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Vanilla RESTART

Execution of a program on a computer.
Failures due to

External reasons:
power failure, disk failure, processor failure

Internal reasons:
problems with the task itself.

Copying of a file from a remote system via FTP or HTTP.
Failures due to transmission errors.

Call centers — ‘customer service’ by telephone.
Failures due to broken connection etc.
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Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed.
If failure at some time U1 < L, restart with same L.
If another failure after U2 < L, restart again.
Total of N failures
Total time X to complete X = U#

1 + · · ·+ U#
N + L

U#
1 , . . . ,U

#
N failed attempts

F distribution of L
G distribution of U
H distribution of X

What can we say about H given F ,G?

EX =?? Easy

P(X > x) =?? Main problem here
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Total time X to complete X = U#
1 + · · ·+ U#

N + L

U#
1 , . . . ,U

#
N failed attempts, N = # of restarts

F distribution of L
G distribution of U
H distribution of X

SA–Fiorini-Lipsky-Rolski-Sheahan
Mathematics of Operations Research 2008

Theorem

If L ≡ `: P(X > x) ∼ Ce−γx

Cramér-Lundberg asymptotics: geometric sums, renewal equation

Theorem

If L has unbounded support: X is heavy-tailed

Theorem

Poisson failures, L gamma, shape α: P(X > x) ∼ C
log xα−1

xβ
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Theorem

If L has unbounded support: X is heavy-tailed

Why ??

Explanation if U
D
= L

Total time X to complete X = U#
1 + · · ·+ U#

N + L

U#
1 , . . . ,U

#
N failed attempts, N # of restarts

N > n ⇐⇒ U1 < L, . . . ,Un < L ⇐⇒ L = max(L,U1, . . . ,Un)

P(N > n) =
1

n + 1
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Complex Systems

Classical reliability theory

Series system

Parallel system

k-out-of-n

Repair; cold/warm standby; . . .
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2 - out - of - 3 processors, 2 repairmen, warm standby

Processor phases

{ Operating − δ
Repair − ρ W aiting
Booting − β

O

R

B

W

RRW

RRB

RBB

BBB

ORR

ORB

OBB

OOR

OOB

OOO

2ρ β

ρ 2β

ρ 3β

δ

2ρδ

ρ

β

δ 2β

2δ

ρ
2δ β

3δ
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Markov renewal equation. I

d u
λ

β

L ≡ `

Zd(x) = Pd(X > x), Zu(x) = Pu(X > x)

Zu(x) = P(Tu > ` > x) +

∫ x

0
Zd(x − y)1(y < `)βe−βy dy

Zd(x) = P(Td > x) +

∫ x

0
Zu(x − y)λe−λy dy

Theorem

Pu(X > x) ∼ Ce−γx where γ > 0 solves

1 =
λβ

(λ− γ)(β − γ)

[
e(γ−β)` − 1

]
and C = . . .
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Memory on task processing carried along to next Markov state !
Forgotten when down state entered
D set of down entrance states (dark red)
U set of up entrance states (dark green)
Markov renewal state space E = U ∪ D
Sojourn time Ti in i ∈ E depends on full generator matrix
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Markov renewal equation. II

Markov renewal state space E = U ∪ D
Imbedded Markov chain ξ0, ξ1, . . . alternates between U and D

Zi (x) = zi (x) +
∑
j∈E

∫ x

0
Zj(x − y)Fij(dy) , i ∈ E

Fdu(dt) = Pd(Td ∈ dt, ξ1 = u) Fud(dt) = Pu(Tu ∈ dt, t < `, ξ1 = d)

zd(x) = Pd(Td > x) zu(x) = P
(
Tu > ` > x

)
Theorem

Denote by R(α) the E × E matrix with entries

rdu(α) = Ed

[
eαTd ; ξ1 = u

]
, d ∈ D, u ∈ U ,

rud(α) = Eu

[
eαTu ; ` ≥ Td , ξ1 = d

]
, u ∈ U , d ∈ D ,

all other rij(α) = 0. Assume there exists γ = γ(`) such that R(γ)
is irreducible with spr(R) = 1. Then Pi (X > x) ∼ Cie

−γx , x →∞
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Markov renewal equation. III

Markov renewal equation

Zi (x) = zi (x) +
∑
j∈E

∫ x

0
Zj(x − y)Fij(dy) , i ∈ E

Spectral radius asymptotics requires light tails.

Asymptotics for standard renewal equation with heavy tails:
SA, Foss, Korshunov 2003

Z (x) = z(x) +

∫ x

0
Z (x − y)F (dy)

Needs density f (or ”local subexponential behaviour”)
Three cases (i) f << z , f ≈ z , f >> z
Markov renewal case: SA - Thøgersen 2015
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Heavy-tailed example
Ideal repair time R (random); rate η failures of repair

d u
β

η

Actual repair time: vanilla Restart

If R is Gamma: P(X > x) ∼ C
logα−1 x

xµ
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Random task time L

Pi (X > x) =

∫ ∞
0

Pi (X > x | L = `)P(L ∈ d`) .

Know Pi (X > x | L = `) ∼ Cie
−γ(`)x (with light Td tails)

γ(`) solution of 1 = spr
(
R(γ, `)

)
R(0,∞) transition matrix of ξ0, ξ1, . . . ⇒ γ(`)→ 0, `→∞

Corollary

If the task length L has unbounded support, the distribution of the
total task time X is heavy-tailed in the sense that
eδxP(X > x)→∞ for all δ > 0.

More precise asymptotics?
Needs asymptotics of γ(`)
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Theorem

Assume that for some function ϕ(`) it holds that

P
(
Tu > `, ξ1 = d

)
∼ kudϕ(`)

as `→∞ for some set of constants such that kud > 0 for at least
one pair u ∈ U , d ∈ D. Then

γ(`) ∼ µϕ(`) as `→∞, where µ =

∑
u∈U ,d∈D

πukud∑
i∈U∪D

πiEiTi

and π = (πi )i∈U∪D is the stationary distribution of the Markov
chain ξ, that is, the invariant probability vector for the matrix
P = R(0,∞).
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Proof ??

γ(`) solves 1 = spr
(
R(γ, `)

)
rdu(α) = Ed

[
eαTd ; ξ1 = u

]
, d ∈ D, u ∈ U ,

rud(α) = Eu

[
eαTu ; ` ≥ Tu , ξ1 = d

]
, u ∈ U , d ∈ D ,

1) Perturbation theory R(0,∞) = P
spr
(
R(γ, `)

)
= spr(P)+ ?? = 1+ ??

2) Implicit function theorem

3) Bare-hand (but Perron-Frobenius theory key tool)
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Back to Markov set-up

Markov renewal up states U : two dark green
Markov renewal down states D: two dark red

Markov up states U∗: all three green
Markov down states D∗: all six red

Root γ(`) for Markov renewal equation depends on full Markov
model
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Theorem

Assume that γ = γ(`) makes the spectral radius of the matrix
R(γ, `) equal to 1, where R(γ, `) is the matrix

F̂du[γ] 0

F̂ud [γ]0U

D

U D

F̂du[γ] =

∫ ∞
0

eγtFdu(dt)

F̂ud [γ] =

∫ `

0
eγtFud(dt)

Then γ(`) ∼ µe−δ` as `→∞, where −δ is the largest eigenvalue
of QU∗U∗ in the block-partitioning

QD∗U∗QD∗D∗

QU∗D∗QU∗U∗U∗

D∗

U∗ D∗

of the full generator Q and µ involves

Q−1U∗U∗ , Q−1D∗D∗ and further Perron-Frobenius

characteristics of Q.
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General approach for random task time L

f (`) density of `

Pi (X > x) =

∫ ∞
0

Pi (X > x | L = `) f (`)d`

∼
∫ ∞
0

Ci (`) exp
{
−γ(`)x} f (`)d`

∼
∫ ∞
0

Di exp
{
−µϕ(`)x} f (`)d`

Most often OK; now purely analytical problem.

Corollary

Assume failures are Poisson(δ) (or ϕ(`) = e−δ`) and that F is
gamma-like in the sense that f (`) ∼ cF `

α−1e−λ`, `→∞. Then

Pi (X > x) ∼
C ∗i Γ(λ/δ)

δα+λ/δ
logα−1 x

xλ/δ
as x →∞.
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4×4 table of examples of rough P(X > x) asymptotics
each of f (`), ϕ(`) LT Weibull; exponential; HT Weibull; power

.

. f (`) e−`
2

e−` e−`
1/2 1

`α

ϕ(`)

e−`
2 1

x e− log1/2 x e− log1/4 x 1
logα/2 x

e−` e− log2 x 1
x e− log1/2 x 1

logα x

e−`
1/2

e− log4 x e− log2 x 1
x

1
log2α x

1
`α e−x

2
2+α e−x

1
1+α e−x

1/2
1/2+α 1

x

Constants omitted e−c log
1/2 x ;

1

x
= e− log x

Logarithmic asymptotics
In some corners even log log asymptotics
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Tauberian theorem

Pi (X > x) ∼
∫ ∞
0

Di (`) exp
{
−µϕ(`)x} f (`)d`

Theorem

Define ϕI (t) =
∫∞
t ϕ(y) dy and assume

f (t) = ϕ(t)ϕI (t)β−1L0
(
ϕI (t)

)
where L0(s) is slowly varying at s = 0. Then

Pi (X > x) ∼ D∗i
Γ(β)

µβ
L0(1/x)

xβ
, x →∞ .



Vanilla RESTART Complex Systems Markov renewal model Random task time Rare events Variable rates Checkpointing

Rare events approach

P
(
X (`) > x

)
: sofar first x →∞, then `→∞.

For a moment just `→∞

Regenerative process: i.i.d. cycles τ1, τ2, . . .
a(`) probability of event in cycle, X (`) total time

As a(`) ↓ 0: EX (`) ∼ Eτ
a(`)

,
a(`)

Eτ
X (`)→ exp(1)

Cycle start here: entrance to reference Markov renewal state

τ1 τ2 τ3
∗

X (`)

Express Eτ, a(`) in terms of the πi , EiT , Pu(Tu > `) etc.

Theorem

EX (`) ∼ 1

γ(`)
∼ 1

µϕ(`)
, `→∞.
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Non-exponential distributions

(failure times, repair times etc.)
Phase-type distributions; e.g. Erlang(2)
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Figure: E2 repair times, 2-out-of-3
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Variable rates

2 - out - of - 3 processors, 2 repairmen, warm standby

RRW

RRB

RBB

BBB

ORR

ORB

OBB

OOR

OOB

OOO

2ρ β

ρ 2β

ρ 3β

δ

2ρδ

ρ

β

δ 2β

2δ

ρ
2δ β

3δ

Rate ρ of each processor
Total rate 3ρ in OOO, 2ρ in OOO
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Task processed at rate ρu(t) in u ∈ U

completion at time inf
{
s > 0 :

∫ s

0
ρu(t)dt ≥ `

}
if < Tu

With ρu(t) ≡ 1 we needed Eu

[
eαTu ; ` ≥ Tu , ξ1 = d

]
; now

Eu

[
eαTu ; ` ≥

∫ Tu

0
ρu(t)dt , ξ1 = d

]
(∗)

Theorem

Consider the Markov model with ρu(t) = rJ(t). Then (*) becomes

eTu

(
I− exp

{
∆−1r

(
QU∗U∗ + αI

)
`
})

(−QU∗U∗ − αI)−1QU∗D∗ed .

Independent rates Markov(A), Tu exponential(δ)
Formulas in terms of

∆−1r A− δ

2

(
∆−1r eeT + eeT∆−1r

)
Or Tu PH
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Fragmentation

K parts, L = L1 + · · ·+ LK

Equidistant, footer and header, etc.

Parallel computing:
X = max(X1, . . . ,XK )
E.g. Monte Carlo, R = R1 + · · ·+ RK replications, Rk = R/K

Checkpointing:
X = X1 + · · ·+ XK

Previous part needs completion



Vanilla RESTART Complex Systems Markov renewal model Random task time Rare events Variable rates Checkpointing

Fragmentation

K parts, L = L1 + · · ·+ LK

Equidistant, footer and header, etc.

Parallel computing:
X = max(X1, . . . ,XK )
E.g. Monte Carlo, R = R1 + · · ·+ RK replications, Rk = R/K

Checkpointing:
X = X1 + · · ·+ XK

Previous part needs completion



Vanilla RESTART Complex Systems Markov renewal model Random task time Rare events Variable rates Checkpointing

Fragmentation

K parts, L = L1 + · · ·+ LK

Equidistant, footer and header, etc.

Parallel computing:
X = max(X1, . . . ,XK )
E.g. Monte Carlo, R = R1 + · · ·+ RK replications, Rk = R/K

Checkpointing:
X = X1 + · · ·+ XK

Previous part needs completion



Vanilla RESTART Complex Systems Markov renewal model Random task time Rare events Variable rates Checkpointing

Fragmentation

K parts, L = L1 + · · ·+ LK

Equidistant, footer and header, etc.

Parallel computing:
X = max(X1, . . . ,XK )
E.g. Monte Carlo, R = R1 + · · ·+ RK replications, Rk = R/K

Checkpointing:
X = X1 + · · ·+ XK

Previous part needs completion



Vanilla RESTART Complex Systems Markov renewal model Random task time Rare events Variable rates Checkpointing

Checkpoint modeling

0 = t0 t1 t2 tK−1 tK = L
h1 h2 hK

A: L deterministic, L ≡ `, checkpoints deterministic and
equally spaced,
t1 = h/K , t2 = 2h/K , . . . , tK−1 = (K − 1)h/K .

B: L deterministic, checkpoints deterministic but not
equally spaced.

C: T is deterministic, checkpoints random: outcome of
order statistics K − 1 i.i.d. uniform r.v.’s on (0, t).

D: L is random and the checkpoints equally spaced,
hk ≡ h. Thus, K = dL/he is random

E: L is random and the checkpoints are given by
tk = t ′kL for a deterministic set of constants
0 = t ′0 < t ′1 < . . . < t ′K−1 < 1.
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Key questions when checkpointing

H(x) = P(X1 + · · ·+ XK > x) ∼ ??

Which scheme is best given K?
Conjecture: main contribution to X comes from longest Lk .
I.e., it should be best to take Lk = L/K (Model A).

NB: ignores cost of checkpointing
K =∞ is optimal if we are free to choose K ; then X = L
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Which scheme is best given K?
Take L deterministic, L ≡ ` (Models A,B,C).

0 = t0 t1 t2 tK−1 tK = L = `
h1 h2 hK

A: Checkpoints are deterministic and equally spaced,
t1 = t/K , t2 = 2t/K , . . . , tK−1 = (K − 1)t/K .
Equivalently, hk = t/K .

B: Checkpoints are deterministic but not equally spaced,
hk 6= h` for k 6= `.

C: Checkpoints are random: the set {t1, . . . , tK−1} is
the outcome of K − 1 i.i.d. uniform r.v.’s on (0, t).
That is, t1 < · · · < tK−1 are the order statistics of
K − 1 i.i.d. uniform r.v.’s on (0, t).

Conjecture: main contribution to X comes from longest Tk .
I.e., it should be best to take Tk = T/K (Model A).
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Ordering of checkpointing models A,B,C

Conjecture I:
Checkpointing is always an improvement on simple RESTART.

Conjecture II:
main contribution to X comes from longest Lk . I.e., it should be
best to take Lk = L/K (Model A)

.

Wrong for all failure distributions G ;
Right for Poisson failures + something more.

What does improvement, best mean?
E.g. (i) EXA ≤ EXB and EXA ≤ EXC.
Another possibility:
(ii) P(XA > x) ≤ P(XB > x) and P(XA > x) ≤ P(XC > x)
for all large x
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Counterexample

t = 2, K = 2 (one checkpoint at 1)
g(u) = g1(u) > 0 arbitrary on (0, 1], g(u) = g2(u) = 0 on (1, 2].
EXR and EXA easily computable with result EXR < EXA

Intuitive explanation:
Placing checkpoint at 1, failure mechanism starts afresh then.
I.e., the failure rate becomes g1(u) > 0 instead of g2(u) = 0.
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Positive results

Failure rate of U at u: g(u)/G (u)
Stochastic ordering X �st Y : either of

(i) ∃X ∗,Y ∗ s.t. X
D
= X ∗, Y

D
= Y ∗, X ∗ ≤ Y ∗ a.s.;

(ii)Ef (X ) ≤ Ef (Y ) when f ↑ (implies EX ≤ EY )
(iii) tail ordering P(X > x) ≤ P(Y > x).

Theorem

Assume that the failure rate µ(t) = g(t)/G (t) of G is
non-decreasing. Then XA(t) �st XB(t) �st XC(t) �st XR(t).
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Limit theorems models A,B,C. Comparison with R

Fixed task length `, Poisson(µ) failures.

P(XR(t) > x) ∼ CRe
−γ(`)x ,

γ(`) solves

∫ `

0
eγ(`)yµe−µy dy = 1; γ(`) ↓ 0, t →∞.

Model A: XA(t) = XR,1(`/K ) + · · ·+ XR,K (`/K )

P(XA(`) > x) ∼ CAx
K−1e−γ(`/K)x << P(XR(`) > x)

Model B: XB(`) = XR(`1) + · · ·+ XR(`K )

P(XB(`) > x) ∼ CBe
−γ(`∗)x , `∗ = max(`1, . . . , `K )

P(XA(`) > x) << P(XB(`) > x) << P(XR(`) > x)

Model C: XA(t) = XR(∆1) + · · ·+ XR(∆K )
∆1, . . . ,∆K uniform spacings of [0, `]

P(XC (`) > x) ∼ CC

xK−1
e−γ(`)x ,

P(XB(t) > x) << P(XC (t) > x) < P(XR(t) > x)

Reason: P(∆∗ ∈ dy) =
K − 1

`K−1
(`− y)K−1
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Limit theorems, Model D

T random, Poisson(µ) failures
checkpoints equally spaced, hk ≡ h for k < K , K = dT/he

Theorem

Assume F gamma-like, f (t) ∼ cF t
αe−λt . Then

P(XD > x) ∼ CDe
−γDx for some CD, γD > 0.

RESTART comparison: P(XR > x) ∼ CR

xλ/µ
Reduction from power tail to exponential tail.

Theorem

Assume F power-tailed, P(T > t) = L(t)/xα. Then

P(XD > x) ∼ CDL(x)

hαxα
.

RESTART comparison: P(XR > x) ∼ CR exp{−θ log log x}
Heavier than any power; reduction to power tail.
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Limit theorems, Model E

T random, Poisson(µ) failures
checkpoints tk = t ′kT for a deterministic set of constants
0 = t ′0 < t ′1 < . . . < t ′K−1 < 1.

Theorem

Assume tk = kT/K and that F is exponential(λ). Then

P(XE > x) ∼ CE)

xλ/µ+K−1

RESTART comparison: P(XR > x) ∼ CR

xλ/µ
Still power tail, but each checkpoint improves the power by 1.
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