The dichotomy of recurrence and transience of semi-Lévy processes

Makoto Maejima

Keio University, Yokohama, Japan

(Joint work with Taisuke Takanume and Yohei Ueda)

June 15, 2015 Aarhus Conference on Probability, Statistics and Their Applications

Maejima (Keio)

Semi-Lévy process

June 15, 2015 1 / 19

Additive processes

Definition

$$X_{t+h} - X_{s+h} \stackrel{\mathrm{d}}{=} X_t - X_s, \quad \forall t, s, \ge 0, \ \forall h \ge 0.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Recurrence and transience for additive processes

Definition

Fix $s \ge 0$. An additive process $\{X_t, t \ge 0\}$ on \mathbb{R}^d is called *s*-recurrent if

$$\liminf_{t \to \infty} |X_t - X_s| = 0 \quad \text{a.s.}, \tag{2.1}$$

and it is called *recurrent* if it is *s*-recurrent for any $s \ge 0$. It is called *transient* if

$$\lim_{t\to\infty}|X_t|=\infty \quad \text{a.s.}$$

Remark

Note that, for Lévy processes, by the stationary increment property, recurrence and 0-recurrence are equivalent. Thus, (2.1) can be replaced by

$$\liminf_{t\to\infty} |X_t| = 0 \quad \text{a.s.},$$

Maejima (Keio)

The dichotomy of recurrence and transience

Theorem (The dichotomy for Lévy processes (Kingmann (1964).)

A Lévy process is recurrent or transient. (= The dichotomy holds.)

Example

(An additive process not having the dichotomy property.)

(Sato-Yamamuro (1998).)

 $\{X_t\}$: non-zero Lévy process

a(t): strictly increasing continuous function with a(0) = 0 and $a(\infty) < \infty$ Let $Y_t := X_{a(t)}$.

$$\Rightarrow$$
 (1) $\{Y_t\}$ is an additive process.

(2)
$$Y_t \to X_{a(\infty)-}$$
 as $t \to \infty$.

(Therefore, $\{Y_t\}$ is neither recurrent nor transient.)

(日) (周) (三) (三)

Examples

(Additive processes having the dichotomy property)

- (1) Lévy process
- (2) Selfsimilar additive process (Sato process) (by Sato-Yamamuro (1998))
- (3) Semi-selfsimilar additive process (by Sato-Yamamuro (1998))

(Semi-selfsimilar process $\stackrel{\text{def}}{\iff} \exists a > 0, \exists H > 0 \text{ s.t.}$

 $\{X_{at}\} \stackrel{\mathrm{d}}{=} \{a^H X_t\})$

Remark

(1) and (2) are semimartingale, but (3) is not necessarily semimartingale.

Semi-Lévy processes

Definition

(M.-Sato (2003)) An additive process $\{X_t, t \ge 0\}$ is a semi-Lévy process if (v') (having periodically stationary increments)

$$\exists p > 0 \text{ s.t. } X_{t+p} - X_{s+p} \stackrel{\mathrm{d}}{=} X_t - X_s \quad \forall \ s, t \ge 0.$$

p is called a period of the semi-Lévy process $\{X_t\}$.

The background of introducing the concept of semi-Lévy process

(1) $\mu \in ID(\mathbb{R}^d)$ is selfdecomposable $\stackrel{\text{def}}{\longleftrightarrow} \forall b > 1, \exists \mu_b \in ID(\mathbb{R}^d) \text{ s.t. } \widehat{\mu}(z) = \widehat{\mu}(b^{-1}z)\widehat{\mu}_b(z)$ $\stackrel{\text{iff}}{\iff} \exists \text{ a Lévy process } \{X_t\} \text{ s.t. } E[\log(1+|X_1|) < \infty, \mu = \mathcal{L}\left(\int_0^\infty e^{-t} dX_t\right)$ (2) $\mu \in ID(\mathbb{R}^d)$ is semi-selfdecomposable with span b > 1 $\stackrel{\text{def}}{\iff} \exists \rho \in ID(\mathbb{R}^d) \text{ s.t. } \widehat{\mu}(z) = \widehat{\mu}(b^{-1}z)\widehat{\rho}(z)$ $\stackrel{?}{\Longrightarrow}$ stochastic integral representation? (3) (Properties of a semi-Lévy process $\{X_t\}$) (i) It is not necessarily semimartingale. (ii) (Sato (2004)) An additive process $\{X_t\}$ is called *natural* if the scaling part γ_t of the Lévy-Khintchine representation of $\mathcal{L}(X_t)$ is of locally bounded variation. For an additive process $\{X_t\}$, it is natural iff it is semimartingale.

(4) (M.-Sato (2003)) $\mu \in ID(\mathbb{R}^d)$ is semi-selfdecomposable with span b > 1 $\stackrel{\text{iff}}{\longleftrightarrow}$

 \exists a natural semi-Lévy process $\{X_t\}$ with period $p = \log b$ s.t. $E[\log(1 + |X_p|) < \infty, \mu = \mathcal{L}\left(\int_0^\infty e^{-t} dX_t\right)$

An example of semi-Lévy processes (by K. Sato)

Let $\{Y_t, t \ge 0\}$ and $\{Z_t, t \ge 0\}$ be two independent Lévy processes and let 0 < q < p be arbitrary. A stochastic process $\{X_t, t \ge 0\}$ defined by

$$\begin{aligned} X_0 &= 0 \quad \text{a.s.,} \\ X_t &= \begin{cases} X_{np} + Y_t - Y_{np} & (np < t \le np + q), \\ X_{np+q} + Z_t - Z_{np+q} & (np + q < t \le (n+1)p) \end{cases} \end{aligned}$$

is a semi-Lévy process with period p. The recurrence and transience property of this process will be discussed at the end of this talk.

Maejima (Keio)

Semi-Lévy process

June 15, 2015 10 / 19

∃ →

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Semi-random walks

Definition

Fix $p \in \mathbb{N}$. $\{S_n, n \in \mathbb{Z}_+\}$ (on \mathbb{R}^d) is a semi-random walk with period $p \in \mathbb{Z}_+$ $\stackrel{\text{def}}{\longleftrightarrow}$ (i) $S_0 = 0$ a.s. (ii) $S_n - S_m$ is independent of $S_k - S_\ell$, $\forall n, m, k, \ell \in Z_+, n > m \ge k > \ell$, (iii) $S_{n+p} - S_{m+p} \stackrel{d}{=} S_n - S_m$, $n, m \in \mathbb{Z}_+$

Remark

 $\{S_n, n \in \mathbb{Z}_+\}$: a semi-random walk with period $p \Longrightarrow \{S_{np}, n \in \mathbb{Z}_+\}$: a random walk

Definition

 (1) Fix m ∈ Z₊. A semi-random walk {S_n} is m-recurrent def lim inf_{n→∞} |S_n - S_m| = 0 a.s.

 (2) {S_n} is recurrent def it is m-recurrent for ∀m ∈ Z₊.

 (3) {S_n} is transient def lim_{n→∞} |S_n| = ∞ a.s.

Example

(An example of semi-random walks) $\{X_t\}$: semi-Lévy process with period p(>0). $h \in (0, \infty) \cap p\mathbb{Q}$, i.e. $h = p\frac{n_1}{n_2}, n_1, n_2 > 0$. $\implies \{X_{nh}, n \in \mathbb{Z}_+\}$: semi-random walk with period $n_2 \in \mathbb{N}$.

(Proof) $\forall n, m \in \mathbb{Z}_+$, $X_{(n+n_2)h} - X_{(m+n_2)h} = X_{nh+pn_1} - X_{mh+pn_1} \stackrel{d}{=} X_{nh} - X_{mh}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The dichotomy of recurrence and transience of semi-Lévy processes

The answer is YES!

(M.-Takamune-Ueda, J. Theor. Probab. 27 (2014), 982-996.)

Maejima (Keio)

Semi-Lévy process

June 15, 2015 13 / 19

Lemma (A)

Let $\{X_t\}_{t\geq 0}$ be a semi-Lévy process on \mathbb{R}^d with period p > 0. The following are equivalent. (i) It is 0-recurrent. (ii)

$$\int_0^\infty \mathbb{1}_{B_a}(X_t)dt = \infty \quad \text{a.s.} \quad \text{for every } a > 0.$$

(*Proof*) For the proof, we need the following statement on semi-random walk.

(iii) There exists $h_0 > 0$ such that, for any $h \in (0, h_0] \cap p\mathbb{Q}$, the semi-random walk $\{X_{nh}\}_{n \in \mathbb{Z}_+}$ is recurrent. We prove the equivalence of (i) and (ii), by showing that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iii) \Rightarrow (i).

(日) (周) (三) (三)

Theorem (A)

Let $\{X_t\}_{t\geq 0}$ be a semi-Lévy process on \mathbb{R}^d with period p > 0. It is transient if and only if

$$\int_{0}^{\infty} P(X_t \in B_a) dt < \infty \quad \text{for every } a > 0.$$

(For the proof, we use Lemma (A).)

Theorem (B)

Let $\{X_t\}_{t\geq 0}$ be a semi-Lévy process on \mathbb{R}^d with period p > 0. (i) If it is 0-recurrent, then it is recurrent. (ii) It is recurrent if and only if

$$\int_0^\infty P(X_t \in B_a) dt = \infty \quad \text{for every } a > 0.$$

(iii) It is either recurrent or transient.

For the proof, we use Lemma (A) and Theorem (A).

Maejima (Keio)

Further, let $\{X_t\}_{t\geq 0}$ be a semi-Lévy process with period p > 0. Since X_p is an infinitely divisible random variable, then there is a Lévy process $\{Y_t\}_{t\geq 0}$ such that $Y_1 \stackrel{d}{=} X_p$. Now, as a consequence of the previous Theorem , we have the following.

Theorem (C)

The semi-Lévy process $\{X_t\}_{t\geq 0}$ is recurrent if and only if the Lévy process $\{Y_t\}_{t\geq 0}$ is recurrent.

For the proof, we use the following statement on semi-random walk. Fix $h \in (0, \infty) \cap p\mathbb{Q}$ arbitrarily. Then, the semi-Lévy process $\{X_t\}_{t \ge 0}$ is recurrent if and only if the semi-random walk $\{X_{nh}\}_{n \in \mathbb{Z}_+}$ is recurrent.

Example

Let $\{Y_t\}_{t\geq 0}$ and $\{Z_t\}_{t\geq 0}$ be two independent Lévy processes on \mathbb{R}^d and let 0 < q < p be arbitrary. $\{X_t\}_{t\geq 0}$ defined by

Proposition

Assume $E[|Y_1|] < \infty$ and $E[|Z_1|] < \infty$. Then $\{X_t\}_{t \ge 0}$ is recurrent $\stackrel{\text{iff}}{\longleftrightarrow} E[Y_q + Z_{p-q}] = 0$.

Corollary

Assume $E[|Y_1|] < \infty$ and $E[|Z_1|] < \infty$. (i) $\{Y_t\}_{t\geq 0}$ and $\{Z_t\}_{t\geq 0}$ are recurrent $\iff E[Y_1] = E[Z_1] = 0 \implies$ $E[Y_q + Z_{p-q}] = 0 \iff \{X_t\}_{t\geq 0}$ is recurrent. (ii) $\{Y_t\}_{t\geq 0}$ is recurrent and $\{Z_t\}_{t\geq 0}$ is transient $\iff E[Y_1] = 0$ and $E[Z_1] \neq 0 \Rightarrow E[Y_q + Z_{p-q}] \neq 0 \iff \{X_t\}_{t\geq 0}$ is transient. (iii) $\{Y_t\}_{t\geq 0}$ and $\{Z_t\}_{t\geq 0}$ are transient $\implies \{X_t\}_{t\geq 0}$ is recurrent if $E[Y_q + Z_{p-q}] = 0$ and it is transient if $E[Y_q + Z_{p-q}] \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Remark

Let us remark that in the case when $E[|Y_1|] = \infty$, (ii) of Corollary does not have to hold. For example, let $\{Y_t\}_{t\geq 0}$ be a symmetric Cauchy process and let $\{Z_t\}_{t\geq 0}$ be an arbitrary Lévy process with $E[|Z_1|] < \infty$. Recall that $\{Y_t\}_{t\geq 0}$ is recurrent (see Example 35.7 of Sato (1999)) and $E[|Y_1|] = \infty$. Now, by Exercise 39.8 (i) and (iv) of Sato (1999) and Proposition 4.1, $\{X_t\}_{t\geq 0}$ is recurrent.