We will start by reviewing some general results available for its study.
Then we will introduce a new convolution equation for the density of I
and explain several consequences.
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Two key results by Carmona, Petit and Yor and some consequences

An integro-differential equation
Carmona, Petit and Yor, 1997, established that if ξ has an infinite
lifetime, its jump part has bounded variation,∫
x>1

xΠ
+

(x)dx <∞, with Π
+

(x) = Π(x,∞), Π
−

(x) = Π(−∞,−x),

for x > 0, and E(|ξ1|) <∞, then the law of I has a density, k, which is
the unique probability density function that solves the equation

−σ
2

2
d

dx

(
x2k(x)

)
+
((

σ2

2
+ a

)
x+ 1

)
k(x)

=
∫ ∞
x

Π
−

(log(u/x))k(u)du−
∫ x

0

Π
+

(log(x/u))k(u)du, x > 0.

Extensions of this equation to general Lévy processes and to exponential
functionals of the form

∫∞
0

exp{ξs}dηs, with (ξ, η) a Lévy processes,
have been obtained in papers by Behme, Lindner, Kuznetsov, Pardo,
Patie, Savov...
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Two key results by Carmona, Petit and Yor and some consequences

In general, it is difficult to extract from this integro-differential equation
an explicit formula for the density. Nevertheless it has been useful in
determining the behaviour at zero of the distribution of I, as well as that
of its tail distribution, in the case where ξ is the negative of a
subordinator, see Pardo, R. and Van Schaik 2012 and Haas and R. 2012,
respectively.



7/ 29

Exponential functionals of Lévy and Markov additive processes

Two key results by Carmona, Petit and Yor and some consequences

Moments
Carmona, Petit and Yor in 1997, Maulik and Zwart in 2006,....,
established a recurrence formula for the moments of I:

E(Iβ) =
β

Ψ(−iβ)
E(Iβ−1),

for β ∈ C such that <(β) > 0 and | IE(eβξ11{1<ζ})| < 1.

This formula has proven very useful to write the Mellin transform of
I as generalised Weierstrass pruducts, see Maulik and Zwart (2006)
and Patie and Savov (2013), and also to obtain series expansions for
the density of I for special families of Lévy processes, Patie (2009)
and Kuznetsov and Pardo (2013).
It also allows to infer interesting factorisations that we will next
describe.
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Exponential functionals of subordinators and its residual

The moment formula in the non-increasing case
If ξ = −σ, with σ a subordinator (non-decreasing paths),
φ(λ) = − log IE(exp{−λσ1}1{1<ζ}),

IE(In) =
n∏
k=1

k

φ(k)
=

n!∏n
k=1 φ(k)

, n ≥ 0,

and IE(exp{βI}) <∞, for β < φ(∞).

The law of I is characterised by its entire moments.
Since n! = IE (en) , with e is an exponential r.v. one may wonder if
there is a r.v., say R such that IE(Rn) =

∏n
k=1 φ(k), for all n. In

the positive case, if I and R are independent then

I ×R Law= e.
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Residual exponential functional

The residual exponential functional

Proposition (Bertoin and Yor (2001))

Assume that ξ = −σ, with σ a subordinator and take I =
∫ ζ
0
e−σsds.

There exists a r.v. R determined by its entire moments and

IE(Rλ) = φ(λ) IE(Rλ−1), λ > 0.

The identity holds in the limit sense if λ = 0. In particular,

IE(Rn) =
n∏
k=1

φ(k), n ∈ N .

If R and I are taken independent then

IR
Law= e1 ∼ exp{1}.

The random variable R is called the residual exponential functional
associated to the subordinator σ.
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Residual exponential functional

Theorem (Hirsch and Yor (2011), Arista & R. (2015))

Assume ξ = −σ, and σ is a subordinator. Let R be the residual
exponential functional associated to the subordinator σ, and

V (dy) = IE

(∫ ζ

0

dt1{σt∈dy}

)
, y ≥ 0.

Assume φ(0) > 0, that is IP(t < ζ) = exp{−φ(0)t}, t ≥ 0. The equality
of measures

1
t

IP(R ∈ dt) =
∫

[0,∞)

V (dy) IP(e−yR ∈ dt), on (0,∞),

holds. In particular IE
(

1
R

)
= φ(0) and the random variable Jσ defined by

IE (f(Jσ)) = φ(0) IE
(
f

(
1
R

)
1
R

)
,

satisfies the relation Jσ
Law= eν × 1

R , with IP(ν ∈ dy) = φ(0)V (dy).



11/ 29

Exponential functionals of Lévy and Markov additive processes

A Wiener-Hopf factorization for exponential functionals

A striking factorisation
Pardo, Patie and Savov in three papers in 2012-2013 used the recurrence
of moments to show that

I
Law=
∫ ∞

0

exp{−Ĥs}ds× JH ,

where the processes (Ĥs, s ≥ 0) and (Hs, s ≥ 0) are assumed
independent and are copies of the so-called downward and upward ladder
height process of ξ, respectively. −Ĥ has the same image as the infimum
process of ξ. H has the same image as the supremum process of ξ.
Where RH is the unique r.v. such that

RH ×
∫ ∞

0

exp{−Hs}ds
Law= e1,

and

IE (f(JH)) = φH(0) IE
(
f

(
1
RH

)
1
RH

)
,
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A Wiener-Hopf factorization for exponential functionals

The Wiener-Hopf factorisation implies that the characteristic exponent of
ξ, say Ψ, can be written

1
Ψ(λ)

=
1

κ(q,−iλ)
1

κ̂(q, iλ)
, λ ∈ R,

with κ(q, ·) and κ̂(q, ·) are the Laplace exponent of H and Ĥ. This
plugged into the moment formula

E(Iβ) =
β

Ψ(−iβ)
E(Iβ−1) =

1
κ(q,−β)

β

κ̂(q, β)
E(Iβ−1),

E
(
IβbH
)

=
β

κ̂(q, β)
E
(
Iβ−1bH

)
,

with I bH =
∫ ζ
0

exp{−Ĥs}ds, allowed Pardo, Patie and Savov (2012) to
infer that I bH should be involved in a factorisation of I. The identification
of the factor JH was noticed in the paper by Patie and Savov (2013).
The proof in the general case is based in an expression of the Mellin
transform of I in infinite products.
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A Wiener-Hopf factorization for exponential functionals

Aims
Have a better understanding of how the Wiener-Hopf factorisation
gives rise to the factorisation

I
Law=
∫ ∞

0

exp{−Ĥs}ds× JH .

Establish other proofs that could lead to extensions to processes
with a similar estructure to Lévy processes, namely Markov additive
process.



14/ 29

Exponential functionals of Lévy and Markov additive processes

A new equation or Implicit renewal theory for I.

A measure version of the CPY moment formula

Theorem
Let U(dy) be the renewal or potential measure of ξ,

U(dy) = E

(∫ ζ

0

dt1{ξt∈dy}

)
, y ∈ R .

The law of I has a density k, and it is the unique probability density
function on (0,∞) that solves the equation∫ ∞

t

k(s)ds =
∫

R
k(te−y)U(dy), on (0,∞).

In the particular case where ξ is the negative of a subordinator this
theorem has been established by Pardo, R. and Van Schaik (2012). The
proof in the general case is rather simple. This existence of the density
was proved by Bertoin, Lindner and Maller in 2008.
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A new equation or Implicit renewal theory for I.

The proof uses three facts

IE(1− e−λI) = λ

∫ ∞
0

e−λt IP(I > t)dt.

the pathwise identity

1− exp{−λ
∫ ζ

0

eξsds} = λ

∫ ζ

0

dteξt exp

{
−λ
∫ ζ

t

eξsds

}

= λ

∫ ζ

0

dteξt exp

{
−λeξt

∫ (ζ−t)

0

eξs+s−ξtds

}
.

the property of independent and stationary increments implies that
the r.v.

Ĩ :=
∫ (ζ−t)

0

eξs+s−ξtds,

on the event where t < ζ, has the same law as I and it is
independent of (ξu, u ≤ t).
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A new equation or Implicit renewal theory for I.

Applications
The equation∫ ∞

t

k(s)ds =
∫

R
k(te−y)U(dy), on (0,∞).

Can be applied to:
give a quick proof of the Carmona et al. recurrence formula for the
moment of I (just take the Mellin transform);
derive a general version of the integro-differential formula of
Carmona et al.
give an elementary proof of the factorisation formula of Pardo, Patie
and Savov;
obtain asymptotic estimates for the distribution and tail distribution
of I using renewal theoretic arguments.

Moreover, the same proof allows to extend this formula for Markov
additive processes (MAPs) and traces the path for extending the above
results for MAPs.
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Some fluctuation theory of Lévy processes.

Let H, and Ĥ, be the upward, resp. downward, ladder height processes
of ξ.

The so Wiener-Hopf factorisation in space implies that U is the
negative convolution of the potentials of H, and Ĥ,

V +(dy) = E
(∫ ∞

0

dt1{Ht∈dy}

)
, V −(dy) = E

(∫ ∞
0

dt1{ bHt∈dy}
)
,

∫
R
U(dy)f(y) = K

∫
[0,∞)

∫
[0,∞)

V +(du)V −(dv)f(u− v),

for every f : R→ R test function, and some constant 0 < K <∞.
In our setting H has finite lifetime, the measure V + is a finite
measure and the overall supremum of ξ, S∞ = sup0≤s<ζ ξs, has law
IP(S∞ ∈ dy) = κV +(dy), y ≥ 0.
If ξ has no negative jumps, Π(−∞, 0) = 0, V −(dv) = dv.

If ξ has no positive jumps Π(0,∞) = 0, V +(du) = e−θudu, with θ
s.t. IE(eθξ1 , 1 < ζ) = 1.
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Consequences of the Wiener-Hopf

A proof of the identity by Pardo, Patie and Savov
We know I =

∫∞
0

exp{ξs}ds

IP(I > t) =
∫

[0,∞)

V +(da)
∫

[0,∞)

V −(db)kI(teb−a), t > 0.

Let Î bH =
∫∞
0

exp{−Ĥs}ds, the equation for this r.v. reads

IP(I bH > t) =
∫

[0,∞)

V −(du)kIcH (teu).

Let ÎH =
∫∞
0

exp{−Hs}ds, and RH the associated residual

exponential functional, i.e. the unique r.v. such that ÎHRH
Law= e1 .

We saw that
1
t

IP(RH ∈ dt) =
∫

[0,∞)

V +(dy) IP(e−yRH ∈ dt) and

IP(supt≥0 ξt ∈ dy) = κV +(dy).
Using these facts, the identity in law of Pardo, Patie and Savov

I
Law= Î bHJH Law= eS∞

Î bH
RH

,

is obtained easily. IE (f(JH)) =
1

IE(R−1
H )

IE
(
f

(
1
RH

)
1
RH

)
.
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Applications

The identity in law I
Law= eS∞ ×

Î bH
RH

reinforces the conjecture

P(log(I) > t) ∼ cP(sup
s>0

ξs > t), t→∞,

for some constant c ∈ (0,∞).

Theorem
Assume ξ is no-monotone. The law of I has at least a power law
(Pareto) tail:

lim inf
t→∞

log IP(I > t)
log t

> −∞.

For α ≥ 0, the following are equivalent
t 7→ IP(I > t) is regularly varying at infinity with index −α,
t 7→ IP(eS∞ > t) is regularly varying at infinity with index −α.

In this case IP(I > t) ∼ IE
(
ÎαbHR−αH

)
IP(eS∞ > t), t→∞.

This is a consequence of results by Breiman (1965), Jacobsen, Mikosch,
Rosinski, and Samorodnitsky (2009), and Goldie and Grübel (2000).
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Applications

The identity I Law= Î bHJH leads to

Theorem
Assume that ξ has some negative jumps. For α ≥ 0, the following are
equivalent

the function t 7→ IP(I ≤ t) is regularly varying at 0 with index α

the function t 7→ IP(Î bH ≤ t) is regularly varying at 0 with index α.
In this case

IP(I ≤ t) ∼ IE
(
Rα−1
H

)
IP(Î bH ≤ t), t→ 0.

According to Van Schaik, Pardo, R. 2012 a sufficient condition is that the
left tail Lévy measure of ξ is in the class Lα

lim
x→∞

Π
−

(x+ y)

Π
−

(x)
= exp{−αy}, y ∈ R,

with Π
−

(x) = Π(−∞,−x).
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Applications

Estimates using the renewal theorem

The potential measure U(dy) is a renewal measure in the usual sense
because

U(dy) =
∑
n≥1

F ∗n(dy), F (dy) := IP(ξe1 ∈ dy),

with e1 an independent exponential r.v.
The new equation reads

IP(I > et) =
∫

R
k(et−y)U(dy), t ∈ R .

And thus one can use the artillery from renewal theory to study both
t 7→ IP(I > et) and t 7→ IP(I ≤ et).
Smith’s renewal theorem ensures that when IE(ξ1) = m < 0, then∫

R f(t− y)U(dy) −−−−→
t→−∞

∫
R f(s) ds|m| , for directly Riemann Integrable

functions f . Stone’s decomposition gives information about the rate of
convergence.
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Applications

Estimates using the renewal theorem

Using renewal theoretic arguments we can obtain results of the type
Assume that ξ satisfies Cramér’s condition:

∃γ > 0, IE(eγξ1) = 1, IE(ξm1 e
γξ1) <∞,

for some m ≥ 1. Then,∣∣∣∣tγ IP (I > t)− 1
IE(ξ1eγξ1)

IE(Iγ−1)
∣∣∣∣ = O

(
1

logm−1(t)

)
.

If ξ is spectrally negative the order is O(1/t).
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Extension to MAP

Markov additive processes (MAPs)
E is a finite state space
(J(t))t≥0 is a continuous-time, irreducible Markov chain on E
the process (ξ, J) in R×E is called a Markov additive process
(MAP) with probabilities IPx,i, x ∈ R, i ∈ E, if, for any i ∈ E,
s, t ≥ 0: Given {J(t) = i},

(ξ(t+ s)− ξ(t), J(t+ s)) ⊥ {(ξ(u), J(u)) : u ≤ t},
(ξ(t+ s)− ξ(t), J(t+ s))

d
= (ξ(s), J(s)) with (ξ(0), J(0)) = (0, i).
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Extension to MAP

Pathwise description of a MAP
The pair (ξ, J) is a Markov additive process if and only if, for each
i, j ∈ E,

there exist a sequence of iid Lévy processes (ξni )n≥0

and a sequence of iid random variables (Unij)n≥0, independent of the
chain J ,
such that if T0 = 0 and (Tn)n≥1 are the jump times of J ,

the process ξ has the representation

ξ(t) = 1{n>0}(ξ(Tn−) + UnJ(Tn−),J(Tn)) + ξnJ(Tn)(t− Tn),

for t ∈ [Tn, Tn+1), n ≥ 0.
We are interested by the exponential functional of ξ∫ ∞

0

exp{ξs}ds.
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Extension to MAP

Characteristics of a MAP
Denote the transition rate matrix of the chain J by Q = (qij)i,j∈E .
For each i ∈ E, the Laplace exponent of the Lévy process ξi will be
written ψi (when it exists).
For each pair of i, j ∈ E, define the Laplace transform
Gij(z) = E(ezUij ) of the jump distribution Uij (when it exists).
Write G(z) for the N ×N matrix whose (i, j)th element is Gij(z).
Let

Ψ(z) = diag(ψ1(z), · · · , ψN (z))−Q ◦G(z),

(when it exists), where ◦ indicates elementwise multiplication.
The matrix exponent of the MAP (ξ, J) is given by

E0,i(ezξ(t); J(t) = j) =
(
e−Ψ(z)t

)
i,j
, for i, j ∈ E,

(when it exists).
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Extension to MAP

Lamperti-Kiu transform
Take J to be irreducible on E = {1,−1}.

Let
Xt = |x|eξ(τ(|x|

−αt))J(τ(|x|−αt)) 0 ≤ t < T0,

where

τ(t) = inf
{
s > 0 :

∫ s

0

exp(αξ(u))du > t

}
and

T0 = |x|−α
∫ ∞

0

eαξ(u)du.

Then Xt is a real-valued self-similar Markov process in the sense
that the law of (cXtc−α : t ≥ 0) under IPx is IPcx.
The converse (within the special class of rssMps that die at its first
hitting time of zero) is also true.
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that the law of (cXtc−α : t ≥ 0) under IPx is IPcx.

The converse (within the special class of rssMps that die at its first
hitting time of zero) is also true.
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Extension to MAP

Theorem
Defining

∫∞
0

eξ(u)du with ξ a Markov additive Lévy process as before, its
probability distribution satisfies the equality of measures

dt IPi(I > t) =
∑
j∈E

∫
R
Uij(dy)ey IPj(eyI ∈ dt), i ∈ E

Uij(dy) = IEξ0=0,J(0)=i

(∫ ∞
0

dt1{ξt∈dy,Jt=j}

)
.

Further, if the probability density of I,

ki(t)dt = IPi(I ∈ dt),

exists for all t > 0, and i ∈ E, then we have

IPi(I > t) =
∑
j∈E

∫
R
Uij(dy)kj(te−y).

The (vectorial) recurrence relation holds IE(Iz) = zΨ−1(−iz) IE(Iz−1).
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Extension to MAP

Proposition

Let I be the exponential functional of the MAP ξ, and assume that ξ
satisfies a Cramér’s type condition with index θ > 0, we have that

Pi(I > t) ∼ νit−θ
∑
k∈E

Ek(Iθ−1)
αµθ

, as t→∞,

where µθ = E(θ)

π(θ)ξ1.

This results is proved as a consequence of the Markov renewal theorem.
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Extension to MAP

In a work in progress with Andreas Kyprianou and Weerapat Satitkanitkul
we are studying the questions

What is the analogue of the residual exponential functional R?
Is there a factorisation for I in the MAP case?

Thank you very much for your attention!
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