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Power variations

@ For a stochastic process X = (X¢)¢>0 and k > 1 we define the
k-th order increments of X via

k
: (K
AlX =) :(—1)J<->X(ij)/n~
j=0 J

For instance,
AN X = Xijn—Xi—1)n and A7 X = Xi/n—2X(i-1)/n+X(i-2)/n-

@ The power variation of k-th order increments of X is given by
the statistic

n

V(Xa P, k)n = Z ‘A;),kX|p
i=k

In the following we will study the asymptotic behaviour of the
functional V/(X, p, k), as n — cc.



Power variation for the fractional Brownian motion:

First order asymptotics

Let B be a fractional Brownian motion with Hurst exponent
H € (0,1), that is, a centered Gaussian process with covariance
function

1

Cov(By', BY) = S ([t + |s]*" — |t — s*").

N

By the ergodic theorem it follows that :
First order asymptotics for B":

nYPRV(BH p k) — mpy = E[|AL, BYP.



Second order asymptotics

Theorem (Breuer—Major [1], Taqqu [2])

The following assertions hold:
(i) Assume that k =1 and H € (0,3/4), or k > 2. Then

_ d
vn (n HeHv(BH p, k), — mp’k) — N(0, vp k).
(i) When k =1 and H € (3/4,1) it holds that

n®—2H (n*HpH V(B", p, k)n — mp,k) <, Z,

where Z is a Rosenblatt random variable.

[1] Breuer and Major (1983). Central limit theorems for nonlinear functionals
of Gaussian fields. Journal of Multivariate Analysis 13.

[2] Tagqu (1979). Convergence of integrated processes of arbitrary Hermite
rank. Z. Wahrsch. Verw. Gebiete 50.



Extension

In a series of papers [1], [2] and [3] the above mentioned results
have been extended to more general processes (X;)¢>o of the form

t t
Xt:/ g(t —s)osdBs or Xt:/ 05 dGg
—00 0

where B is a Brownian motion, o predictable stochastic process,
g : R — R deterministic function and G is a stationary increment
Gaussian process.

[1] O.E. Barndorff-Nielsen, J.M. Corcuera and M. Podolskij (2009): Power
variation for Gaussian processes with stationary increments. Stochastic
Processes and Their Applications 119, 1845-865.

[2] O.E. Barndorff-Nielsen, J.M. Corcuera and M. Podolskij (2011): Multipower
variation for Brownian semistationary processes. Bernoulli 17(4), 1159-1194.

[3] O.E. Barndorff-Nielsen, J.M. Corcuera and M. Podolskij (2013): Limit
theorems for functionals of higher order differences of Brownian semi-stationary
processes. In Prokhorov and Contemporary Probability Theory.



Very little is known outside the two settings:
Q [t6 semimartingales
@ Gaussian driven processes.

Two exceptions are the two works

@ The work [1] on the quadratic variation of the Rosenblatt
process.

@ The work [2] on power variation of a class of fractional Lévy
processes.

[1] C. Tudor and F. Viens (2009). Variations and estimators for self-similarity
parameters via Malliavin calculus. Ann. Probab. 37.

[2] A. Benassi, S. Cohen and J. Istas (2004). On roughness indices for
fractional fields. Bernoulli 10(2), 357-373.



Background on Lévy processes

@ Lévy processes are stochastic processes with stationary and
independent increments, which are continuous in probability.

@ A symmetric Lévy process L, with no Gaussian component
and Lévy measure v, has the characteristic function

E[eiuLt] — etz[)(u)

with ‘
w(u) = /R(e”’x —1- I'UX]_{‘X|§1})V(G'X).



Blumenthal-Getoor index

o Let AL; = Ly — Ls_ denote the jump of L at time s.
The Blumenthal-Getoor index 3 is defined as

B = inf{r >0: /11 |x|"v(dx) < oo}.

@ A symmetric -stable Lévy process (S3S) with 5 € (0,2), has
a Lévy measure of the form

v(dx) = ko|x|"* P dx.
@ For (3-stable Lévy processes it holds that

£ = Blumenthal-Getoor index.



Model: Lévy moving averages

e We consider a stationary increment Lévy driven moving
average (SIMA)

X, = / {g(t —s) — go(—s)}dLs,

where L is a Lévy process without a Gaussian component, and
g is a deterministic function.

@ Process X is an infinitely divisible process with stationary
increments.

e For gp = 0, X is a moving average and is stationary.



Fractional Lévy processes

@ In the special case g(t) = go(t) = t¢, X is called a fractional
Lévy process and has the form

Xo= [ (=9 = (o)} s

o If in addition, L is an (-stable Lévy process then X is the
linear fractional stable motion with Hurst index H = o+ 1/f.
Here X is self-similar with index H, i.e. for all a > 0

(Xat)tzo 2 (aHXt)tzo-

For 8 = 2, X is the fractional Brownian motion.
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The semimartingale property of X

Consider a fractional Lévy process X:

X; = /;{(t—s)a ~(—s)% ) dL.

It follows from [1] that X is a semimartingale if and only if

/|X<1 IX| =7 v(dx) < oo.

In particular,
a>1-1/3 = X is a semimartingale
a<l-1/8 = X is not a semimartingale.

[1] B. and J. Rosinski (2014). On infinitely divisible semimartingales. Probab.
Theory Relat. Fields.
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Assumptions on X; = [* _{g(t —s) — go(—s)} dLs

Assumption (A):

(i): g(x) ~ cox™ as x — 0, with « > 0 and ¢y # 0.
(ii): For some 6 € (0, 2) it holds that

limsup t’v((—t, 1)) < .
t—o0

(iii): g € C*((0,0)), and for some § > 0,
() < KIx*™F, x€(0,9),

gk e 19((8,00)), and |g(¥)]| is decreasing on (8, 00). And
g — g € L(R).

Assumption (A) guarantees the existence of process X.
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@ We will see that the limit theory for power variation
n
V(p, k)n =D |ATXIP asn— oo
i=k

gives quite surprising results. In particular, it depends on the
interplay between the four parameters

k p Q@ and I5;
order of increments  power  behaviour of g at 0 BG-index of L
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First order asymptotics for V(p, k), = S7_, [A7, X[

Theorem (B., Lachiéze-Rey and Podolskij)

Assume that assumption (A) holds and L is a Lévy process without
Gaussian component with Blumenthal-Getoor index (3 € (0, 2).

(i): If a € (0,k —1/p) and p > [3, we obtain as n — oo

n°PV(p, K)o “5 |oP S |ALT,[PVin
m: Trm€e[0,1]

where (Tm)m>1 are jump times of L, (Um)m>1 is an i.i.d. sequence
of U([0, 1])-distributed random variables independent of L,

k [k

hi(x) = Z(—l)’<.>(x -5
j=0 J
>

[hi (1 4+ Up)IP.




(i): Ifa € (0,k —1/p) and p > j3, then

nPV(p, K)o 5 |oP 3. |ALT,|PVin = Z
m: Tm€e[0,1]

@ The limit Z is infinitely divisible with Lévy measure
-1
(v@n)o((y,v) — |aylPv)

where 1 denotes the law of

V]_ = Z ’hk(/ + Ul)’p.
1=0

@ Convergence in probability does not hold.
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First order asymptotics for power variation

Theorem (cont.)

(ii): Assume that L is a SBS process with 3 € (0,2).
Ifa € (0,k—1/8) and p < 3, we obtain

nPeB) =1y (p, k), — E[|U|P]

where U is a S8S random variable defined via

U .= C()/ hk(S)dLs.
R
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First order asymptotics for power variation

Theorem (cont.)
Assume that p > 1.

(ii): fa>k—1/p, p>pora>k—1/3, p< 3, we deduce
p [l
2V (p, K)o 5> [ IF s
0

with

S
FO = [ %(s - wyaL,.

— 00
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Summary of first order asymptotics

(i): If o € (0,k —1/p) and p > 3, we obtain as n — oo

nPV(p, K)o S |olP S AL, P Vi
m: Tme[0,1]

(ii): Assume that L is a SfS process with [ € (0,2).
If « € (0,k —1/pB) and p < 3, we obtain

e YO=1y (p k), = E[ILP)P).

(iii): Assume p > 1. Ifa >k —1/p, p> 3 or
a>k—1/8, p<f, we deduce

1
n*=1V(p, k), &/ |F{R)|Pds.
0
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@ The above three cases covers all possible cases besides the
three boundary cases:

a=k—-1/p, a=k—-1/8, p=0.

@ The rate of convergence in cases (i)—(iii) uniquely identifies
the parameters « and 3. This might be useful for statistical
applications.

@ Cases (ii) and (iii) can be extended to a functional
convergence. Case (i) is more problematic.
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Gaussian vs. non-Gaussian: Case (i)

Let X be the linear fractional B-stable motion with index H
(B < 2). Suppose that H< k—1/p+1/8 and p > 3. Then

nPIPPRV (p k), B3 Z = P Y |ALT, [PV,
m: Tm€[0,1]

For B = 2, X is the fractional Brownian motion and one has

n~1PHY () k), N mp k.
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Sketch of proof: Case (i)

Step 1: Prove the result when L is a compound Poisson process.

Step 2: Show that small jumps of L are negligible in the limit
(we use estimates of [1]).

Step 3: Combine Steps 1 and 2 to conclude the proof.

[1] B. Rajput and J. Rosifiski (1989). Spectral representations of infinitely
divisible processes. Probab. Theory Relat. Fields 82(3), 451-487.
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Sketch of proof: Case (i)

Step 1: Prove the result when L is a compound Poisson process.

e For x € R let {x} := [x] — x € [0,1) denote the rounding of
X.

o If W is an absolutely continuous random variable then a
classical result by Tukey (1938) states that

(nW} -5 u([0,1])  asn— .
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Second order asymptotics associated with case (ii)

Theorem (B., Lachiéze-Rey and Podolskij)
Assume that L is a SS process with 3 € (0, 2).
(a): Fork >2, a € (0,k—2/B) and p < 3/2, we obtain

v/ (et YD1y (p, k), — E[JUJPT) —25 (0, v2).

(b): Fork =1, a €(0,1—1/5) and p < /2, it holds that

1— L

i Tap (np(a+1/@)—1 V(p,k)n — E[|U|p]) N S(1—a)8

where S1_o)3 is a totally right skewed (1 — a)3-stable random
variable with mean zero.
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For the linear fractional stable motion, the self-similarity implies
that the random variables in (b) are of form

n_i(l,la)g Z (Y; —E[Y]) where Yi = | X; — Xi—1]P.
i—1

The sequence (Y});en is stationary and each Y; has finite second
moment. By (b) we have that

T S (Vi — E[Vi]) - Saoays,
i=1

which is very different from what is observed in the classical case
with small dependence in (Y})jen.
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@ An idea of proof relies on the identity

1 — exp(iux)
’X|P = ap/RWdu7 p € (O, ].)

This identity connects p-th moments of random variables with
their characteristic functions.

e Part (b) uses methods of [1] and [2] established for discrete
moving averages.

[1]: Ho and Hsing (1997). Limit theorems for functionals of moving averages.
Ann. Probab. 25.

[2]: Surgailis (2004): Stable limits of sums of bounded functions of
long-memory moving averages with finite variance. Bernoulli 10.
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Thank you for your attention!

And congratulation Ole!
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