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1. No-good-deal bounds

Consider a model for a frictionless, generally incomplete market where
trading is continuous over a time horizon [0,T ] (T > 0).

Then the price xst(X ) of any financial position X matured at t and
purchased at s is a linear operator.

We study “fair” prices. These are characterized by an equivalent
martingale measure (EMM). In fact this measure allows the
representation of (discounted) linear prices in terms of conditional
expectations with respect to the given information flow.
In incomplete markets an EMM is not unique and any EMM gives a fair
price evaluation.

Surely, one can decide to select one EMM among the infinite available
according to some optimality criteria or by some other specific argument,
e.g. the statistical structure-preserving.



Also one can characterize EMMs that are in some sense “reasonable” in
the sense that the pricing measure embodies some wished properties of
the actual prices themselves.
This is the case for the no-good-deal (NGD) pricing measures.

No-good-deal bounds were introduced simultaneously by Cochrane and
Saa Requejo (2000) and Bernardo and Ledoit (2000). The idea is to
consider EMMs that not only rule out arbitrage possibilities, but also
those deals that are “too good to be true”.

Static setting definition. The EMM Q ∼ P is a no good deal pricing
measure at level δ if the Sharpe ratio is bounded for all X :

−δ ≤ E [X ]− EQ [X ]√
Var(X )

≤ δ.

A glimpse to the literature:
– Cochrane and Saa Requejo (2000), Björk and Slinko (2006) start from a specific model for traded assets. The
study leads to an upper good deal price process. The result depends on the chosen dynamics.
– Klöppel and Schweizer (2007) have a utility-based approach to restrict the set of EMMs providing bounds that
are in some sense related to the Sharpe ratio. The approach depends on the shape of the densities of the EMM in
the Lévy filtration of the prices.
– For a discussion on links between risk measures and no good deal pricing see e.g. Jaschke and Küchler (2001).



Goal: Study NGB for continuous dynamic trading in a setting
independent of the specific underlying models of assets and choice of
information flow.
We will consider both a frictionless market, linear pricing, and in markets
with frictions, then we consider convex prices.
For this we take an axiomatic approach to price processes inspired by risk
measures.
• In dN and Eide (2010) these time-consistent price systems where studied in Lp for p ∈ [1,∞) and a version of
the fundamental theorem of asset pricing with pricing EMMs having bounds on the density was suggested.
• In Bion-Nadal (2009) a characterization of time-consistent dynamic risk processes is given for the L∞ setting.

Here we give conditions for the existence of a NGD pricing measure,
which corresponds to the NGD bounds on the linear prices.

Later, we study the NGD bounds for convex prices in connection with the
NGD pricing measures.
Example of a convex price system can be given by risk-indifference
pricing.



Framework

Information. (Ω,F ,P) complete. Right continuous P-augmented
filtration F = {Ft ⊆ F , t ∈ [0,T ]}

Claims. For any time t, all market claims that are payable at time t
constitute a linear sub-space:

Lt ⊆ Lp(Ft) : Lt ⊆ LT , 1 ∈ Lt ,

∀A ∈ Ft , ∀X ∈ Lt , 1AX ∈ Lt .

The corresponding cone of the non-negative elements is marked by the
superscript +. We set:

‖X‖p :=

{
(E [|X |p])1/p, p ∈ [1,∞),

esssup|X |, p =∞.

N.B. In p =∞, the L∞ space with weak* topology is not metrizable.

Note that in a complete market Lt = Lp(Ft ) for all t ∈ [0,T ]. However, in general we have incompleteness, i.e.
Lt ( Lp(Ft ) for some t ∈ [0,T ].

A numéraire Rt , t ∈ [0,T ], is fixed in the market. Here Rt ≡ 1. Then
prices and discounted prices will coincide.



2. Frictionless markets: linear price systems
Definition. For any s, t ∈ [0,T ], s ≤ t , the operator xst(X ), X ∈ Lt ,
with values in Lp(Fs) is a linear price operator if it is

I monotone, i.e. for any X ′, X ′′ ∈ Lt ,

xst(X ′) ≥ xst(X ′′), X ′ ≥ X ′′,

I additive, i.e. for any X ′, X ′′ ∈ Lt ,

xst(X ′ + X ′′) = xst(X ′) + xst(X ′′)

I Fs -homogeneous, i.e.

xst(λX ) = λxst(X )

for all X ∈ Lt and Fs -measurable multipliers λ such that λX ∈ Lt ,

I xst(1) = 1.

N.B. As a consequence of the above we also have that:

xst(0) = 0, xtt(X ) = X



A linear price system is a whole time-consistent, right-continuous family
of price operators xst(X ), X ∈ Lt , 0 ≤ s ≤ t ≤ T . If p =∞, we consider
prices that are also continuous from above.

Definition. Let T ⊆ [0,T ]. The family xst , s, t ∈ T : s ≤ t, of price
operators xst(X ), X ∈ Lt , is time-consistent if, for all s, u, t ∈ T :
s ≤ u ≤ t,

xst(X ) = xsu
(
xut(X )

)
,

for all X ∈ Lt such that xut(X ) ∈ Lu.

Definition. The family of price operators xst , 0 ≤ s ≤ t ≤ T , is
right-continuous at s if, for every X ∈ Lt ,

xs′t(X ) −→ xst(X ), s ′ ↓ s,

in Lp if p ∈ [1,∞) and P − a.s. if p =∞.

Definition. For p =∞. Let s ≤ t. The price operator xst(X ), X ∈ Lt , is
continuous from above at X ∈ Lt if

xst(Xn) ↓ xst(X ) P − a.s., for Xn ↓ X , P − a.s.



Observation The existence of an EMM is characterized by the possiblity
of representing the whole linear price system as a conditional expectation:

xst(X ) = EQ

[
X |Fs

]
, ∀X ∈ Lt .

Naturally, this also entails the possibility of extending the price operators
to be defined on the whole Lp(Ft) space.

Hence, our approach is to characterize the existence of a Q allowing the
representation above and embedding the no good deal constrains.
Our results rely on:
– a representation theorem for linear price systems
– a sandwich preserving extension theorem for linear operators.



Representation theorem

The representation works if the prices are defined on the whole
Lt = Lp(Ft)!

Theorem [dN and Eide (2010), Bion-Nadal and dN (2013)].

Consider the linear price system:

xst(X ), X ∈ Lp(Ft), 0 ≤ s ≤ t ≤ T .

Then there exists a Q ∼ P such that dQ
dP = f ∈ L+

q (FT ) ( 1
q + 1

p = 1)
with f > 0 P-a.s. which allows the representatation

xst(X ) = EQ [X |Fs ] = E
[
X

f

E [f |Fs ]
|Fs

]
for all s ≤ t and X ∈ Lp(Ft).



Sandwich extension theorem

In order to consider the case Lt ( Lp(Ft) we need the following results
on extension theorems for operators.

To keep the setting general, we consider the following setup:

I A ⊆ B and p ∈ [1,∞].

I let M : L+
p (B) −→ L+

p (A) be a sublinear operator

I let m : L+
p (B) −→ L+

p (A) be a superlinear operator.

Let x : L −→ Lp(A) be a monotone linear operator satisfying the
sandwich condition:

m(X ) ≤ x(X ) ≤ M(X ), X ∈ L+,

where L+ = {X ∈ L : X ≥ 0} or, equivalently,

m(Z ) + x(X ) ≤ M(Y )

∀Y ,Z ∈ L+
p (B), X ∈ L : Z + X ≤ Y .



Theorem [Bion-Nadal and dN (2013); Albeverio, dN, Rozanov (2005)]

Let L be a linear subspace of Lp(B).

Let M be a sublinear majorant operator, if p =∞ also regular,
i.e. M(Xn) −→ 0 P − a.s. for any Xn ↓ 0 P − a.s.

Let m be a superlinear minorant.

Let x : L −→ Lp(A) be a linear operator satisfying the sandwich
condition:

m(Z ) + x(X ) ≤ M(Y )

∀Y ,Z ∈ L+
p (B), X ∈ L : Z + X ≤ Y .

Then x admits a monotone linear extension x̂ on Lp(B) and, if p =∞, it
is continuous from above. This extension is sandwich preserving:

m(Z ) + x̂(X ) ≤ M(Y )

∀Y ,Z ∈ L+
p (B), X ∈ Lp(B) : Z + X ≤ Y .

or, equivalently,

m(X ) ≤ x̂(X ) ≤ M(X ), X ∈ L+
p (B).



Fundamental theorem of asset pricing

Definition. The family Mst , s, t ∈ [0,T ], s ≤ t, of Fs -homogeneous,
sublinear operators Mst : L+

p (Ft)→ L+
p (Fs) is weak time-consistent if, for

every X ∈ L+
p (Ft),

(2.1) Mrs(Mst(X )) ≤ Mrt(X ), ∀r ≤ s ≤ t,

and

(2.2) Mst(X ) = limt′↓tMst′(X ).

Analogously for the family mst , s, t ∈ [0,T ], s ≤ t, of Fs -homogeneous,
superlinear operators mst : L+

p (Ft)→ L+
p (Fs).

Remark. Every time-consistent family Mst of Fs -homogeneous, sublinear operators such that (3.3) is satisfied is
weak time-consistent.



Theorem [Bion-Nadal and dN (2013)]

Let Mst , s, t ∈ [0,T ], s ≤ t, be a weak time-consistent family of regular
Fs -homogeneous, sublinear operators Mst : L+

p (Ft)→ L+
p (Fs).

Let mst , s, t ∈ [0,T ], s ≤ t, be a weak time-consistent family of
Fs -homogeneous, superlinear operators mst : L+

p (Ft)→ L+
p (Fs).

Assume that m0,T is non-degenerate, i.e. m0T (X ) > 0 P − a.s. for every
X > 0 and that, for every X ∈ L+

p (Ft), for every sequence sn decreasing
to s, we have

(2.3) Mst(X ) ≥ lim inf Msnt(X ); mst(X ) ≤ lim sup msnt(X )

Let
xst(X ), X ∈ Lt , 0 ≤ s ≤ t ≤ T ,

be a time-consistent and right-continuous family of price operators.
Suppose that the following sandwich condition is satisfied:

(2.4) mst(X ) ≤ xst(X ) ≤ Mst(X ), X ∈ L+
t ,



Then there exists a probability measure Q ∼ P:

Q(A) =

∫
A

f (ω)P(dω), A ∈ F ,

with f ∈ L+
q (F) and E [f |F0] = 1 such that

(2.5) mst(X ) ≤ EQ [X |Fs ] ≤ Mst(X ), X ∈ L+
∞(Ft).

and allowing the representation:

xst(X ) = EQ [X |Fs ] = E
[
X

f

E [f |Fs ]
|Fs

]
, X ∈ Lt ,

for all price operators.

Obeservation. If m0,T is degenerate, then we have to work with the
feasibility property for the prices: Assume that there exists a probability
measure Q̄ ∼ P such that

(2.6) EQ̄ [X |Fs ] ≤ xs,T (X ), X ∈ LT



No good deal EMMs

p = 2
Two equivalent definitions:

Static setting definition. The martingale measure Q ∼ P is a NGD
pricing measure at level δ if the Sharpe ratio is bounded for all X :

−δ ≤ E [X ]− EQ [X ]√
Var(X )

≤ δ.

Remark that the relation above implies |EQ [X ]− E [X ]| ≤ δ
√

E [X 2].
Hence X ⇒ EQ [X ]− E [X ] is linear, continuous in the norm L2(Ω). Being
L2(Ω) dual of the Banach space L2(Ω). We conclude that dQ

dP ∈ L2(FT ).

Static setting definition. The martingale measure Q ∼ P is a NGD
pricing measure at level δ if dQ

dP ∈ L2(FT ) satisfies:

E
[(dQ

dP
− 1
)2]
≤ δ2.



Dynamic setting. For every s ≤ t, define the set of probability measures:

Qst =
{

Q << P on Ft | Q|Fs
= P|Fs

and
dQ

dP
= 1+gst ,E [g 2

st |Fs ] ≤ δ2
st

}
with δst > 0.

Lemma. Assume that the family δst , 0 ≤ s ≤ t ≤ T , satisfies

(2.7) (1 + δrt ) = (1 + δrs )(1 + δst ), ∀r ≤ s ≤ t.

Then for every Qrs ∈ Qrs and Qst ∈ Qst , the probability measure Qrt :

dQrt

dP
:=

dQrs

dP

dQst

dP
∈ Qrt .

Moreover, for all A ∈ Fs and Q1,Q2 ∈ Qst , the measure Q3:

dQ3

dP
=

dQ1

dP
1A +

dQ2

dP
1Ac ∈ Qst .

Example: Condition (2.7) is satisfied by δst := δt−s − 1 for some δ > 1.



Dynamic setting definition. A martingale measure Q ∼ P is a dynamic
NGD pricing measure if dQ

dP ∈ L2(FT ) satisfies

E
[((dQ

dP

)
t

(dQ

dP

)−1

s
− 1
)2|Fs

]
≤ δ2

st ,

for every s ≤ t and constants δst > 0 satisfying (2.7). Here(
dQ
dP

)
t

:= E
[
dQ
dP |Ft

]
.

Proposition. In the context of the previous lemma, with δst → 0, t ↓ s,
we define:

Mst(X ) := esssupQ∈Qst
EQ[X|Fs], X ∈ L+

2 (Ft),

mst(X ) := essinfQ∈QstEQ[X|Fs], X ∈ L+
2 (Ft).

Then Mst(X ), X ∈ L+
2 (Ft), s, t ∈ [0,T ] : s ≤ t, is a weakly

time-consistent, regular family of sublinear, monotone, Fs -homogeneous
operators. Moreover we have:

Mst(X ) ≥ lim inf
n→∞

Msnt(X ), X ∈ L+
2 (Ft).

Accordingly similar results hold for the minorant operators.



Theorem [Bion-Nadal and dN (2013)]

Let xst , 0 ≤ s ≤ t ≤ T , be a right-continuous time-consistent family of
price operators defined on the linear space of marketed financial assets Lt .
Assume that the family xst satisfies the following sandwich condition:

mst(X ) ≤ xst(X ) ≤ Mst(X ), X ∈ L+
t ,

where Mst and mst are defined as in the result above.
Assume the feasibility for the prices.

Then there exists a dynamic NGD pricing measure Q such that

xst(X ) = EQ(X |Fs), X ∈ Lt .

In fact the RHS defines an extension

x̂st (X ) = EQ (X |Fs ), X ∈ Lp(Ft ),

of the price system to time-consistent family of linear price operators x̂st defined on all Lp(Ft ) with values in
Lp(Fs ), such that

(2.8) mst (X ) ≤ x̂st (X ) ≤ Mst (X ), X ∈ L+
p (FT ).



3. Market with friction: convex pricing
Definition. For any s, t ∈ [0,T ] with s ≤ t, the operator xs,t : Lt −→ Ls

is a convex price operator if it is:

I monotone, i.e. for any X ′, X ′′ ∈ Lt ,

xs,t(X ′) ≥ xs,t(X ′′), X ′ ≥ X ′′,

I convex, i.e. for any X ′, X ′′ ∈ Lt and λ ∈ [0, 1],

xs,t
(
λX ′ + (1− λ)X ′′

)
≤ λxs,t(X ′) + (1− λ)xs,t(X ′′)

I lower semi-continuous, i.e. for any X ∈ Lt and any sequence (Xn)n
in Lt with limit X ,

lim inf
n→∞

xs,t(Xn) ≥ xs,t(X )

I weak Fs -homogeneous, i.e. for all X ∈ Lt

xs,t(1AX ) = 1Axs,t(X ), A ∈ Fs ,

I projection property

xs,t(f ) = f , f ∈ Lp(Fs) ∩ Lt .

In particular we have xs,t(0) = 0 and xs,t(1) = 1.



Definition. The family of operators xs,t : Lt =⇒ Ls , s, t ∈ [0,T ]: s ≤ t,
of the type above is a (convex) price system if the family is:

I time-consistent (on [0,T ]), i.e. for all s, t, u ∈ [0,T ]: s ≤ t ≤ u

(3.1) xs,u(X ) = xs,t
(
xt,u(X )

)
,

for all X ∈ Lu

I right-continuous, i.e. for all t, all X ∈ Lt , and all sequences (sn)n,
s < sn ≤ t, sn ↓ s, xs,t(X ) = limn→∞ xsn,t(X ), where the
convergence is P a.s.

Remark. The time-consistency and the projection property yield:

xs,t(X ) = xs,T (X ), X ∈ Lt



Conditions: Bounds, sandwich, and conditions

Condition on bounds The family (ms,t ,Ms,t)s,t∈[0,T ] satisfies

1. the family (ms,t ,Ms,t)s,t∈T are weak time-consistent families of
super-linear, respectively sub-linear, weak Fs -homogeneous
operators such that ms,t , Ms,t : Lp(Ft)

+ −→ Lp(Fs)+, and Ms,t is
regular if p =∞.

2. esssups≤T(Ms,T(X)) belongs to Lp(FT )+ for all X ∈ Lp(FT )+;

3. for every X ∈ Lp(Ft)
+,

(3.2) ms,t(X ) = limt′>t,t′↓tmst′(X );

4. for every X ∈ Lp(Ft)
+,

(3.3) Ms,t(X ) = limt′>t,t′↓tMst′(X );

5. for every X ∈ Lp(Ft)
+,

(3.4) ms,t(X ) ≤ lim sup
s′>s,s′↓s

ms′t(X ); Ms,t(X ) ≥ lim inf
s′>s,s′↓s

Ms′t(X );



Sandwich condition The price operators (xs,t)s,t∈T satisfies the sandwich
condition when

(3.5) ms,t(Z ) + xs,t(X ) ≤ Ms,t(Y )

∀X ∈ Lt ∀ Y ,Z ∈ Lp(Ft)
+ : Z + X ≤ Y ,

for some families of operators (ms,t)s,t∈T and (Ms,t)s,t∈T with
ms,t , Ms,t : Lp(Ft)

+ −→ Lp(Fs)+.

Feasibility conditions

I The price system (xs,t)s,t∈[0,T ] satisfies the feasibility property if

there exists a probability measure Q̄ equivalent to P such that

(3.6) EQ̄ [X |Fs ] ≤ xs,T (X ), X ∈ LT

I The couple (xs,t ,Ms,t)s,t∈[0,T ] is feasible if for some probability

measure Q̄ equivalent to P, we have both (3.6) and

(3.7) EQ̄ [X |Fs ] ≤ Ms,T (X ), X ∈ Lp(FT )+.

N.B. Instead of the feasibility condition we can have the non-degeneracy
of the lower bound. For this see [Bion-Nadal and dN 2014]. In the NGD
bounds we cannot guarantee the non-degeneracy.



Convex sandwich extension and representation
Theorem [Bion-Nadal and dN 2015, 2014].
Let us consider a right-continuous time-consistent system of convex
operators

(
xs,t
)
s,t∈[0,T ]

defined on (Lt)t∈[0,T ] satisfying the sandwich

condition with mM and the feasibility property.
Then there is a right-continuous, time-consistent, sandwich preserving
extension

(
x̂s,t
)
s,t∈[0,T ]

defined on the whole (Lp(Ft))t∈[0,T ].

Furthermore for all 0 ≤ s ≤ t ∈ [0,T ] and all X ∈ (Lp(Ft))t∈[0,T ],

(3.8) x̂s,t(X ) ≥ EQ̄(X |Fs)

One of these extensions can be represented as

(3.9) x̂s,t(X ) = esssupR∈Re [ER(X|Fs)− α̂s,t(R)], X ∈ Lp(Ft),

Re := {R ∼ P : α̂0,T (R) <∞}
Also for any X ∈ Lp(Ft), there exists RX ∈ Re such that

x̂s,t(X ) = ERX
(X |Fs)− α̂s,t(RX ) ∀s ≤ t.

For all s ≤ t, α̂s,t(R) is the minimal penalty associated to x̂s,t , i.e.

(3.10) α̂s,t(R) = esssupX∈Lp(Ft)[ER(X|Fs)− x̂s,t(X)].

Furthermore for all t and all X , x̂s,t(X )0≤s≤t admits a càdlàg version.



Representation of the extensions
Theorem For all given s ≤ t, the maximal extension x̂s,t admits the
following equivalent representations

(3.11) x̂s,t(X ) = esssupR∈Rs,t
[ER(X|Fs)− α̂s,t(R)], X ∈ Lp(Ft),

with Rs,t = {R � P on Ft , R|Fs
= P|Fs

and E (α̂s,t(R)) <∞}

(3.12) x̂s,t(X ) = esssupR∈QS
s,t

[ER(X|Fs)− α̂s,t(R)], X ∈ Lp(Ft),

where QS
s,t = {R � P on Ft , R|Fs

= P|Fs
, and dQ

dP ∈ DS
s,t} .

(3.13) x̂s,t(X ) = esssupR∈QS,e [ER(X|Fs)− α̂s,t(R)], X ∈ Lp(Ft),

where QS,e = {R ∼ P :
( dQ
dP )t

( dQ
dP )s
∈ DS

s,t , ∀0 ≤ s ≤ t ≤ T} .

Here above,

DS
s,t :=

{
f ∈ Lq(Ft)

+,E [f |Fs ] = 1;

ms,t(X ) ≤ E [fX |Fs ] ≤ Ms,t(X ), ∀X ∈ Lp(Ft)
}
.



Furthermore for all X ∈ Ft , there exists RX ∈ QS,e such that for all
0 ≤ s ≤ t ≤ T ,

(3.14) x̂s,t(X ) = ERX
(X |Fs)− α̂s,t(RX )

The maximal extension satisfies the feasibility property.

Remark Let m0,T be non-degenerate. Then there exits a probability measure Q0 ∼ P such that α̂s,t (Q0) = 0 for
all 0 ≤ s ≤ t ≤ T . See [dN and BN 2014].
The existence of such an equivalent probability measure is fundamental to extend the price system in continuous
time such that the price system becomes a càdlàg process for every X . Notice that from the representation of the
minimal penalty it follows that the price system (xs,t )s,t∈[0,T ] together with the upperbound (Ms,t )s,t∈[0,T ]

satisfy the feasibility property with Q̄ = Q0:

EQ0
[X |Fs ] ≤ xs,T (X ), X ∈ LT ,

EQ0
[X |Fs ] ≤ Ms,T (X ), X ∈ Lp(Ft )+

.

This is a motivation to assume the feasibility as a necessary assumption for the convex price system.

Proofs

I The linear pricing systems propose the challenges of progressing from a finite discrete, then countable
discrete, to the continuous identifying the right extension which will turn out to be time-constistent. In fact
it is not enough to chose any concatenation of extended operators to guarantee the global time-consistency!

I The convex case, provides similar challenges, but at various level. Even at the countable discrete case the
definition of the the extension is delicate: representation problems and characterization of the penalty. The
feasibility assumption is used in the passage from countable to continuous.



No arbitrage for time consistent convex extensions
Let (Πt)t∈[0,T ] be F-adapted semimartingales locally bounded such that
Πt ∈ Lt for all t.
These processes may represent the core set of underlyings, but also the
value processes of self-financing admissible strategies.

Proposition Any convex time consistent feasible price system(
xs,t
)
s,t∈[0,T ]

on Lp(Ft) = Lt admits the representation:

(3.15) xs,T (X ) = esssupR∈Qe, α0,T(R)<∞[ER(X|Fs)− αs,T(R)]

with αs,T the minimal penalty for xs,T .
Let (Πt)t∈[0,T ] be a process such that for all t, Πt ∈ Lp(Ft). The
following assertions are equivalent

1. For all n ∈ ZZ , for all s ≤ t, xs,t(nΠt) = nΠs .

2. Every probability measure R in (3.15) is an EMM for the process
(Πt)t∈[0,T ].

The feasibility property can be put in relationship with the concept of No-static-free-lunch as introduced in
[Bion-Nadal 2009].

Corollary. It the convex price operator satisfies some sandwich bounds for (m,M) with all the conditions above,
including the feasibility. Then:

x̂s,T (X ) = esssup
R∈QS,e, α̂0,T(R)<∞[ER(X|Fs)− α̂s,T(R)]

And for the (Πt )t as above: x̂s,T (X ) = esssup
R∈QS,e∩M(Π), α̂0,T(R)<∞[ER(X|Fs)− α̂s,T(R)]



NGD convex price systems

We recall the definition of NGD bounds and NGD pricing measures.
Dynamic setting definition. A martingale measure Q ∼ P is a dynamic
NGD pricing measure if dQ

dP ∈ L2(FT ) satisfies

E
[((dQ

dP

)
t

(dQ

dP

)−1

s
− 1
)2|Fs

]
≤ δ2

st ,

for every s ≤ t and constants δst > 0 satisfying (2.7). Here(
dQ
dP

)
t

:= E
[
dQ
dP |Ft

]
.

Proposition. In the context of the previous lemma, with δst → 0, t ↓ s,
we define:

Mst(X ) := esssupQ∈Qst
EQ[X|Fs], X ∈ L+

2 (Ft),

mst(X ) := essinfQ∈Qst
EQ[X|Fs], X ∈ L+

2 (Ft).

One can verify that these bounds satisfy all the required conditions,
there is degeneracy in general, hence the feasibilty condition comes in.



Theorem Let the price system (xs,t)s,t∈[0,T ], defined on (Lt)t∈[0,T ]

satisfies the sandwich condition with the no-good-deal bounds.
Then the convex price system admits a sandwich preserving extension on
the whole (L2(Ft))t∈[0,T ]. The maximal of such extensions admits
representation:

(3.16) x̂s,t(X ) = esssupQ∈QS,e

[
EQ[X|Fs]− α̂s,t(Q)

]
given in terms of no-good-deal measures:

(3.17) QS,e :=
{

Q ∼ P :
(dQ

dP

)
t

(dQ

dP

)−1

s
∈ Ds,t

}
.

Moreover, for all X ∈ L2(Ft), there exists QX ∈ QS,e such that

(3.18) x̂s,t(X ) = EQX
[X |Fs ]− α̂s,t(QX ).

Also we have equivalence between:

Dst :=
{

1 + gs,t : gst ∈ L2(Ft), E [gs,t |Fs ] = 0 E
[
g 2
st |Fs

]
≤ δ2

st

}
DS

s,t :=
{

f ∈ Ds,t , ms,t(X ) ≤ E [fX |Fs ] ≤ Ms,t(X ), ∀X ∈ Lp(Ft)
}
.



NGD bounds and no-arbitrage

Fix (Πt)t F-adapted semimartingales locally bounded such that, for all t,
Πt ∈ Lt and xs,t(Πt) = Πs .
Proposition Let the price system (xs,t)s,t∈[0,T ], defined on (Lt)t∈[0,T ]

satisfies the sandwich condition with the no-good-deal bounds.
The process (Πt)0≤t≤T , Πt ∈ Lt , is an underlying model for the convex
price system (xs,t)s,t∈[0,T ] if and only if the maximal sandwich preserving
extension (x̂s,t)s,t∈[0,T ] of (xs,t)s,t∈[0,T ] on the whole (L2(Ft))t∈[0,T ]

admits the following representation for all X ∈ L2(FT ).

(3.19) x̂s,T (X ) = esssupQ∈QS,e∩M(Π)

[
EQ[X|Fs]− α̂s,T(Q)

]
given in terms of no-good-deal measures QS,e and of EMM for the
process (Πt) M(Π):

(3.20) QS,e :=
{

Q ∼ P :
(dQ

dP

)
t

(dQ

dP

)−1

s
∈ DS

s,t

}
.

Moreover, for all X ∈ L2(Ft), there exists QX ∈ QS,e ∩M(Π) such that

(3.21) x̂s,t(X ) = EQX
[X |Fs ]− α̂s,t(QX ).
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