
Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The
Kolmogorov-
Obukhov-She-
Leveque
Scaling

The Eddy
Viscosity

The Invariant
Measure of
Turbulence

The PDF of
Turbulence

Boundary
Value
Problems

Conclusions

The Probability Density Function of
Turbulence

Björn Birnir

Center for Complex and Nonlinear Science
and

Department of Mathematics, UC Santa Barbara
and

University of Iceland, Reykjavík

Aarhus, June 2015

decicated to Ole Barndorff-Nielsen on his 80th birthday



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The
Kolmogorov-
Obukhov-She-
Leveque
Scaling

The Eddy
Viscosity

The Invariant
Measure of
Turbulence

The PDF of
Turbulence

Boundary
Value
Problems

Conclusions

Outline

1 The Deterministic versus the Stochastic Equation

2 The Kolmogorov-Obukhov-She-Leveque Scaling

3 The Eddy Viscosity

4 The Invariant Measure of Turbulence

5 The PDF of Turbulence

6 Boundary Value Problems

7 Conclusions



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The
Kolmogorov-
Obukhov-She-
Leveque
Scaling

The Eddy
Viscosity

The Invariant
Measure of
Turbulence

The PDF of
Turbulence

Boundary
Value
Problems

Conclusions

Outline

1 The Deterministic versus the Stochastic Equation

2 The Kolmogorov-Obukhov-She-Leveque Scaling

3 The Eddy Viscosity

4 The Invariant Measure of Turbulence

5 The PDF of Turbulence

6 Boundary Value Problems

7 Conclusions



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The
Kolmogorov-
Obukhov-She-
Leveque
Scaling

The Eddy
Viscosity

The Invariant
Measure of
Turbulence

The PDF of
Turbulence

Boundary
Value
Problems

Conclusions

The Deterministic Navier-Stokes Equations

A general incompressible fluid flow satisfies the
Navier-Stokes Equation

ut + u ·∇u = ν∆u−∇p
u(x ,0) = u0(x)

with the incompressibility condition

∇ ·u = 0,

Eliminating the pressure using the incompressibility
condition gives

ut + u ·∇u = ν∆u + ∇∆−1trace(∇u)2

u(x ,0) = u0(x)

The turbulence is quantified by the dimensionless
Taylor-Reynolds number Reλ = Uλ

ν
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Laminar and Turbulent Flow

The Reynolds Number : Re = UL
ν

In 1883 the mechanical engineer Osborne Reynolds
observed:
"The internal motion of water assumes one or other of
two broadly distinguishable forms-either the elements
of the fluid follow one another along lines of motion
which lead in the most direct manner to their
destination or they eddy about in sinuous paths the
most indirect possible."
These are respectively laminar and turbulent flow
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Images of Turbulence
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Turbulence in Applications
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The Reynolds Decomposition

The velocity is written as U + u, pressure as P + p
U describes the large scale flow, u describes the small
scale turbulence
This is the classical Reynolds decomposition (RANS)

Ut + U ·∇U = ν∆U−∇P− ∂

∂xj
Rij

The last term the eddy viscosity, where Rij = uiuj is the
Reynolds stress, describes how the small scale
influence the large ones. Closure problem: compute Rij .
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The Difference between Laminar and Turbulent

If the Reynolds number is small, only the laminar
solution exists
In this case the ambient noise is quelled
If the Reynolds number is large, the laminar solution
exists but is unstable
The ambient noise is magnified by the instabilities of
the laminar flow and becomes large
Then the turbulent solution satisfies a stochastic partial
differential equation (SPDE)
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A Stochastic Closure

Large scale flow

Ut + U ·∇U = ν∆U−∇P− ∂

∂xj
Rij

U(x ,0) = Uo(x).

Small scale flow

ut + u ·∇u = ν∆u + ∇∆−1trace(∇u)2 + Noise

u(x ,0) = u0(x).

What is the form of the Noise? It will contain both
additive noise and multiplicative u · noise.
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The Central Limit Theorem

Split the torus T3 into little boxes and consider the
dissipation to be a stochastic process in each box
By the central limit theorem the scaled average

Mn =
1
n

n

∑
j=1

pj

√
n(Mn−m)/σ→ N(0,1) converges to a Gaussian

(normal) random variable as n→ ∞

This holds for any Fourier component (ek ) and the
result is the infinite dimensional Brownian motion

df (1)t = ∑
k 6=0

c
1
2
k dbk

t ek (x)
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Fluctuations and the large deviation principle

In addition we get fluctuation in the mean of the
dissipation
If these fluctuation are completely random then they
are modeled by Poisson process with the rate µ

Applying the large deviation principle, get a
deterministic bound, with rate µk

This also holds in the direction of each Fourier
component and gives Fourier series

df (2)t = ∑
k 6=0

dk µkdt ek (x), µk = |k |1/3
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Intermittency and velocity fluctuation

The multiplicative noise, models the excursion (jumps)
in the velocity gradient (vorticity concentrations)
Nk

t denotes the integer number of velocity excursion,
associated with k th wavenumber, that have occurred at
time t . The differential dNk (t) = Nk (t + dt)−Nk (t)
denotes these excursions in the time interval (t , t + dt ].
The process

df (3)t =
M

∑
k 6=0

∫
R

hk (t ,z)N̄k (dt ,dz),

gives the multiplicative noise term
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Stochastic Navier-Stokes with Turbulent Noise

Adding the two types of additive noise and the
multiplicative noise we get the stochastic Navier-Stokes
equations describing fully developed turbulence

du = (ν∆u − (U + u) ·∇u−u ·∇U + ∇∆−1tr(∇u)2)dt

+ ∑
k 6=0

c
1
2
k dbk

t ek (x) + ∑
k 6=0

dk |k |1/3dt ek (x)

+ u(
M

∑
k 6=0

∫
R

hk N̄k (dt ,dz)) (1)

u(x ,0) = u0(x)

Each Fourier component ek = e2πik ·x comes with its
own Brownian motion bk

t and deterministic bound
|k |1/3dt
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The Kolmogorov-Obukhov Theory

In 1941 Kolmogorov and Obukhov [10, 9, 16] proposed
a statistical theory of turbulence
The structure functions of the velocity differences of a
turbulent fluid, should scale with the distance (lag
variable) l between them, to the power p/3

E(|u(x , t)−u(x + l , t)|p) = Sp = Cplp/3

A. Kolmogorov A. Obukhov
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The Kolmogorov-Obukhov Refinded Similarity
with She-Leveque Intermittency Corrections

The Kolmogorov-Obukhov ’41 theory was criticized by
Landau for including universal constants Cp and later
for not including the influence of the intermittency
In 1962 Kolmogorov and Obukhov [11, 17] proposed a
refined similarity hypothesis

Sp = C ′p < ε̃
p/3 > lp/3 = Cplζp (2)

l is the lag and ε a mean energy dissipation rate
The scaling exponents

ζp =
p
3

+ τp

include the She-Leveque intermittency corrections
τp =−2p

9 + 2(1− (2/3)p/3) and the Cp are not universal
but depend on the large flow structure
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Why do we need a Statistical Theory of
Turbulence?

Kolmogorov’s point of view was that the fluid velocity in
turbulence was not a deterministic function but rather a
stochastic process
The reason for this was, that one had to solve the
Navier-Stokes equation in a noisy environment to
obtain the velocity. This noise had been created by the
fluid instabilities magnifying ambient noise. Once the
noise was present it could not be ignored
The consequence is that the only deterministic
quantities associated with the turbulent velocity are
statistical quantities such as the mean, the variance,
the skewness, the kurtosis and so on. We must use
probability theory or statistics to study turbulence
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Experimental observation of the
Kolmogorov-Obukhov scaling E(k) = Cε

2/3
0 k−5/3

Figure: The first convincing data was obtained by Grant et al. in
1962, on the turbulence in a tidal stream in the Seymour Narrows,
between Vancouver and Quadra Islands, British Columbia.
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The Kolmogorov-Obukhov Theory

The (kinetic) energy in the turbulent velocity field is

E(t) =
1
2

∫
R3
|u(x , t)|2dx =

1
2

∫
R3
|û(k , t)|2dk

using Plancherel’s identity. The last integral can be written
as ∫

∞

0
|k |2

∫
S2
|k |

|û(k , t)|2dωd |k |=
∫

∞

0
|k |2E(k , t)d |k |

using polar coordinates, where

E(k , t) =
1
2

∫
S2
|k |

|û(k , t)|2dω

is the integral over a two-dimensional sphere (spherical
shell) of radius |k |.
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The First Hypothesis
There exists a statistical equilibrium

Thus E(k , t) is the energy density per wave number k ,
independent of direction (isotropic). From the
Navier-Stokes equations, we get that:

∂E
∂t

(k) =− ∂

∂k
ε(k)−2νk2E(k) + · · ·

where k = |k |. ε(k) is the spectral dissipation rate or
the rate of transfer of energy from the wavenumers less
that k to the wave numbers larger than k .
The first Hypothesis say that there exists a statistical
stationary state, for sufficiently high Reynolds numbers,

∂

∂k
ε(k) + 2νk2E(k)≈ 0,

for wave numbers l−1 << k << η−1, where l is the
scale of the large eddies and η is the viscosity scale.
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The Second Hypothesis
There exists a scaling (self-similarity)

Thus we can define the energy dissipation rate in the
equilibrium range

ε0 = 2ν

∫
∞

0
k2E(k)dk

The statistics are uniquely and universally determined
by k and ε0. From dimensional arguments, we get the
Kolmogorov-Obukhov (5/3) scaling law:

E(k) = Cε
2/3
0 k−5/3, for l−1 << k << η

−1,

where C is a constant.
There also exist natural notions of (Kolmogorov’s),
length, velocity and time:

η = (
ν3

ε0
)1/4; v = (νε0)1/4; t =

η

v
= (

ν

ε0
)1/2
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How do we solve the turbulence problem?

We have to prove the two Hypothesis, that there exists
a statistically stationary state for Re sufficiently large,
and the Kolmogorov-Obukhov scaling.
We have to include intermittency (events that happen
occationally) in our solution.
We must give a solution of the closure problem.
Notice, this is not the millennium problem: To prove
there exists a unique solution to the Navier-Stokes
equation. The turbulence problem is a different
problem.
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Solution of the Stochastic Navier-Stokes

We solve (1) using the Feynmann-Kac formula, and
Girsanov’s Theorem
The solution is

u = eKte
∫ t

0 ∇Udse
∫ t

0 dqMtu0

+ ∑
k 6=0

∫ t

0
eK (t−s)e

∫ (t−s)
0 ∇Udr e

∫ t
s dqMt−s

× (c1/2
k dbk

s + dk |k |1/3ds)ek (x)

K is the operator K = ν∆ + ∇∆−1tr(∇u∇)

Mt is the Martingale

Mt = e{−
∫ t

0(U+u)(Bs ,s)·dBs− 1
2
∫ t

0 |(U+u)(Bs ,s)|2ds}

Using Mt as an integrating factor eliminates the inertial
terms from the equation (1)
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The Feynmann-Kac formula

The Feynmann-Kac formula gives the exponential of a
sum of terms of the form∫ t

s
dqk =

∫ t

0

∫
R

ln(1 + hk )Nk (dt ,dz)−
∫ t

0

∫
R

hkmk (dt ,dz),

by a computation similar to the one that produces the
geometric Lévy process [3, 4], mk the Lévy measure.
The form of the processes

e
∫ t

0
∫
R ln(1+hk )Nk (dt ,dz)−

∫ t
0
∫
R hk mk (dt ,dz)

= eNk
t lnβ+γ ln |k | = |k |γβNk

t

was found by She and Leveque [18], for hk = β−1
It was pointed out by She and Waymire [19] and by
Dubrulle [6] that they are log-Poisson processes.
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Computation of the structure functions

The Kolmogorov-Obukhov-She-Leveque scaling
The scaling of the structure functions is

Sp ∼ Cp|x −y |ζp ,

where
ζp =

p
3

+ τp =
p
9

+ 2(1− (2/3)p/3)

p
3 being the Kolmogorov scaling and τp the intermittency
corrections. The scaling of the structure functions is
consistent with Kolmogorov’s 4/5 law,

S3 =−4
5

ε|x −y |

to leading order, were ε = dE
dt is the energy dissipation
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The first few structure functions

S1(x ,y ,∞)≤ 2
C ∑

k∈Z3\{0}

|dk |(1−e−λk t )

|k |ζ1
|sin(πk · (x−y))|

We get a stationary state as t → ∞, and for |x −y | small,

S1(x ,y ,∞)∼ 2πζ1

C ∑
k∈Z3\{0}

|dk ||x−y |ζ1 ,

where ζ1 = 1/3 + τ1 ≈ 0.37. Similarly,

S2(x ,y ,∞)∼ 4πζ2

C2 ∑
k∈Z3\{0}

[dk
2 + (

C
2

)ck ]|x −y |ζ2 ,

when |x−y | is small, where ζ2 = 2/3 + τ2 ≈ 0.696.
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Higher order structure functions

Similarly,

S3(x ,y ,∞)∼ 23π

C3 ∑
k∈Z3\{0}

[|dk |3 + 3(C/2)ck |dk |]|x −y |.

For the pth structure functions, Sp is estimated [3, 4] by

Sp ≤
2p

Cp ∑
k∈Z3\{0}

σ
p
k · (−i

√
2sgn Mk )p U

(
−1

2p, 1
2 ,−

1
2(Mk/σk )2)

|k |ζp

×|sinp(πk · (x−y))|.

where U is the confluent hypergeometric function,
Mk = |dk |(1−e−λk t ) and σk =

√
(C/2)ck (1−e−2λk t ).
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KOSL Scaling of the Structure Functions,
higher order Reλ ∼ 16,000

Figure: The exponents of the structure functions as a function of
order, theory or Kolmogorov-Obukov-She-Leveque scaling (red),
experiments (disks), dns simulations (circles), from [5], and
experiments (X), from [18]. The Kolomogorov-Obukhov ’41
scaling is also shown as a blue line for comparion.
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KOSL Scaling of the Structure Functions, low
order Reλ ∼ 16,000

Figure: The exponents of the structure functions as a function of
order (−1,2], theory or Kolmogorov-Obukov-She-Leveque scaling
(red), experiments (disks), dns simulations (circles), from [5]. The
Kolmogorov-Obukov ’41 scaling is also shown as a blue line for
comparion.
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Computation of the Eddy Viscosity
(LES is similar)

With the stochastic closure, we can now compute the
eddy viscosity Rij = uiuj , using the same method we
used to compute the structure functions

∂uuj

∂xj
=

2
C

e−
∫ t

0(∇u+∇uT )ds

× ∑
k>0

2π[(k ·c1/2
k )c1/2

k + (2/C)(k ·dk )dk ]

|k |ζ2
e2

k

≈ K |∇u|(1−ζ2)/2e−
∫ t

0(∇u+∇uT )ds∆(1−ζ2)/4u

S = 1
2(∇u + ∇uT ) is the rate of strain tensor

The first (multiplicative) term is an exponential
(dynamic) Smagorinsky term
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What object determines the whole statistical
theory?
The invariant measure of turbulence

Hopf [7] found a functional differential equation for the
characteristic function of the invariant measure in 1952
Kolmogorov computed the invariant measure in 1980s.
It was a delta function supported at the origin

Eberhard Hopf
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The Invariant Measure and the Probability
Density Functions (PDF)

The Kolmogorov-Hopf equation for (1) is

∂φ

∂t
=

1
2

tr[PtCP∗t ∆φ] + tr[Pt D̄∇φ]+ < K (z)Pt ,∇φ > (3)

where D̄ = (|k |1/3Dk ), φ(z) is a bounded function of z,

Pt = e−
∫ t

0 ∇U dr Mt

m

∏
k
|k |2/3(2/3)Nk

t

Variance and drift

Qt =
∫ t

0
eK (s)PsCP∗seK ∗(s)ds, Et =

∫ t

0
eK (s)PsD̄ds (4)
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The invariant measure of the stochastic
Navier-Stokes

The solution of the Kolmogorov-Hopf equation (3) is

Rtφ(z) =
∫

H
φ(eKtPtz + Et I + y)N(0,Qt ) ∗PNt (dy)

The invariant measure of the Navier-Stokes equation
on Hc = H3/2+

(T3) is,

µ(dx) = e<Q−1/2EI, Q−1/2x>− 1
2 |Q

−1/2EI|2N(0,Q)(dx)

× ∑
k

δk ,l ∏
j 6=l

δN j
t

∞

∑
j=0

pj
ml δ(Nl−j)

where Q = Q∞, E = E∞.
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The differential equation for the PDF

The quantity that can be compared directly to
experiments is the PDF

E(δju) = E([u(x + s, ·)−u(x , ·)] · r) =
∫

∞

∞

fj(x)dx ,

j = 1, if r = ŝ is the longitudinal direction, and j = 2,
r = t̂ , t ⊥ s is a transversal direction
We take the trace of the Kolmogorov-Hopf equation (3)
The stationary equation satisfied by the PDF is

1
2

φrr +
1 + |c|rd

r
φr = φ, (5)

where d = τp− τ2p is the intermittency index.
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The Probability Density Function (PDF)

The PDF, without intermittency corrections, is a
Generalized Hyperbolic Distribution (GHD) of
Barndorff-Nielsen [1]:

f (x) =
(γ/δ)λ+ 1

2
√

2πK
λ+ 1

2
(δγ)

Kλ

(
α
√

δ2 + (x−µ)2
)

eβ(x−µ)(√
δ2 + (x−µ)2/α

)λ
(6)

Kλ is modified Bessel’s function of the second kind with
index λ, γ =

√
α2−β2. α,β,δ and µ are parameters.

(6) is the solution of (5), with d = 0, and the PDF that
can be compared a large class of experimental data.

O. Barndorff-Nielsen
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The PDF of Turbulence

The PDF becomes more complicated when the
intermittency is included
It becomes impossible to have a single PDF for all the
different moments
Instead one has to have a distribution that is a product
of a discrete and continuous distributions
The PDF of the velocity differences can be expressed
as

µ̄(·) =
∫

∞

−∞

∞

∑
j=0

(ln(|x |−6))j

j!
|x |6δNk

t −j(·)f (x)dx , (7)

where f (x) is the Generalized Hyperbolic Distribution in
Equation (6).
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The pth Moment of the Velocity Differences

The pth moment of the velocity difference is now easily
computed:∫

∞

−∞

∞

∑
j=0

(ln(|x |−6))j

j!
|x |6δNk

t −j(|x |
(

2
3

)Nk
t

)
p
3 f (x)dx

=
∫

∞

−∞

|x |3ξp f (x)dx =
∫

∞

−∞

|x |p+3τp f (x)dx

where
ξp =

p
3

+ τp

is the scaling exponent of the pth structure function,
with the intermittency correction τp = 2(1− (2/3)

p
3 )

Thus the pth moment is

µ̄(|δv |p) =
∫

∞

−∞

|x |3ζp f (x)dx (8)
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Prandtl-von Kármán log-law for fluctuations

The Prandtl-von Kármán log-law in the inertial range:

〈u〉/uτ = κ
−1 ln(yuτ/ν) + B, (9)

uτ =
√

τw/ρ is friction velocity, based on wall stress τw ,
κ the von Kármán constant and B a constant
Marusic and Kunkel [13], Hultmark et al. [8] and
Marusic [12], Marusic et al. [15] and Meneveau and
Marusic [14] proposed a universal log-law, for the
streamwise fluctuations u′ = (u−〈u〉)/uτ:

〈(u′)2p〉1/p = Bp−Ap ln(y/δ) = Dp(Reτ)−Ap ln(y+)
(10)

motivated by the "attached eddy hypothesis" of
Townsend [20]
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The coefficients of the log-law for the
fluctuations

The stochastic closure shows that the universal
constants satisfy the relationship

Ap =
C1/p

p

C1

(
1
l∗

)ζ1−
ζp
p

A1.

where ζp = p/3 + τp = p/9 + 2(1− (2/3)p/3) are the
(KOSL) scaling exponents of the structure functions
and l∗ is a small number
The sub-Gaussian behavior of the Aps is caused by the
KOSL scaling
Moreover, if A1 is finite, then all the Aps are bounded:

Ap→
(

1
l∗

)ζ1−1/9

lim
p→∞

C1/p
p

C1
A1 = b A1

as p→ ∞, where b is a constant.
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Plot of Ap as a function of p

Figure: The first few coefficients Ap as functions of 2p (black
dots), compared with data (white dots) with Reynolds number
Reτ = 19,030. The blue line represents the Gaussian case.
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Plot of Ap as a function of p, for large p

However, the figure shows, that the decay of Ap to bA1 only
takes place for very large p.

Figure: The coefficients Ap for large values of p.
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Log of PDFs for the spanwise vorticity
GHDs in the inertial range, Gaussian in the viscous range

Figure: A comparison of the PDFs for the fluctuation in the inertial
and viscous range. Channel flow at Reτ=180. PDFs of spanwise
vorticity at different z+ locations
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Conclusions

The classical Reynolds decomposition (RANS) of
turbulent flow can be closed by a stochastic
Navier-Stokes equation for the small scale flow
The form of the noise in the small scale flow is
determined by the central limit theorem, the large
deviations principle (additive) and a simple jump
process multiplying the velocity (multiplicative)
The multiplicative noise gives, by the Feynmann-Kac
formula, the log-Poisson processes of She-Leveque,
Waymire and Dubrulle, that produce the intermittency
The estimate of the structure functions gives the
Kolmogorov-Obukhov-She-Leveque scaling, including
the intermittency corrections
The eddy viscosity can be computed from the small
scale flow, solving the closure problem
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More Conclusions

The statistics of the eddy viscosity can now be
compared to the statistics of subgrid models for LES
The Kolmogorov-Hopf equation of the stochastic
Navier-Stokes equation is found and its solution gives
the invariant measure of turbulence
The measure gives the Generalized Hyperbolic
distributions as PDFs when projected, however,
different moments have different parameters, because
of intermittency
The PDF of Turbulence is a product of a discrete
(intermittency) and continuous (K-O ’41) probability
distribution
These methods extend to boundary flows, and permit a
computations of the coefficients in the generalized
Prandtl-von Kármán law for the velocity fluctuation
Lagrangian turbulence is still wide open
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Comparison with Simulations and Experiments

We now compare the above PDFs with the PDFs found
in simulations and experiments.
The direct Navier-Stokes (DNS) simulations were
provided by Michael Wilczek from his Ph.D. thesis, see
[21].
The experimental results are from Eberhard
Bodenschatz and Xu Haitao in Göttingen.
We thank both for the permission to use these results
to compare with the theoretically computed PDFs.
A special case of the hyperbolic distribution, the NIG
distribution, was used by Barndorff-Nielsen, Blaesild
and Schmiegel [2] to obtain fits to the PDFs for three
different experimental data sets.
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The PDF from simulations and fits for the
longitudinal direction

Figure: The PDF from simulations and fits for the longitudinal
direction.
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The log of the PDF from simulations and fits for
the longitudinal direction

Figure: The log of the PDF from simulations and fits for the
longitudinal direction, compare Fig. 4.5 in [21].
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The PDF from simulations and fits for the
transversal direction

Figure: The log of the PDF from simulations and fits for the a
transversal direction, compare Fig. 4.6 in [21].
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The PDFs from experiments and fits

Figure: The PDFs from experiments and fits.
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The log of the PDFs from experiments and fits

Figure: The log of the PDFs from experiments and fits.
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