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Power variations

For a stochastic process X = (Xt)t≥0 and k ≥ 1 we define the
k-th order increments of X via

∆n
i ,kX :=

k∑
j=0

(−1)j
(
k
j

)
X(i−j)/n.

For instance,

∆n
i ,1X = Xi/n−X(i−1)/n and ∆n

i ,2X = Xi/n−2X(i−1)/n+X(i−2)/n.

The power variation of k-th order increments of X is given by
the statistic

V (X , p, k)n :=
n∑

i=k
|∆n

i ,kX |p.

In the following we will study the asymptotic behaviour of the
functional V (X , p, k)n as n→∞.
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Power variation for the fractional Brownian motion:
First order asymptotics

Let BH be a fractional Brownian motion with Hurst exponent
H ∈ (0, 1), that is, a centered Gaussian process with covariance
function

Cov(BH
t ,BH

s ) = 1
2
(
|t|2H + |s|2H − |t − s|2H).

By the ergodic theorem it follows that :
First order asymptotics for BH :

n−1+pHV (BH , p, k)n
P−→ mp,k := E[|∆1

1,kBH |p].
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Second order asymptotics

Theorem (Breuer–Major [1], Taqqu [2])

The following assertions hold:
(i) Assume that k = 1 and H ∈ (0, 3/4), or k ≥ 2. Then

√
n
(
n−1+pHV (BH , p, k)n −mp,k

) d−→ N (0, vp,k).

(ii) When k = 1 and H ∈ (3/4, 1) it holds that

n2−2H
(
n−1+pHV (BH , p, k)n −mp,k

) d−→ Z ,

where Z is a Rosenblatt random variable.
[1] Breuer and Major (1983). Central limit theorems for nonlinear functionals
of Gaussian fields. Journal of Multivariate Analysis 13.
[2] Taqqu (1979). Convergence of integrated processes of arbitrary Hermite
rank. Z. Wahrsch. Verw. Gebiete 50.
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Extension

In a series of papers [1], [2] and [3] the above mentioned results
have been extended to more general processes (Xt)t≥0 of the form

Xt =
∫ t

−∞
g(t − s)σs dBs or Xt =

∫ t

0
σs dGs

where B is a Brownian motion, σ predictable stochastic process,
g : R→ R deterministic function and G is a stationary increment
Gaussian process.
————————————–
[1] O.E. Barndorff-Nielsen, J.M. Corcuera and M. Podolskij (2009): Power
variation for Gaussian processes with stationary increments. Stochastic
Processes and Their Applications 119, 1845–865.
[2] O.E. Barndorff-Nielsen, J.M. Corcuera and M. Podolskij (2011): Multipower
variation for Brownian semistationary processes. Bernoulli 17(4), 1159–1194.
[3] O.E. Barndorff-Nielsen, J.M. Corcuera and M. Podolskij (2013): Limit
theorems for functionals of higher order differences of Brownian semi-stationary
processes. In Prokhorov and Contemporary Probability Theory.
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Very little is known outside the two settings:
1 Itô semimartingales
2 Gaussian driven processes.

Two exceptions are the two works
1 The work [1] on the quadratic variation of the Rosenblatt

process.
2 The work [2] on power variation of a class of fractional Lévy

processes.

——————
[1] C. Tudor and F. Viens (2009). Variations and estimators for self-similarity
parameters via Malliavin calculus. Ann. Probab. 37.
[2] A. Benassi, S. Cohen and J. Istas (2004). On roughness indices for
fractional fields. Bernoulli 10(2), 357–373.
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Background on Lévy processes

Lévy processes are stochastic processes with stationary and
independent increments, which are continuous in probability.

A symmetric Lévy process L, with no Gaussian component
and Lévy measure ν, has the characteristic function

E[eiuLt ] = etψ(u)

with
ψ(u) =

∫
R

(eiux − 1− iux1{|x |≤1}) ν(dx).
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Blumenthal-Getoor index

Let ∆Ls = Ls − Ls− denote the jump of L at time s.
The Blumenthal-Getoor index β is defined as

β := inf
{
r ≥ 0 :

∫ 1

−1
|x |rν(dx) <∞

}
.

A symmetric β-stable Lévy process (SβS) with β ∈ (0, 2), has
a Lévy measure of the form

ν(dx) = k0|x |−1−βdx .

For β-stable Lévy processes it holds that

β = Blumenthal-Getoor index.
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Model: Lévy moving averages

We consider a stationary increment Lévy driven moving
average (SIMA)

Xt =
∫ t

−∞

{
g(t − s)− g0(−s)

}
dLs ,

where L is a Lévy process without a Gaussian component, and
g is a deterministic function.
Process X is an infinitely divisible process with stationary
increments.
For g0 = 0, X is a moving average and is stationary.
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Fractional Lévy processes

In the special case g(t) = g0(t) = tα+, X is called a fractional
Lévy process and has the form

Xt =
∫ t

−∞

{
(t − s)α − (−s)α+

}
dLs .

If in addition, L is an β-stable Lévy process then X is the
linear fractional stable motion with Hurst index H = α + 1/β.
Here X is self-similar with index H, i.e. for all a > 0

(Xat)t≥0
D= (aHXt)t≥0.

For β = 2, X is the fractional Brownian motion.
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The semimartingale property of X

Consider a fractional Lévy process X :

Xt =
∫ t

−∞

{
(t − s)α − (−s)α+

}
dLs .

It follows from [1] that X is a semimartingale if and only if∫
|x |≤1

|x |
1

1−α ν(dx) <∞.

In particular,

α > 1− 1/β ⇒ X is a semimartingale
α < 1− 1/β ⇒ X is not a semimartingale.

————————————
[1] B. and J. Rosiński (2014). On infinitely divisible semimartingales. Probab.
Theory Relat. Fields.
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Assumptions on Xt = ∫ t
−∞{g(t − s)− g0(−s)} dLs

Assumption (A):

(i): g(x) ∼ c0xα as x → 0, with α > 0 and c0 6= 0.

(ii): For some θ ∈ (0, 2) it holds that

lim sup
t→∞

tθν((−t, t)c) <∞.

(iii): g ∈ Ck((0,∞)), and for some δ > 0,

|g (k)(x)| ≤ K |x |α−k , x ∈ (0, δ),

g (k) ∈ Lθ((δ,∞)), and |g (k)| is decreasing on (δ,∞). And
g − g0 ∈ Lθ(R).

Assumption (A) guarantees the existence of process X .
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Remarks

We will see that the limit theory for power variation

V (p, k)n =
n∑

i=k
|∆n

i ,kX |p as n→∞

gives quite surprising results. In particular, it depends on the
interplay between the four parameters

k︸︷︷︸
order of increments

p︸︷︷︸
power

α︸︷︷︸
behaviour of g at 0

and β︸︷︷︸
BG-index of L
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First order asymptotics for V (p, k)n = ∑n
i=k |∆n

i ,kX |p

Theorem (B., Lachièze-Rey and Podolskij)
Assume that assumption (A) holds and L is a Lévy process without
Gaussian component with Blumenthal-Getoor index β ∈ (0, 2).

(i): If α ∈ (0, k − 1/p) and p > β, we obtain as n→∞

nαpV (p, k)n
L−s−→ |c0|p

∑
m: Tm∈[0,1]

|∆LTm |pVm

where (Tm)m≥1 are jump times of L, (Um)m≥1 is an i.i.d. sequence
of U([0, 1])-distributed random variables independent of L,

hk(x) :=
k∑

j=0
(−1)j

(
k
j

)
(x − j)α+,

Vm :=
∞∑

l=0
|hk(l + Um)|p.
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Theorem
(i): If α ∈ (0, k − 1/p) and p > β, then

nαpV (p, k)n
L−s−→ |c0|p

∑
m: Tm∈[0,1]

|∆LTm |pVm := Z

1 The limit Z is infinitely divisible with Lévy measure

(ν ⊗ η) ◦
(
(y , v) 7→ |c0y |pv

)−1

where η denotes the law of

V1 =
∞∑

l=0
|hk(l + U1)|p.

2 Convergence in probability does not hold.
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First order asymptotics for power variation

Theorem (cont.)
(ii): Assume that L is a SβS process with β ∈ (0, 2).
If α ∈ (0, k − 1/β) and p < β, we obtain

np(α+1/β)−1V (p, k)n
P−→ E[|U|p]

where U is a SβS random variable defined via

U := c0

∫
R
hk(s)dLs .
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First order asymptotics for power variation

Theorem (cont.)
Assume that p ≥ 1.

(iii): If α > k − 1/p, p > β or α > k − 1/β, p < β, we deduce

nkp−1V (p, k)n
P−→
∫ 1

0
|F (k)

s |pds

with
F (k)

s =
∫ s

−∞
g (k)(s − u)dLu.
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Summary of first order asymptotics

Theorem
(i): If α ∈ (0, k − 1/p) and p > β, we obtain as n→∞

nαpV (p, k)n
L−s−→ |c0|p

∑
m: Tm∈[0,1]

|∆LTm |pVm.

(ii): Assume that L is a SβS process with β ∈ (0, 2).
If α ∈ (0, k − 1/β) and p < β, we obtain

np(α+1/β)−1V (p, k)n
P−→ E[|L̃(k)

1 |
p].

(iii): Assume p ≥ 1. If α > k − 1/p, p > β or
α > k − 1/β, p < β, we deduce

nkp−1V (p, k)n
P−→
∫ 1

0
|F (k)

s |pds.
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Remarks

The above three cases covers all possible cases besides the
three boundary cases:

α = k − 1/p, α = k − 1/β, p = β.

The rate of convergence in cases (i)–(iii) uniquely identifies
the parameters α and β. This might be useful for statistical
applications.

Cases (ii) and (iii) can be extended to a functional
convergence. Case (i) is more problematic.
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Gaussian vs. non-Gaussian: Case (i)

Corollary
Let X be the linear fractional β-stable motion with index H
(β < 2). Suppose that H < k − 1/p + 1/β and p > β. Then

n−p/β+pHV (p, k)n
L−s−→ Z = |c0|p

∑
m: Tm∈[0,1]

|∆LTm |pVm.

For β = 2, X is the fractional Brownian motion and one has

n−1+pHV (p, k)n
P−→ mp,k .
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Sketch of proof: Case (i)

Step 1: Prove the result when L is a compound Poisson process.

Step 2: Show that small jumps of L are negligible in the limit
(we use estimates of [1]).

Step 3: Combine Steps 1 and 2 to conclude the proof.

—————————
[1] B. Rajput and J. Rosiński (1989). Spectral representations of infinitely
divisible processes. Probab. Theory Relat. Fields 82(3), 451–487.
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Sketch of proof: Case (i)

Step 1: Prove the result when L is a compound Poisson process.

For x ∈ R let {x} := dxe − x ∈ [0, 1) denote the rounding of
x .

If W is an absolutely continuous random variable then a
classical result by Tukey (1938) states that

{nW } d−→ U([0, 1]) as n→∞.
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Second order asymptotics associated with case (ii)

Theorem (B., Lachièze-Rey and Podolskij)
Assume that L is a SβS process with β ∈ (0, 2).
(a): For k ≥ 2, α ∈ (0, k − 2/β) and p < β/2, we obtain

√
n
(
np(α+1/β)−1V (p, k)n − E[|U|p]

) d−→ N (0, v2).

(b): For k = 1, α ∈ (0, 1− 1/β) and p < β/2, it holds that

n1− 1
(1−α)β

(
np(α+1/β)−1V (p, k)n − E[|U|p]

) d−→ S(1−α)β

where S(1−α)β is a totally right skewed (1− α)β-stable random
variable with mean zero.
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Remark

For the linear fractional stable motion, the self-similarity implies
that the random variables in (b) are of form

n−
1

(1−α)β
n∑

i=1

(
Yi − E[Yi ]

)
where Yi = |Xi − Xi−1|p.

The sequence (Yi )i∈N is stationary and each Yi has finite second
moment. By (b) we have that

n−
1

(1−α)β
n∑

i=1

(
Yi − E[Yi ]

) d−→ S(1−α)β,

which is very different from what is observed in the classical case
with small dependence in (Yi )i∈N.
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Remark

An idea of proof relies on the identity

|x |p = ap

∫
R

1− exp(iux)
|u|1+p du, p ∈ (0, 1).

This identity connects p-th moments of random variables with
their characteristic functions.

Part (b) uses methods of [1] and [2] established for discrete
moving averages.

———————
[1]: Ho and Hsing (1997). Limit theorems for functionals of moving averages.
Ann. Probab. 25.
[2]: Surgailis (2004): Stable limits of sums of bounded functions of
long-memory moving averages with finite variance. Bernoulli 10.
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Thank you for your attention!

And congratulation Ole!
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