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High Frequency Financial Data
Intra-day data
Ultra high frequency data (UHF)

transactions tick-by-tick, from TAQ, Reuters, etc
quotes - bid, ask - same sources
limit order books, harder to get but more information
stocks, bonds, futures, currencies, ...
low latency data

Main feature:
almost continuous observation,
has microstructure noise
observation times can be irregular, and asynchronous for
multivariate data

HF data can also be found in neuroscience, climate recordings,
wind measurements, turbulence, fish, ...
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Why are High Frequency Data Interesting?
Modern quantitative finance uses high frequency constructions in
stochastic processes:

to price assets, underlying and derivative
to construct trading strategies

The high frequency data are the empirical realization of the same
processes:

What was theory is now observable, testable
... and perhaps even improvable using the data

The data open a new angle on quantitative finance:

better estimates of parameters in models
better, more empirically based, models?
an opportunity to study rapid change in the market
a complement to cross-sectional data and to low frequency time
series data.
unification of econometrics, risk mgmt, and quantitative finance?
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The Standard High Frequency Setup
Yti intra day observables, Yti = Xti+microstructure
Xt: semimartingale which carries information about θt

θt: a spot parameter process, e.g. volatility, semi-variance,
leverage effect, high frequency β, etc.
A typical goal: to estimate integrated parameter process,

Θ(S,T] =
∫ T

S
θtdt

over some time period (a day, five minutes, etc)
popular example: when θt = σ2

t , Θ̂(S,T] is a variance estimator.
Integrals are also used when estimating the spot θ:

θ̂t =
1
h

Θ̂(t−h,t]
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Our question: Uncertainty of Θ̂(S,T]

This paper is not about developing an estimator Θ̂(S,T], but about the
uncertainty in Θ̂(S,T]. In other words,

Our goal is to estimate the asymptotic variance (AVAR) of Θ̂(S,T]

Estimating the AVAR (or s.e.) of Θ̂(S,T] is important,
to assess the precision of estimators in the form of confidence
intervals
to create feasible “statistics" for testing
to build forecasting models
to optimize tuning parameters in finite sample problems
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Example: which TSRV?
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Estimate AVAR (Θ̂) in High Frequency Setting
The usual way that leads to AVAR :

(1) An estimator Θ̂n

(2) Asymptotics:

nα(Θ̂n −Θ) L→ N(0,AVAR) stably, for some α > 0

(3) A feasible estimator for AVAR .
But, (2) is only available for some estimators. (3) is a rare reality.

AVAR (Θ̂) typically is harder to estimate than Θ itself, such as∫
σ4

t dt and the volatility of volatility [σ2, σ2] when θt = σ2
t under

microstructure – implementation difficulty in (3)

need AVAR for semivariance, high frequency beta, rank of the
volatility matrix, volatility of volatility, under microstructure –
analytical difficulty in (2)

extra challenge in asynchronicity and irregular sampling cases.
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An alternative approach to estimating AVAR
We propose an alternative approach: Observed Asymptotic Variance
(Observed AVAR )

Analogy: estimated expected information versus observed
information
Allows us to bypass the analytical form of theoretical AVAR

Estimate both AVAR , and at the same time, the volatility of
parameter process θ
θ can be any semi-martingale process – continuous or not – so
long as its integrals can be estimated.
Deals with edge effects – common in multivariate data, multi-scale
or multi-power estimation.
Antecedents: Barndorff-Nielsen and Shephard, Kalnina and
Linton, Gonçalves and Meddahi
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Observed AVAR
Assume that θ is a semimartingale. Similar results may extend to
such processes as fractional Brownian motion.
B: # of time periods (five minutes, say) with (Ti−1,Ti] from T0 = 0
to TB = T
We have at hand estimator Θ̂i of Θi =

∫ Ti
Ti−1

θtdt

Intuition behind Observed AVAR: compare the estimators Θ̂ in
adjacent blocks

Θ̂i+1 − Θ̂i = (Θ̂i+1 −Θi+1)︸ ︷︷ ︸
est. error

+ (Θi+1 −Θi)︸ ︷︷ ︸
parameter behavior

− (Θ̂i −Θi)︸ ︷︷ ︸
est. error
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Observed AVAR: A First Order Description
The apparent q.v. of Θt: [note missing nα]∑

i

(Θ̂i+1 − Θ̂i)2 = 2
∑

i

(Θ̂i −Θi)2 +
∑

i

(Θi+1 −Θi)2

+ martingale and negligible terms

= (2
∑

i

AVAR(Θ̂i −Θi)︸ ︷︷ ︸
cumulative AVAR

+ q.v. of Θi︸ ︷︷ ︸
parameter behavior

)(1 + op(1)),

SRC, when maxi(Ti+1 − Ti) goes to zero
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Behavior of
∑

i(Θ̂i+1 − Θ̂i)
2, Under Continuity of θt

Apparent Quadratic Variation:
∑

i(Θ̂i+1 − Θ̂i)2

∑
i

(Θ̂i+1 − Θ̂i)2 =

(
2
∑

i

AVAR(Θ̂i −Θi) + q.v. of Θi

)
(1 + op(1))

If ∆T = Ti+1 − Ti is independent of i, and if θt is continuous, we
have an Integral-to-Spot Relation

(∆T)−2
∑

i

(Θi+1 −Θi)2 p→ 2
3

([θ, θ]T − [θ, θ]0) as ∆T → 0.

Approximating spot behavior with averaging the integral information
induces bias. 2

3 reflects such bias.
Also, see 1

2 bias in leverage estimation in Mykland and Zhang
(2009), Wang and M. (2014).
Related to smoothing bias in Ait-Sahalia, Fan, Li (2013).
Related to pre-averaging literature on volatility estimation, with X
replacing θ.
In the paper, the condition on θ being continuous is dropped.
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Estimating Cumulative Asymptotic Variance
One scale estimator:

∑
i

(Θ̂i+1 − Θ̂i)2 =

(
2
∑

i

AVAR(Θ̂i −Θi) +
2
3

(∆T)2 ([θ, θ]T − [θ, θ]0)

)
× (1 + op(1))

Subsampling and averaging every two time period:
1

2

X
i

“
Θ̂(Ti,Ti+2] − Θ̂(Ti−2,Ti]

”2
≈
X

i

AVAR(Θ̂(Ti,Ti+2] − Θ(Ti,Ti+2]) +
2

3
(2∆T)

2
([θ, θ]T − [θ, θ]0)

≈ 2
X

i

AVAR(Θ̂i − Θi) +
2

3
(2∆T)

2
([θ, θ]T − [θ, θ]0)

In combination, a new two scales estimator, now for AVAR :

TSAVAR =
2
3

∑
i

(Θ̂i+1 − Θ̂i)2 − 1
12

∑
i

(
Θ̂(Ti,Ti+2] − Θ̂(Ti−2,Ti]

)2

=

(∑
i

AVAR(Θ̂i −Θi)

)
(1 + op(1)).
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Empirical Decomposition of Apparent Quadratic
Variation

Estimating the Volatility of θ:
A different linear combination, a different two scales estimator:

̂[θ, θ]T =
1

(∆T)2

(
1
4

∑
i

(
Θ̂(Ti,Ti+2] − Θ̂(Ti−2,Ti]

)2
− 1

2

∑
i

(Θ̂i+1 − Θ̂i)2

)
p→[θ, θ]T

Earlier work on volatility of σ: Vetter; M. Shephard and Sheppard
Theoretical and empirical decomposition of apparent quadratic
variation:∑

i

(Θ̂i+1 − Θ̂i)2 =
(

2× AVAR(Θ̂−Θ) +
2
3

(∆T)2 ([θ, θ]T − [θ, θ]0)
)

× (1 + op(1))

= 2× TSAVAR +
2
3

(∆T)2 ̂[θ, θ]T
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The Things that go Bump in the Night
We needed

Convergence of the quadratic variation of big theta:

(∆T)−2
∑

i

(Θi+1 −Θi)2 p→ 2
3

([θ, θ]T − [θ, θ]0) as ∆T → 0

This can fail due to jumps in θ.
Additivity of the asymptotic variances:

AVAR(Θ̂−Θ) =

(∑
i

AVAR(Θ̂i −Θi)

)
(1 + op(1))

This can fail due to Edge effects
There is a way out of both, by going to multiple sampling scales
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Resolution for the Process θ

Assumption

θ is a semi-martingale

A general Integral-to-Spot Device:

Theorem
Under our assumption, if Kn →∞ and δ = K∆T → 0 as ∆T → 0,

δ−2 1
K

Bn−Kn∑
i=Kn

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2 p→ 2

3
([θ, θ]T − − [θ, θ]0)

Result for finite K in the paper
Robustness to ∆T: ∆T can be arbitrarily small for given δ (integral
form in limit), then δ → 0
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The Statistical Setup
Recall that if S < T ∈ [0, T ], we set

Θ(S,T] =
∫ T

S
θtdt

The typical situation: there is a semimartingale MT and edge
effects eS and ẽT , so that

Θ̂(S,T] −Θ(S,T] = MT −MS + ẽT − eS

The edge effect has a component eS relating to phasing in the
estimator at the beginning of the time interval, and component ẽT

for the phasing out at T.
Caveat: All of Θ̂(S,T], MT , eS, and ẽT will depend on the number of
observations n. For the most part, n is omitted from our notation to
avoid an excessive number of subscripts, but we may sometimes
write Mn,T etc.

19 / 38



The standard asymptotic result in the literature

Assumption
There is a sigma-field F , representing the underlying processes,
including Xt and θt, but not necessarily any microstructure noise.
There is a convergence rate nα so that

Ln,t = nαMn,t
L→Lt as process, stably in law w.r.t. F , while

∀S,T : nαen,S
p→ 0 and nαẽn,T

p→ 0,

Lt is a local martingale, conditionally Gaussian given F
In addition, it is usuallly required to show results that

sup
n

E sup
0≤t≤T

|∆Ln,t| <∞, or more generally Ln,t is P-UT

Can handle “large” edge effects, Op(n−α) but not op(n−α), but more
elaborate development
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Negligible Edge Effects

Theorem
Under the Assumptions, with the additional condition that average(e2

Ti
) and

average(ẽ2
Ti

) = op(K∆Tn−2α). Then, as ∆T → 0,∑
i

(Θ̂i −Θi)2 =
∑

i

AVAR (Θ̂i −Θi) + op(n−2α)

= AVAR(Θ̂−Θ) + op(n−2α) = n−2α ([L,L]T − [L,L]0) + op(n−2α)

Also, if ∆T = o(n−α), then with δ = K∆T → 0,

QVK(Θ̂) = 2[Mn,Mn]T + δ2
(

2
3
− 1

3K

)
[θ, θ]T −

+ op(δ2) + op(n−2α),

TSAVAR = AVAR(Θ̂−Θ)(1 + op(1)) and̂[θ, θ]T p→ [θ, θ]T

Guidance: K∆T and n−α of same order, in which case need
average(e2

Ti
) and average(ẽ2

Ti
) = op(n−3α) (or go to “hard edge”)

If K∆T = o(n−α), then one scale enough for AVAR 21 / 38



Observed vs. Estimated Expected (tentative)
The estimate is, in fact, of the small sample quantity [Mn,Mn]T

You do not need to know the AVAR [L,L]T (convenient)
You are not taking aim at [L,L]T (you are not a priori subject to a
bad rate of convergence)
Lesson from likelihood theory: the best estimator of
(standard error)2 may not be the estimated AVAR (papers by Ole
Barndorff-Nielsen and others): observed information, r, r∗, etc
[Mn,Mn]T is a little like observed information (papers by Ole
Barndorff-Nielsen and others)
In the case of RV, [Mn,Mn]T reminds you of quarticity
(Barndorff-Nielsen and Shephard)
[Mn,Mn]T is the information in dual likelihood: in asymptotically
ergodic case (= when you don’t need stable convergence), higher
order properties of likelihood are mostly inherited
Another likelihood connection: When you do need stable
convergence: n−2α[Mn,Mn]T ≈ [L,L]T is the asymptotic variance if
and only if the underlying estimator is asymptotically efficient
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Observed vs. Estimated Expected: The Limits to
Inference

“parameter" α in Different Situations

Microstructure Absent Microstructure Present

daily spot daily spot

volatility
regression Op(n1/2) Op(n1/4) Op(n1/4) Op(n1/8)

ANOVA
leverage effect

vol of vol Op(n1/4) Op(n1/8) Op(n1/8) Op(n1/16)

Table: n is daily number of transactions/quotes
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Hard Edge
If the edge effects eT and ẽT are of the order Op(n−β), β > α∑

i

(Θ̂i −Θi)2 ≈ n−2α
∑

i

(
[Mn,Mn]Ti − [MnMn]Ti−1) + Var(ẽTi) + Var(eTi−1)

)
= n−2α[L,L]T + Op(Bnn−2β)

which is much bigger than

AVAR(Θ̂−Θ) = n−2α[L,L]T + Var(ẽ0) + Var(eT ) + op(n−2α)

The difference is of order Op(Bnn−2β) >> AVAR(Θ̂−Θ)
(potentially)
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A Way Out: Subsampling and Averaging
Consider K-averaged apparent q.v. of Θ
Decomposition into parameter behavior and estimation error

QVK =
1
K

B−K∑
i=K

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2 =

1
K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2

+
1
K

B−K∑
i=K

(
(Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ])− (Θ̂(Ti−K ,Ti] −Θ(Ti−K ,Ti])

)2

+
2
K

V1 + Op(n−2αK−1
n B1/2

n ) + op(n−2α),

where V1 does not depend on K

Variance made up of: Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ] = MTi+K −MTi + ε̃Ti+K − εTi

This part resembles a problem where multiscaling works – it’s similar to
estimating volatility under microstructure
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Characterization of the Hard Edge

Assumption

There is an integer J as a filtration (Gt), and decompositions
eTi = e′Ti

+ e′′Ti
and ẽTi = ẽ′Ti

+ ẽ′′Ti
:

(e′Ti
, ẽ′Ti

) are GTi+J -measurable
E(e′Ti

| GTi−J ) = E(ẽ′Ti
| GTi−J ) = 0∑

i(e′′Ti
)2 = op(Knn−2α) and

∑
i(ẽ′′Ti

)2 = op(Knn−2α)

For some β > α: supn E nβ
(
max0≤i≤Bn |e′n,Ti

|+ max |ẽ′n,Ti
|
)
< ∞

Can handle β = α, but more elaborate development
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Benchmark Examples
1 Realized volatility (microstructure absent)
2 Bipower variation (microstructure absent)
3 Two-scale realized volatility from pre-averaged data

(microstructure present)
4 Multi-scale and kernel realized volatility (microstructure present)
5 Co-volatility from asynchronous observations
6 Leverage effect (continuous case)
7 Block estimation of higher power variation (microstructure absent)
8 High frequency regression and ANOVA (microstructure absent)
9 Volatility of volatility (microstructure absent)
10 Nearest-neighbor truncation estimator (Andersen, Dobrev,

Schaumburg)
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Simulation
Case study: Moving Window Estimator of Integral of Volatility
Wish to estimate

Θ =
∫ T

0
σp

t dt.

Block length M:

Θ̂MW
n =

1
M

n−M∑
i=0

c−1
M,p

∣∣σ̂tn,i

∣∣p ,
where

σ̂2
tn,i =

1
∆tnM

M∑
j=1

∆X2
tn,i+j

,

and cM,p =
( 2

M

)p/2 Γ( p+M
2 )

Γ( M
2 ) .

In simulation: p = 4 (quarticity). Data from Heston model, observed
every second.
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Simulation
Correlations of TSAVAR for Moving Window Estimator of Quarticity,
and Theoretical AVAR

Θ̂n(M, ∆T) Θ̂n (10, 60) Θ̂n (20, 60) Θ̂n (30, 60) Θ̂n (100, 200) Θ̂n (200, 400) Θ̂n (300, 600) Theo. AVAR

Θ̂n (10, 60) 0.9876 0.9701 0.8149 0.7072 0.6161 0.9259

Θ̂n (20, 60) 0.9917 0.8162 0.7081 0.6166 0.9271

Θ̂n (30, 60) 0.8158 0.7083 0.6167 0.9274

Θ̂n (100, 200) 0.6851 0.5461 0.8439

Θ̂n (200, 400) 0.6730 0.7345

Θ̂n (300, 600) 0.6401

Theo. AVAR

M is the block length for the underlying estimator. ∆T is the length of
the basic block in the AVAR estimator. The fast and slow time scales of
the AVAR estimator are set as: J = 1 and K = 2.
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Representation of K Scale Quadratic Variation

Theorem

Under our assumptions, let K = Kn be a sequence of integers so that
J ≤ Kn ≤ Bn, with Kn∆T = O(n−α),Kn →∞ and ∆Tn = Kn/Bn → 0 as n→∞.
Then

QVK =
1
K

B−K∑
i=K

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2

=
2
3

(K∆T)2 ([θ, θ]T − − [θ, θ]0) + 2n−2α([L,L]T − [L,L]0)

+
1
K

V0 + MEE + op(n−2α) + Op(n−2αK−1
n (Bn − 2Kn + 1)1/2),

where V0 does not depend on Kn. The “Meta Edge Effect" (MEE) is zero
unless β = α
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Multiscale Estimators
Up to remainder terms:

QVK =
2
3

(K∆T)2 ([θ, θ]T − − [θ, θ]0)︸ ︷︷ ︸
variation of parameter

+ 2n−2α([L,L]T − [L,L]0)︸ ︷︷ ︸
main AVAR term

+
1
K

V0

Need to eliminate V0/K term (which is big, Op(n−αB1/2
n ))

Need to separate red and blue terms
Solution: m scales: J ≤ K1 < K2 < · · · < Km where Kl = Kn,l

Multi-scale estimator:
MSQV =

∑m
l=1 γlQVKl , where γl = γn,l

To eliminate V0/K term, impose

m∑
l=1

γl

Kl
= 0 (1)
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Theorem

Under our assumptions, let m be given. Assume (1), and also

Kn,m∆T = O(n−α),Kn,m →∞ as n→∞.

Assume that
∑

Kl bounded |γn,l| = o(1). If γn =
∑m

l=1 γn,l, then

MSQV =
2
3

m∑
l=1

γn,lK2
n,l(∆T)2 ([θ, θ]T − − [θ, θ]0)

+ γn
{

2n−2α([L,L]T − [L,L]0) + MEE0
}

+ op(max
l
|γl|n−2α) + Op

(
n−2αE1/2

n

)
,

where

En =
m∑

l=1

(
γn,l

Kn,l

)2

(Bn − 2Kn,l + 1).
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Consistent Estimation of Asymptotic Variance
From the theorem, estimate AVAR(Θ̂n) by further requiring

m∑
l=1

γn,l =
1
2

and
m∑

l=1

γn,lK2
n,l = 0, (2)

and by adjusting the edge effect. We thus get an estimator

ÂVAR(Θ̂n) = MSQV +
1
2

ÂMEE.

Theorem

Assume the conditions of the Multiscale Theorem, and also that (2) is
satisfied. Also suppose that ÂMEE is formed as described, that
maxl |γl| = O(1) and En = o(1). Then

ÂVAR(Θ̂n) = AVAR(Θ̂n) (1 + op(1))

This follows from previous Theorem since AVAR(Θ̂n) = Op(n−2α)
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Feasible Central Limit Theorem
Recall that given the constraints on weights γl in multiscale
construction:

m∑
l=1

γl

Kl
= 0,

m∑
l=1

γn,l =
1
2

and
m∑

l=1

γn,lK2
n,l = 0,

and by adjusting the meta edge effect. The observed AVAR is

ÂVAR(Θ̂n) = MSQV +
1
2

ÂMEE.

Theorem
(FEASIBLE ESTIMATION.) Assume the conditions of precious theorem,
and also that (LT ,R0, R̃T ) is conditionally Gaussian given F . Then

Θ̂n −Θ

ÂVAR
1/2
n

L→ N(0, 1) stably in law. (3)
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Two Implementations
Using exactly three scales (m = 3):
In this case, the three γn,l are determined by the three linear
equations (1) and (2), the solution being

γn,1 = − 1
vn

Kn,1(K3
n,3 − K3

n,2),

γn,2 =
1
vn

Kn,2(K3
n,3 − K3

n,1), and

γn,3 = − 1
vn

Kn,3(K3
n,2 − K3

n,1), where

vn = 2(Kn,1 + Kn,2 + Kn,3)(Kn,2 − Kn,1)(Kn,3 − Kn,1)(Kn,3 − Kn,2).

Using several scales, to minimize the variance (later slide)
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Estimating the Volatility of θ

We can similarly use the Multiscale Theorem to estimate the
volatility [θ, θ]T − − [θ, θ]0
The side conditions now become (instead of (2))

m∑
l=1

γn,l = 0 and
m∑

l=1

γn,lK2
n,l =

3
2

(∆T)−2. (4)

There is here no need to worry about Meta edge effect.

Produces consistent estimator ̂[θ, θ] p→ [θ, θ]T −
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Optimized Estimators of AVAR and of Volatility
We now consider the case of general number m of scales. Set

An =

 K−1
n,1 K−1

n,2 · · · K−1
n,m

1 1 · · · 1
K2

n,1 K2
n,2 · · · K2

n,m

 and γ
n

=

 γn,1
· · ·
γn,m


and Cn = diag(K−2

n,1 (Bn − 2Kn,1 + 1), · · · ,K−2
n,m(Bn − 2Kn,m + 1)). We note

that En = γ∗
n
Cnγn

, where “∗" denotes transpose. Our two optimization
problems thus become

min γ∗
n
Cnγn

subject to Anγn
= bn (5)

with standard solution

γ
n

= A∗n(AnC−1
n A∗n)−1bn. (6)

To estimate AVAR(Θ̂n), set bn =
(
0, 1

2 , 0
)∗

To estimate [θ, θ]T − − [θ, θ]0, set bn =
(
0, 0, 3

2(∆Tn)−2
)∗

For the optimal solution, En = b∗n(AnC−1
n A∗n)−1bn.
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Conclusions
Introduces the Observed Asymptotic Variance – an alternative
(nonparametric) approach to assessing the estimation error.

Theory development:

Integral-to-Spot Device
Observed AVAR under small and big edge effect

Applied motivation: observed AVAR can be adopted to existing
estimators in the literature.

Methodology estimates AVAR for general estimators (not just volatility)
and general processes.

Asynchronicity and irregular sampling are treated as part of the edge
effect.

Multiscale construction also provides a new consistent estimator for
[θ, θ]T .

Straightforward generalization to multivariate dimensions.

38 / 38


	High frequency data
	The data
	Why high frequency data?

	Observed AVAR
	The Problem
	Heuristics
	Theory

	Conclusions

