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Introduction

I Let {xt}t∈T be a purely non deterministic stationary zero-mean
process, with Wold representation

xt = ψ(B)ξt,

ψ(B) = 1 + ψ1B + ψ2B
2 + . . . , infinite polynomial in the backshift

operator B, ξt ∼WN(0, σ2).
I Assume that the spectral density function f(ω) exists

F (ω) =

∫ ω

−π
f(λ)dλ,

that the process is regular and that the powers f(ω)p exist and are
integrable.



The generalised autocovariance function (GACV)

I The GACV is defined (Proietti and Luati, 2015) as

γpk =
1

2π

∫ π

−π
[2πf(ω)]p cos(ωk)dω,

for k = 0, 1, . . . and γp,−k = γpk.

I The discrete Fourier transform of γpk gives

[2πf(ω)]p = γp0 + 2

∞∑
k=1

γpk cos(ωk).



Motivation
The underlying idea, which has a well established tradition in statistics
and time series analysis (Box and Cox, 1964), is that taking powers of
the spectral density function allows one to emphasise certain features of
the process and mute other features.

Applications
I White noise and goodness of fit tests (fractional p)
I Feature matching estimation of the spectrum (p > 1)
I Cluster and discriminant analysis (p < 0)



Interpretation of the GACV

Let us consider the auxiliary process upt,

upt =

{
ψ(B)pξt = ψ(B)pψ(B)−1xt, for p ≥ 0
ψ(B−1)pξt = ψ(B−1)pψ(B)−1xt, for p < 0.

where, for real p > 0,

ψ(B)p =

∞∑
j=0

ϕjB
j

with coefficients given by the recursive relation

ϕj =
1

j

j∑
k=1

[k(p+ 1)− j]ψkϕj−k, j > 0, ϕ0 = 1

(see Gould, 1974). The same recursion holds for p < 0.



Interpretation of the GACV

I The spectral density of upt is fu(ω) = (2π)−1|ψ(eıω)|2pσ2, and

2πfu(ω)(σ2)p−1 = [2πf(ω)]
p
.

I The GACV of xt can be interpreted as the autocovariance function
of the process upt, denoted as γu,

γpk = (σ2)p−1γu

and it is straightforward to compute the GACV of xt as the
autocovariance of a linear process,

γpk = σ2p
∞∑
j=0

ϕjϕj+k.



The generalised variance and the variance profile

When k = 0, the generalised variance γp0 is related to the variance
profile, defined in Luati, Proietti and Reale (2012) as the Hölder mean of
the spectrum of xt:

vp =

{
1

2π

∫ π

−π
[2πf(ω)]p

} 1
p

.

In particular, for p 6= 0, vp = γ
1
p

p0.

I v−1 = γ−1−1,0 is the interpolation error variance Var(xt|F\t), where
F\t is the past and future information set excluding the current xt.

I limp→0 vp = σ2 = exp
{

1
2π

∫ π
−π log 2πf(ω)dω

}
(Szegö-Kolmogorov), is the prediction error variance.



Generalised partial autocorrelations

I The generalised autocorrelation function (GACF) of xt is

ρpk =
γpk
γp0

,

k = 0,±1,±2, . . . , taking values in [−1, 1].
I If the GACV of xt is proportional to the autocovariance function of

the auxiliary process upt, the GACF is equal to the autocorrelation
function of the auxiliary process.

I The same holds for the generalised partial autocorrelation
coefficients of xt that are defined here as the sequence of the partial
autocorrelation coefficients of upt and are denoted as πpk.



Generalised autoregressive spectral models

The GPAC are central for estimating the following class of models,

2πf(ω) =

[
σ2
p

φp(e−ıω)φp(eıω)

] 1
p

where

φp(e
−ıω) = 1− φp1e−ıω − φp2e−ıω2 − · · · − φpKe−ıωK .

Special cases
→ AR(K) spectral models, p = 1

→ MA(K) case, p = −1

→ fractional case, e.g. K = 1, p = 1/d and φp1 = 1.

According to this parameterisation, the GPAC form a finite sequence.



The periodogram and the Whittle likelihood
The periodogram (sample spectrum) is defined as

I(ωj) =
1

2πn

∣∣∣∣∣
n∑
t=1

(xt − x̄)e−ıωjt

∣∣∣∣∣
2

,

where x̄ = n−1
∑
t xt and ωj = 2πj

n , j = 1, . . . , [n/2].

Asymptotically, short range processes,

I(ωj)

f(ωj)
∼ IID

1

2
χ2
2, 0 < ωj < π

For a given transformation parameter p, the log-likelihood function of
unconstrained parameters ϑpk is k = 1, . . . ,K is

`(ϑp,K) = −
N∑
j=1

(
ln fϑ(ωj) +

I(ωj)

fϑ(ωj)

)

j = 1, . . . , N where N = [(n− 1)/2].



Reparameterisation

Solution Reparameterise the AR coefficients in terms of partial
autocorrelations (Barndorff-Nielsen and Schou, 1973).

Letting πpk, k = 1, . . . ,K, |πpk| < 1, compute, for j = 1, . . . , k − 1,

φ
(k)
pj = φ

(k−1)
pj − πpkφ(k−1)p,k−j , φ

(k)
pk = πpk.

The final iteration returns coefficients that are in the stationary region.

The coefficients πpk, constrained in the range (-1,1), are in turn obtained
as the Fisher inverse transformations of unconstrained real parameters
ϑpk, k = 1, . . . ,K, e.g. πpk =

exp(2ϑpk)−1
exp(2ϑpk)+1 for k = 1, . . . ,K. Also, we

set ϑp0 = ln(σ2
p).



Mutual information

Let {xt}t∈T and {ys}s∈S on (Ω,F , P ), and S1 and S2 minimal
sigma-algebra.

The amount of information of the random process {xt}t∈T given by the
process {ys}s∈S is (see Ibragimov and Rozanov, 1978, chapter IV),

I(x, y) = sup
∑

P (Ai ∩Bj) ln
P (Ai ∩Bj)
P (Ai)P (Bj)

,

where the supremum is taken over all the possible finite partitions of Ω in
the non intersecting events (Ai)i=1,...,n, (Bj)j=1,...,m, where Ai ∈ S1 for
all i = 1, . . . , n and Bj ∈ S2 for all j = 1, . . . ,m.



Properties

I I(x, y) ≥ 0, with I(x, y) = 0 when S1 ⊥⊥ S2
I I(x, y) = I(y, x), which motivates the name of mutual information
I Information regularity coefficient

Iτ = I({xt}t<s, {xt}t≥s+τ )→ 0, τ →∞.

I I0 = Ip−f is the mutual information between past and future
I Reflectrum identity
I Relation with the generalised partial autocorrleation coefficients



Reflectrum identity

I For Gaussian processes (Li, 2005)

Ip−f =
1

2

∞∑
k=1

kc2k

where ck are the cepstral coefficients of the process,

ck =
1

2π

∫ π

−π
ln[2πf(ω)] cos(ωk)dω, k = 1, 2, . . .

I Necessary condition for information regularity:
∑∞
k=1 kc

2
k <∞.

I Reflectrum identity, πk partial autocorrelation coefficients

∞∑
k=1

kc2k = −
∞∑
k=1

k ln(1− π2
k) (1)

and c0 = ln γ0 +
∑∞
k=1 ln(1− π2

k), the latter being a consequence of
the Kolmogorov-Szegö formula.



Theorem 1

Let πpk denote the generalised partial autocorrelations of the stationary
process {xt}t∈T . The mutual information between past and future is

Ip-f = − 1

2p2

∞∑
k=1

k ln(1− π2
pk)

and the equality holds for all p.



Why estimating the mutual information by the GPAC?

I The computation of Ip−f entails the availability of the full partial
autocorrelation sequence, unless the process is autoregressive, in
which case the partial autocorrelation is truncated at K.

I The approach followed in this paper amounts to determining a scale,
determined by the transformation parameter p, along which the
GPAC sequence is finite.

I The following theorem, that generalises theorem 3.1 of Li and Xie
(1996), establishes the optimality of the generalised spectral
autoregressive models with respect to the minimum mutual
information principle.



Theorem 2

A process with given generalised autocovariances γpk, k = 0, 1, . . . ,K,
p 6= 0 and minimal information between past and future belongs to the
class of generalised autoregressive spectral models.



Illustration

Our illustration deals with the estimation of the mutual information
between past and future for the monthly U.S. inflation rate.

The latter is computed as the logarithmic change over the previous
month of the Consumer Price Index (CPI), multiplied by 1200, and is
considered for the period running from January 1960 to December 2012,
for a total of 624 observations.



U.S. monthly inflation rate
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U.S. monthly inflation rate, first differences
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Concluding remarks

I A class of models for estimating the spectrum of a stationary
process has been introduced encompassing AR (p = 1) and MA
(p = −1) estimation of the spectrum. The class is optimal in the
sense of minimal mutual information.

I The models are estimated via the Whittle likelihood based on a
reparameterisation of the (generalised) AR coefficients based on the
(generalised) partial autocorrelation, due to Barndorff-Nielsen and
Schou (1973).

I A relation has been derived between the mutual information between
past and future of a Gaussian process, Ip−f , and the generalised
partial autocorrelation coefficients, πpk, enabling estimation of Ip−f
based on a finite sequence of πpk.



Further research

I General linear models for the spectrum of a time series: consider the
Box-Cox transform and get Bloomfield (1973) exponential model as
a particular case

I Extension to the locally stationary case: a dynamic, logistic smooth
transition is assumed for the coefficients of the Fourier expansion of
the Box-Cox transform of the spectrum. Estimation is carried out
based on the pre-periodogram

I Multivariate extension


