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Financial Risk Management

Banks have to report various risk management estimates for portfolios of

assets, based an estimated distribution F of the per-period return Y .

[NB sign convention: losses are positive.]

Primary examples:

Value at Risk VaR

This is the minimum β-quantile qβ = inf{y : F (y) ≥ β} for some conven-

tional confidence level β such as 95% or 99.5% depending on the application.

Expected Shortfall ES

Defined by

(1) ESβ(F ) = qβ +
1

1 − β

∫

R

[y − qβ]+F (dy) =
1

1 − β

∫ 1

β

VaRτdτ.
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Question: How can we tell if the values we compute are ‘correct’?

When the 10-day period has elapsed, we observe one number, the actual

portfolio value. Since returns are non-stationary, future data beyond the

10-day horizon provides no (or very little) extra information. Also, post hoc

information is not germane since decisions are made on the basis of estimates

when they are calculated.

Conclusion: ‘correctness’ can only be evaluated by examining long-run per-

formance.

There has been considerable debate about the relative merits of VaR and ES.

VaR is the tried and tested industry standard, but is criticised on two main

grounds:

(i) it takes no account of the magnitude of losses beyond VaR, and

(ii) it is not a coherent risk measure, implying that diversification does not

necessarily reduce risk.
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As a result, the Basel Committee is recommending that banks abandon VaR

in favour of ES. However, there has been a backlash: ES in turn has been

criticised for

(i) Instability of computation (Cont, Deguest & Scandolo, QF 2010)

(ii) Not being ‘elicitable’ (Gneiting, JASA 2011, Ziegel 2013).

A Revolutionary Suggestion (Kou, Peng & Heyde, MOR 2013). ES is ‘con-

ditional expected loss’. What about ‘conditional median loss’ (MS)? But

MSβ = VaR(1+β)/2

so MS (Expected Median Shortfall) gives a reasonable representation of the

‘loss beyond VaR’ at no computational overhead beyond VaR.

What is needed here is a shift of perspective. Instead of asking whether our

model is correct, we should ask whether our objective in building the model

has been achieved.
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Elicitability

This circle of ideas goes back at least L.J. Savage (1971). The concept itself

is due to Osborn and Reichelstein (1985) and the name was coined by Lam-

bert, Pennock and Shoham (2008). See Gneiting (2011) for a wide-ranging

exposition.

If Y ∈ L2(R,B, P) then the function f(x) = E[(x−Y )2] achieves its minimum

at x = E[Y ] and this is true whatever the distribution F of Y within the L2

class. Elicitability is concerned with generalizing this characterization of the

mean value to other statistics s(F ) of the distribution function.

For a given statistic s(F ), can we find a score function S(x, y) such that

x 7→ E[S(x, Y )] =
∫

S(x, y)F (dy) is minimized at x = s(F ) for all F in

some wide class F of distributions? In general s(F ) may be set-valued; for

instance the β-quantile, β ∈ [0, 1] is the interval [q−β , q+
β ], where q−β , q+

β are the

minimum and maximum values of q such that

P[Y ≥ q] ≥ 1 − β and P[Y ≤ q] ≥ β.
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A score function is a measurable functions S : R
2 → R satisfying

(i) S(x, y) ≥ 0 with equality if x = y

(ii) For each y ∈ R the function x 7→ S(x, y) is continuous, and is contin-

uously differentiable if x 6= y.

S is a consistent score function for a statistic s relative to a class F of

distribution functions F if whenever Y ∼ F ∈ F

(2) E[S(t, Y )] ≤ E[S(x, Y )] ∀ t ∈ s(F ), x ∈ R.

S is strictly consistent if it is consistent and equality in (2) implies x ∈ s(F ).

Definition 1 A statistic s is elicitable for F if there exists a strictly consis-

tent score function S.
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Examples (Gneiting, 2011, §3)

1. Mean value. Here F is L2 and the score function S(x, y) = (x − y)2 is

continuously differentiable. We can characterize optimality by noting that

(3)
∂

∂x
E[S(x, Y )] = E

[
∂

∂x
S(x, Y )

]

= x − E[Y ],

confirming that the expected score is indeed minimized at the mean value

E[Y ]. S = (x − y)2 is not the only score function eliciting the mean value.

In general, a function V (x, y) is called an identification function for a

statistic s if

EF [V (x, Y )] = 0 ⇔ x = s(F ).

2. Quantiles. Here F is the set of all probability distributions on some inter-

val I ⊂ R. Then the β-quantile, β ∈ (0, 1) is elicitable. If I is compact then

a score function S satisfying conditions (i), (ii) above is strictly consistent

for the β-quantile if and only if it takes the form

(4) S(x, y) = (1(x≥y) − β)(g(x) − g(y))
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where g is a strictly increasing function. Score functions S as in (4) are strictly

consistent without the compactness assumption in the class of distributions

for which the random variable g(Y ) is integrable. An obvious choice is g(y) =

y, corresponding to F ∈ L1.

Suppose g is continuously differentiable and let Fc be the class of contin-

uous distribution functions. Then S is continuously differentiable except at

x = y and

(5)
∂S

∂x
= g′(x)[1(x≥y) − β].

Since the event (Y = x) has probability 0 for all F ∈ Fc we see that

(6) E

[
∂

∂x
S(x, Y )

]

= g′(x)[F (x) − β],

which is equal to zero if and only if x is a β-quantile.

Taking g(x) = x we see that V (x, y) = 1(x≥y)−β is an identification function

for the β-quantile.
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3. Expectiles. For τ ∈ (0, 1) and F ∈ L1 the τ -expectile is the unique solution

mτ to the equation

τ

∫

(x,∞)

(y − x)F (dy) = (1 − τ)

∫

(−∞,x)

(x − y)F (dy).

If φ is a C1 strictly convex function, the score function

S(x, y) = (τ1(x<y) + (1 − τ)1(x≥y))(φ(y)− φ(x)− φ′(x)(y − x))

is strictly consistent for the τ -expectile in the class of F such that Y and

φ(Y ) are F -integrable. The natural choice is φ(x) = x2 when (φ(y)− φ(x)−

φ′(x)(y − x)) = (y − x)2. If φ ∈ C2 then

(7)
∂S

∂x
= φ′′(x)[τ1(x<y) + (1 − τ)1(x≥y)](x − y),

and hence

E

[
∂

∂x
S(x, Y )

]

= −φ′′(x)

[

τ

∫

(x,∞)

(y − x)F (dy) − (1 − τ)

∫

(−∞,x)

(x − y)F (dy)

]

so that E[(∂S/∂x)(x, Y )] = 0 ⇔ x = mτ . This characterization only requires

Y to be F -integrable. Note that the mean is the 1
2
-expectile.
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VaR vs. ES

The facts are as follows.

(i) VaR is elicitable as long as the quantile is unique (i.e. there is just one x

such that F (x) = β).

(ii) ES is not elicitable. (It fails to have ‘convex level sets’.)

(iii) The pair (VaR,ES) is jointly elicitable. This was very recently shown by

Fissler & Ziegel.

In view of (iii), objections to ES on the grounds that is is not elicitable fall

away. There are other objections, however ..

A possible score function for joint elicitability is

S(x, z, y) = (1x≥y − β)(x − y) +
1

1 − β
e−z1x<y(y − x) + e−z(x − z − 1).
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For this function we find that

E

[
∂S

∂x
(x, z, Y )

]

, E

[
∂S

∂z
(x, z, Y )

]

are equal to zero when

(8) F (x) = β, z = x +
1

1 − β
H(x),

where H(x) = E[Y − x]+, i.e., when x = qβ and

z = qβ +
1

1 − β

∫ ∞

qβ

(y − qβ)F (dy),

the β-ES.
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Dynamic Models

Suppose we observe not just one r.v. Y with distribution function F but a

sequence Y1, Y2, . . ., i.e. a discrete-time process, for which we denote by Fk(y)

the conditional distribution of Yk given Y1, . . . , Yk−1:

Fk(y) = P[Yk ≤ y|Y1, . . . , Yk−1].

Suppose that, for some class F of distributions and for all sequences y1, y2, . . .

(i) Fk(· ; y1, . . . , yk−1) ∈ F ;

(ii) A given statistic s is elictable for F and there is an identification function

V such that x ∈ s(F ) ⇔ EF [V (x, Y )] = 0.

Then when xk = s(Fk) we have

E[V (xk, Yk)|Y1, . . . , Yk−1] = 0,

i.e. Bk
∆
= V (xk, Yk) is a martingale difference sequence.
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Prequential Statistics (Dawid, JRSS 1984; Dawid and Vovk, Bernoulli

1999)

Combines probability forecasting with sequential prediction.

Perfect example: Weather Forecasting

On day i − 1, forecaster gives a quantised ‘probability’ pi of rain on day i.

The outcome is ai = 1(Precipitationi≥0.5mm). Example

Probability pi 0.4 0.6 0.3 0.2 0.6 0.3 0.4 0.5 0.6 0.2 0.6 0.4 0.3 0.5

Outcome ai 0 0 1 0 1 0 1 1 1 0 1 0 0 1

At each value of p the relative frequency is

āp =

∑

i a(i)1(pi=p)
∑

i 1(pi=p)
,

giving us the calibration table

Probability p 0.2 0.3 0.4 0.5 0.6

Relative frequency āp 0 0.33 0.33 1 0.75
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Here’s the reliability diagram for 2820 12-hour forecasts by a single forecaster

in Chicago, 1972-1976. (Average ∼ 200 forecasts per probability value.)
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Reliability Diagram of Weather Forecast

Application to Value at Risk

Here we want to predict quantiles of the return distribution for an asset

or portfolio. This is a slightly different problem:

Weather forecasting: Same event “rain”, different forecast probabilities pn.

Risk management: Same probability p = 10%, different events “return ≥ qn”.

We have to produce forecast thresholds qn.
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Principles of Prequential Statistics (Dawid & Vovk)

Weak prequential principle: Evaluation of forecasting systems should be

based only on the observed data and the numerical values of the forecasts

produced (not on the algorithm that produced them).

Strong prequential principle: Criteria for correct prediction should only de-

pend on agreement between Nature and Forecaster on the stochastic law P

generating the data, not on what that law is (within some specified class P).
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Consistent Prediction

We observe a real-valued price series Y (1), . . . , Y (n) and an R
r-valued series

of other data H(1), . . . , H(n) and wish to compute some statistic relating to

the conditional distribution of Y (n + 1) given {Y (k), H(k), k = 1, . . . , n}.

A model for the data is a discrete-time stochastic process (Ỹ (k), H̃(k)) defined

on a stochastic basis (Ω,F , (Fk), P). We always take (Ω,F , (Fk)) to be the

canonical space for an R
1+r-valued process, i.e. Ω =

∏∞
k=1 R

1+r
(k) (where each

R
1+r
(k) is a copy of R

1+r) equipped with the σ-field F , the product σ-field

generated by the Borel σ-field in each factor.

For ω ∈ Ω we write

ω = (ω1, ω2, . . .) ≡ ((Ỹ (1, ω), H̃(1, ω)), (Ỹ (2, ω), H̃(2, ω)), . . .).

The filtration (Fk) is then the natural filtration of the process (Ỹ (k), H̃(k)).

Then different models amount to different choices of the probability mea-

sure P. When considering families P of probability measures, we write

P = {P
m,m ∈ M}, where M is an arbitrary index set, to identify differ-

ent elements P
m of P . The expectation with respect to P

m is denoted E
m.
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Lemma 1 Let P
m be any probability measure on (Ω,F , (Fk)) as defined

above. Then for each k ≥ 2 there is a conditional distribution of Ỹ (k) given

Fk−1, i.e. a function Fm
k : R × Ω → [0, 1] such that (i) for a.e. ω, Fk(·, ω) is

a distribution function on R and (ii) for each x ∈ R,

Fk(x, ω) = P
m[Yk ≤ x|Fk−1] a.s. (d P

m).

Remark: For k = 1 we denote Fm
1 (x) = P

m[Ỹ (1) ≤ x], the unconditional

distribution function. �
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Consistency

Consistency is defined for a statistic s relative to a class of models P .

Let B(P) denote the set of strictly increasing predictable processes (bn) on

(Ω, (Fk)) such that limn→∞ bn = ∞ a.s. ∀P
m ∈ P ; in this context, ‘pre-

dictable’ means that for each k, bk is Fk−1-measurable. Often, bk will actually

be deterministic.

A calibration function is a measurable function ` : R
2 → R such that

E
m[`(Ỹ (k), s(Fm

k ))|Fk−1] = 0 for all P
m ∈ P .

Definition 2 A statistic s is (`, b,P)-consistent, where ` is a calibration

function, b ∈ B(P) and P is a set of probability measures on (Ω,F), if

(9) lim
n→∞

1

bn

n∑

k=1

`(Ỹ (k), s(Fm
k )) = 0 P−a.s. for all P ∈ P .
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In practice we observe the data sequence Y (1), . . . , Y (n− 1) and produce an

estimate π(n), based on some algorithm, for what we claim to be s(Fn). We

evaluate the quality of this prediction by calculating

Jn(Y, π) =
1

bn

n∑

k=1

`(Y (k), π(n)).

Consistency is a ‘reality check’: it says that if Yi were actually a sample

function of some process and we did use the correct predictor π(i) = s(Fi)

then the loss Jn will tend to 0 for large n, and this will be true whatever the

model generating Y (i), within the class P , so a small value of Jn is evidence

that our prediction procedure is well-calibrated. The evidence is strongest

when P is a huge class of distributions and bn is the slowest-diverging sequence

that guarantees convergence in (9) for all P ∈ P .
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Quantile forecasting

For β ∈ [0, 1] the β-quantile is the set

qβ = {x : P[Y ≤ x] ≥ β and P[Y ≥ x] ≥ 1 − β}.

The β-VaR is defined as VaRβ = q−β = inf{x : x ∈ qβ}. The set of models is

(Ω,F , (Fk), (Ỹ (k), H̃(k), Pm), P
m ∈ P

where P is some class of measures and Fm
k (x, ω) is the conditional distribution

function of Ỹk given Fk−1 under measure P
m ∈ P . Let P be the set of all

probability measures on (Ω,F), and define

P0 = {P
m ∈ P : ∀k, Fm

k (x, ω) is continuous in x for almost all ω ∈ Ω}.

For risk management applications, the continuity restriction is of no signifi-

cance; no risk management model would ever predict positive probability for

specific values of future prices. So P0 is the biggest relevant subset of P.
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Proposition 1 Suppose P
m ∈ P0. Then the random variables Uk = Fm

k (Ỹk),

k = 1, 2, . . . are i.i.d. with uniform distribution U [0, 1].

Proof. By continuity, P
m[U1 ≤ u1] = P

m[Ỹ1 ≤ (Fm
1 )−1(u1)] = u1, so U1 ∼

U [0, 1]. Similarly, Uk ∼ U [0, 1] for each k > 1. Now suppose that U1, . . . , Un

are independent for some n. Then

P
m[Ui ≤ ui, i = 1, . . . , n + 1] = E

m

[(
n∏

i=1

1(Ui≤ui)

)

P
m[Un+1 ≤ un+1|Fn]

]

= E
m

[(
n∏

i=1

1(Ui≤ui)

)]

un+1

=

n+1∏

i=1

ui.

Thus all finite-dimensional distributions of (Ui) are i.i.d. U [0, 1]. �

This result is used by Diebold, Gunther and Tay (Int. Econ. Rev. 98) in a

different way to the application here.
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For β ∈ (0, 1) let qm
k denote the β-quantile of Fm

k , i.e. qm
k = inf{x : Fm

k (x) ≥

β}. qm
k is of course an Fk−1-measurable random variable for each k > 0.

Theorem 1 For each P
m ∈ P0, for any sequence bn ∈ B(P),

(10)
1

bn

1

n1/2(log log n)1/2

n∑

k=1

(1(Yk≤qm
k ) − β) → 0 a.s. (Pn)

Thus the quantile statistic s(F ) = qβ is (`, b′,P0)-consistent in accordance

with Definition 2, where `(x, q) = 1(x≤q) − β and b′k = bk(k log log k)1/2.

Proof. By monotonicity of the distribution function, (Yk ≤ qm
k ) ⇔ (Uk ≤

Fm
k (qm

k )) ⇔ (Uk ≤ β). The result now follows from Proposition 1 and by

applying the Law of the Iterated Logarithm (LIL) to the sequence of random

variables Yk = 1(Uk≤β)−β, which are i.i.d with mean 0 and variance β(1−β).
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Indeed, define

ζ(n) =
1

σ(2n log log n)1/2

n∑

k=1

(1(Uk≤β) − β)

where σ =
√

β(1 − β). Then the LIL asserts that, almost surely,

lim sup
n→∞

ζ(n) = 1, lim inf
n→∞

ζ(n) = −1.

The convergence in (10) follows. �

Of course, if convergence holds in (10) then it also holds if we replace the

sequence b by b′′ such that b′′n ≥ bn for all n. In particular, the conventional

relative frequency measure

(11)
1

n

n∑

k=1

(1(Yk≤qm
k ) − β)

converges under the same conditions; this also follows directly from the Strong

Law of Large Numbers (SLLN).
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The striking thing about Theorem 1 is that consistency of quantile forecasting

is obtained under essentially no conditions on the mechanism generating the

data. As we shall see below, we cannot expect any such strong result in

estimating other risk measures.

Theorem 1 is a ‘theoretical’ result in that (10) is a tail property, unaffected

by any initial segment of the data. Nonetheless, it is practically relevant to

compute the relative frequency (11).

As a further practical matter, it is advantageous to augment computation

of (11) with statistical tests of the finite-sample hypothesis that the random

variables Y (1), . . . , Y (n) defined above are i.i.d.
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Risk Measures Involving Mean Values

Risk measures such as ES involve integration with respect to the conditional

distribution functions Fm
k . In this section we will consider the straight pre-

diction problem of estimating the conditional means

(12) µm
k =

∫

R

xFm
k (dx).

We must assume that the class of candidate models is at most

P1 =

{

P
m ∈ P : ∀k,

∫

R

|x|Fm
k (dx) < ∞

}

.

In fact, this problem is general enough to include risk measures of the form
∫

f(x)Fm
k (dx) for general functions f : we can simply define a new model

class (Ỹ ′, H̃ ′) where Ỹ ′(k) = f(Y (k)) and H̃ ′(k) = (Y (k), H(k)). Some

modification is required when f is an option-like function such as f(x) =

(x−K)+ since then f(Ỹ (k)) = 0 with positive probability for some measures

P
m, so these measures are no longer in the class P0 as previously defined.
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Martingale analysis

To proceed further, we need to make use of martingale properties. If we

define

(13) Y̆ (k) = Ỹ (k) − µn
k , S(n) =

n∑

k=1

Y̆ (k)

with S(0) = 0, then S(n) is a zero-mean P
m-martingale since E

m[Y̆ (k)|Fk−1] =

0. We want to determine calibration conditions by using the SLLN for mar-

tingales. In this subject, a key role is played by the Kronecker Lemma of real

analysis.

Lemma 2 Let xn, bn be sequences of numbers such that bn > 0, bn ↑ ∞, and

let un =
∑n

k=1 xn/bn. If un → u∞ for some finite u∞ then

lim
n→∞

1

bn

n∑

k=1

xk = 0.
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The martingale convergence theorem states that if S(n) is a zero-mean mar-

tingale on a filtered probability space and there is a constant K such that

E|S(n)| ≤ K for all n, then S(n) → S(∞) a.s. where S(∞) is a random

variable such that E|S∞| < ∞.

Now let Y̆ (k), S(k) be as defined at (13) above, and let Z(k) be a predictable

process, i.e. Z(k) is Fk−1-measurable, such that Z(k) > 0 and Z(k) ↑ ∞

a.s. Let Y Z
k = Y̆ (k)/Z(k) and SY (n) =

∑n
1 Y Z(k). Then SY

n is a martingale,

since

E
m[Y Z(k)|Fk−1] =

1

Z(k)
E

m[Y̆ (k)|Fk−1] = 0.

If we can find Z(k) such that E
m|SZ(n)| < cZ for some constant cZ then SY

converges a.s. and hence by the Kronecker lemma

1

Z(n)
S(n) =

1

Z(n)

n∑

k=1

(Ỹ (k) − µn
k) → 0 a.s.
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We have shown

Proposition 2 Under the above conditions, the statistic s(F ) =
∫

xF (dx) is

(`, Z,P1)-consistent, according to the Definition (2), where `(x, µ) = x − µ.

This Proposition is of course useless as it stands, because no systematic way

to specify the norming process Z(k) has been provided. We can partially

resolve this problem by moving to a setting of square-integrable martingales.

If S(n) ∈ L2 we define the ‘angle-brackets’ process 〈S〉n by

〈S〉n =

n∑

1

E[Y 2(k)|Fk−1].

This is the increasing process component in the Doob decomposition of the

submartingale S2(n). The following is standard (Williams, Probability with

Martingales).

Proposition 3 If S(n) is a square-integrable martingale then S(n)/〈S〉n → 0

on the set {ω : 〈S〉∞(ω) = ∞}.
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Proposition 3 shows that in the square-integrable case we can take Z = 〈S〉

in Proposition 2. However, we cannot use 〈S〉 as it stands because it does

not satisfy the weak prequential principle, which requires that the norming

sequence be calculable using only observed data and numerical values of

estimates.

To achieve a calculable norming sequence, we follow a line of reasoning pur-

sued by Hall and Heyde’s Martingale Limit Theory and its Application, re-

lating the predictable quadratic variation 〈S〉n to the realized quadratic vari-

ation

Qn =

n∑

k=1

(S(k) − S(k − 1))2 =

n∑

k=1

Y 2(k).

As Hall and Heyde point out, the two random variables have the same ex-

pectation, and we are interested in the ratio Qn/〈S〉n. To get the picture,

consider the case where the Y (k) are i.i.d. with variance σ2. Then 〈S〉n = σ2n

and by the SLLN

(14) lim
n→∞

Qn

〈S〉n
=

1

σ2
lim
n→∞

1

n

n∑

k=1

Y 2(k) = 1 a.s.
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In the general, martingale, case we may or may not have convergence as in

(14). We do not go into this here but simply present the following definition.

Definition 3 Let Pe ⊂ P be the set of probability measures P
m such that

(i) ∀k, Ỹ (k) ∈ L2(P
m).

(ii) limn→∞〈S〉n = ∞ a.s. Pm, where S(n) is defined at (13).

(iii) There exists εm > 0 such that Qn/〈S〉n > εm for large n, a.s. P
m.

We can now state our final result.

Theorem 2 The mean statistic s(F ) =
∫

xF (dx) is (l, Qn,P
e)-consistent,

where

l(x, µ) = x − µ.

Proof. Suppose P
m ∈ Pe. Conditions (i) and (ii) of Definition 3 imply that

S(n)/〈S〉n → 0 by Proposition 3. Using condition (iii) we have
∣
∣
∣
∣

S(n)

Qn

∣
∣
∣
∣
=

∣
∣
∣
∣

〈S〉n
Qn

∣
∣
∣
∣

∣
∣
∣
∣

S(n)

〈S〉n

∣
∣
∣
∣
≤

1

εm

∣
∣
∣
∣

S(n)

〈S〉n

∣
∣
∣
∣

for large n.

The result follows. �
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The basic problem with ES (or any mean value) estimation

Recall that

ESβ =
1

1 − β

∫ 1

β

qτdτ.

Most financial data exhibits power tails. Consider the following proposition,

in which F is supposed to have exact power tail with index κ.

Proposition 4 Let 0 < β < η < 1 and F be a distribution function on R
+

such that for x ≥ q+
η

F (x) = 1 − (1 − η)

(
x

qη

)−κ

where κ > 1. Then

ESβ(F ) =
1

1 − β

(∫ η

β

qτdτ +
κ

κ − 1
(1 − η)qη

)

.

32



(15) ESβ(F ) =
1

1 − β







∫ η

β

qτdτ

︸ ︷︷ ︸

known

+
κ

κ − 1
(1 − η)

︸ ︷︷ ︸

unknown

qη







.

For financial data, quantile estimation is something that can be achieved

convincingly for significance levels out to 95% at least. Suppose we wish to

compute ESβ and can reliably estimate quantiles qτ for τ ≤ η but not beyond

η where the data has dried up. Then the first term on the right of (15) and

the value of qη are known, but the result also depends on the value of κ, and

ESβ(F ) → +∞ as κ ↓ 1.

To place an upper bound on ES requires a reliable estimate for the tail index

κ but by definition this is impossible to obtain.

Conclusion: Any estimate of ES depends on a priori assumptions about tail

behaviour that cannot be verified on the basis of any finite data set, however

large.
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Simulated Example

We simulate a 10000-point ‘return’ series such that all data points have same

99% VaR q0.99. Tail index κ switches between 2.2 and 3.0 at jump times of

discrete-time Markov chain with P[3.0|2.2] = 0.03, P[2.2|3.0] = 0.01. Tail

beyond q0.99 is exactly 1/yκ. Thus the tail index is 3 roughly 3/4 of the time.

34



Sub-sample Number  
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
o
w

e
r 

 

1
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3.5

4

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

-10

-9

-8

-7

-6

-5

2.5348
3.4371

Left panel shows empirical tail estimates for 5000-length windows [i, i+4999]

for i = 1, 2, . . . , 5001. Right panel shows the empirical tails on a log-log plot

for the two windows producing the biggest and smallest tail indices.

ES calculations based on these empirical estimates would be wrong every

time and (for this particular data set) underestimates the true ES about 1/4

of the time.
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.

Tillykke med fødelsdagen, Ole!
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