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Main Goal of the Research

Classical/normal diffusion is described by a Gaussian process.

- Diffusion/Brownian motion

Is it possible to describe anomalous diffusion/fractional
diffusion with a stochastic process that is still based on a
Gaussian process?

- Time-fractional diffusion/grey Brownian motion (Schneider
1990, 1992)

- Erdélyi–Kober fractional diffusion/generalized grey
Brownian motion (Mura 2008, Pagnini 2012)

- Space-time fractional diffusion/present stochastic process
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The Space-Time Fractional Diffusion Equation

xDαθ K θ
α,β(x ; t) = tDβ∗ K θ

α,β(x ; t) , K θ
α,β(x ; 0) = δ(x) , (1)

0 < α ≤ 2 , |θ| ≤ min{α,2− α} , (2a)

0 < β ≤ 1 or 1 < β ≤ α ≤ 2 . (2b)

xDαθ : Riesz–Feller space-fractional derivative

F {xDαθ f (x);κ} = −|κ|α ei(signκ)θπ/2 f̂ (κ) . (3)

tDβ∗ : Caputo time-fractional derivative

L
{

tDβ∗ f (t); s
}

= sβ f̃ (s)−
m−1∑
j=0

sβ−1−k f (j)(0+) , (4)

with m − 1 < β ≤ m and m ∈ N.
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The Green Function K θ
α,β(x ; t)

Self-similarly law

K θ
α,β(x ; t) = t−β/α K θ

α,β

( x
tβ/α

)
. (5)

Symmetry relation

K θ
α,β(−x ; t) = K−θα,β(x ; t) , (6)

which allows the restriction to x ≥ 0.

Mellin–Barnes integral representation

K θ
α,β(x ; t) =

1
αx

1
2πi

∫ c+i∞

c−i∞

Γ( q
α)Γ(1− q

α)Γ(1− q)

Γ(1− β
αq)Γ(ρq)Γ(1− ρq)

( x
tβ/α

)q
dq , (7)

where ρ = (α− θ)/(2α) and c is a suitable real constant.

Mainardi, Luchko, Pagnini Fract. Calc. Appl. Anal. 2001
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Special Cases: x > 0

K 0
2,1(x ; t) =

1√
4πt

e−x2/(4t) = G(x ; t) = t−1/2G
( x

t1/2

)
, (8)

K θ
α,1(x ; t) = Lθα(x ; t) = t−1/αLθα

( x
t1/α

)
, (9)

K 0
2,β(x ; t) =

1
2

Mβ/2(x ; t) =
1
2

t−β/2Mβ/2

( x
tβ/2

)
, (10)

K θ
α,α(x ; t) =

t−1

π

(x/t)α−1 sin[π2 (α− θ)]

1 + 2(x/t)α cos[π2 (α− θ)] + (x/t)2α , (11)

K 0
2,2(x ; t) =

1
2
δ(x − t) . (12)
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Integral Representation Formulae for K θ
α,β(x ; t)

If x > 0 then

K θ
α,β(x ; t) =

∫ ∞
0

Lθα(x ; τ)L−ββ (t ; τ)
t
τβ

dτ , 0 < β ≤ 1 , (13)

K θ
α,β(x ; t) =

∫ ∞
0

Lθα(x ; τ) Mβ(τ ; t) dτ , 0 < β ≤ 1 , (14)

K θ
α,β(x ; t) =

∫ ∞
0

K θ
α,α(x ; τ) Mβ/α(τ ; t) dτ , 0 < β/α ≤ 1 . (15)

Mainardi, Luchko, Pagnini Fract. Calc. Appl. Anal. 2001
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Supplementary Results

From formulae (13) and (14) it follows that

1
τ1/β L−ββ

(
t

τ1/β

)
=

τ β

t1+β
Mβ

( τ
tβ
)
, 0 < β ≤ 1 , τ, t > 0 . (16)

From formulae (8) and (9)

K 0
2,1(x ; t) = G(x ; t) = L0

2(x ; t) . (17)

From formulae (8) and (10)

K 0
2,1(x ; t) = G(x ; t) =

1
2

M1/2(x ; t) . (18)
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Supplementary Results

Lθα(x ; t) =

∫ ∞
0

Lωη (x ; ξ)L−νν (ξ; t) dξ , α = ην , θ = ων , (19)

0 < α ≤ 2 , |θ| ≤ min{α,2− α} ,

0 < η ≤ 2 , |ω| ≤ min{η,2− η} , 0 < ν ≤ 1 .

In particular it holds

L0
α(x ; t) =

∫ ∞
0

L0
2(x ; ξ)L−α/2

α/2 (ξ; t) dξ (20)

=

∫ ∞
0

G(x ; ξ)L−α/2
α/2 (ξ; t) dξ . (21)

Mainardi, Pagnini, Gorenflo Fract. Calc. Appl. Anal. 2003
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Supplementary Results

Mν(x ; t) =

∫ ∞
0

Mη(x ; ξ)Mβ(ξ; t) dξ , ν = ηβ , (22)

0 < ν, η, β ≤ 1 .

In particular it holds

Mβ/2(x ; t) = 2
∫ ∞

0
M1/2(x ; ξ)Mβ(ξ; t) dξ (23)

= 2
∫ ∞

0
G(x ; ξ)Mβ(ξ; t) dξ . (24)

Mainardi, Pagnini, Gorenflo Fract. Calc. Appl. Anal. 2003
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New Integral Representation Formula for K θ
α,β(x ; t)

Consider formula (14), i.e. K θ
α,β(x ; t) =

∫ ∞
0

Lθα(x ; τ)Mβ(τ ; t) dτ ,

then and by using (19) it follows

K θ
α,β(x ; t) =

∫ ∞
0

{∫ ∞
0

Lωη (x ; ξ)L−νν (ξ; t) dξ
}

Mβ(τ, t) dτ

=

∫ ∞
0

Lωη (x ; ξ)

{∫ ∞
0

L−νν (ξ; t)Mβ(τ ; t) dτ
}

dξ

=

∫ ∞
0

Lωη (x ; ξ) K−νν,β (ξ; t) dξ , α = ην , θ = ων ,

0 < α ≤ 2 , |θ| ≤ min{α,2− α} , 0 < β ≤ 1 ,

0 < η ≤ 2 , |ω| ≤ min{η,2− η} , 0 < ν ≤ 1 .
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New Integral Representation Formula for K θ
α,β(x ; t)

K θ
α,β(x ; t) =

∫ ∞
0

Lωη (x ; ξ) K−νν,β (ξ; t) dξ , (25)

0 < x < +∞ , α = ην , θ = ων ,

0 < α ≤ 2 , |θ| ≤ min{α,2− α} , 0 < β ≤ 1 ,

0 < η ≤ 2 , |ω| ≤ min{η,2− η} , 0 < ν ≤ 1 .

In the spatial symmetric case, i.e. η = 2 and ω = 0 such that
L0

2 ≡ G, hence ν = α/2 and θ = 0 and formula (25) gives

K 0
α,β(x ; t) =

∫ ∞
0

G(x ; ξ) K−α/2
α/2,β (ξ; t) dξ . (26)

−∞ < x < +∞ , 0 < α ≤ 2 , 0 < β ≤ 1 .
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Special Cases: α = 2 and 0 < β ≤ 1

From (14) it results that

K−1
1,β (ξ; t) =

∫ ∞
0

L−1
1 (ξ; τ) Mβ(τ ; t) dτ

=

∫ ∞
0

δ(ξ − τ) Mβ(τ ; t) dτ = Mβ(ξ; t) , (27)

finally by using (24)

K 0
2,β(x ; t) =

∫ ∞
0

G(x ; ξ) K−1
1,β (ξ; t) dξ (28)

=

∫ ∞
0

G(x ; ξ) Mβ dξ =
1
2

Mβ/2(x ; t) . (29)
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Special Cases: 0 < α ≤ 2 and β = 1

From (14) it results that

K−α/2
α/2,1 (ξ; t) =

∫ ∞
0

L−α/2
α/2 (ξ; τ) M1(τ ; t) dτ

=

∫ ∞
0

L−α/2
α/2 (ξ; τ) δ(τ − t) dτ = L−α/2

α/2 (ξ; t) , (30)

finally by using (21)

K 0
α,1(x ; t) =

∫ ∞
0

G(x ; ξ) K−α/2
α/2,1 (ξ; t) dξ (31)

=

∫ ∞
0

G(x ; ξ) L−α/2
α/2 (ξ; t) dξ = L0

α(x ; t) . (32)
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Definitions in Stochastic Process Theory

Stationary stochastic processes: A stochastic process X (t)
whose one-time statistical characteristics do not change in the
course of time t , i.e. they are invariant relative to the time
shifing t → t + τ for any fixed value of τ , and two-time statistics
(e.g. autocorrelation) depend solely on the elapsed time τ ,

〈X (t)n〉 = 〈X n(t + τ)〉 = Cn , 〈X (t)X (t + τ)〉 = R(τ) . (33)



Gianni PAGNINI - Workshop on particle transport; with emphasis on stochastics. 6–7 November, 2014, Aarhus University

Definitions in Stochastic Process Theory
Stochastic processes with stationary increments: A
stochastic process X (t) such that the statistical characteristics
of its increments ∆X (t) = X (t)− X (t + τ) do not vary in the
course of time t , i.e. they are invariant relative to the time
shifting t → t + s for any fixed value of s,

〈∆X (t)〉 = 0 , 〈(∆X (t))2〉 = 2 [C2 − R(τ)] . (34)

Because R(τ = 0) = C2, when R(τ 6= 0) ' C2 − τ2H it holds

〈(∆X (t))2〉 = 2 [C2 − C2 + τ2H ] = 2 τ2H . (35)
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Definitions in Stochastic Process Theory

Self-similar stochastic process: A stochastic process X (t)
whose statistics are the same at different scales of time or
space, i.e. X (a t) and aHX (t) have equal statistical moments

〈X n(a t)〉 ' (a t)nH = anH tnH , (36)

〈[aHX (t)]n〉 ' anH〈X n(t)〉 = anH tnH . (37)

Hurst exponent H: The half exponent of the power law
governing the rate of changes of a random function by

〈[X (t)− X (0)]2〉 ' t2H . (38)
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H-sssi Stochastic Processes

H-sssi: Hurst self-similar with stationary increments processes

Example: The fractional Brownian motion, which is a
continuos-time Gaussian process G2H(t) without independent
increments and the following correlation function

〈G2H(t)G2H(s)〉 =
1
2

[
|t |2H + |s|2H − |t − s|2H

]
. (39)
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Product of Random Variables

Let Z1 and Z2 be two real independent random variables whose
PDFs are p1(z1) and p2(z2), respectively, with z1 ∈ R and
z2 ∈ R+. Then, the joint PDF is p(z1, z2) = p1(z1)p2(z2).

Let Z = Z1 Z γ
2 so that z = z1zγ2 , then, carrying out the variable

transformations z1 = z/λγ and z2 = λ, it follows that
p(z, λ) dz dλ = p1(z/λγ)p2(λ) J dz dλ, where J = 1/λγ is the
Jacobian of the transformation.

Integrating in dλ, the PDF of Z emerges to be

p(z) =

∫ ∞
0

p1

( z
λγ

)
p2(λ)

dλ
λγ

. (40)
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Product of Random Variables

Hence by applying the changes of variable z = xt−γΩ and
λ = τ t−Ω, integral formula (40) becomes

t−γΩp
( x

tγΩ

)
=

∫ ∞
0

τ−γp1

( x
τγ

)
t−Ωp2

( τ
tΩ

)
dτ . (41)

By setting
p1 ≡ G , p2 ≡ K−α/2

α/2,β , (42)

γ = 1/2 , Ω = 2β/α , (43)

formula (41) turns out to be identical to (26), i.e.

p(x ; t) =

∫ ∞
0

G(x ; τ) K−α/2
α/2,β (τ ; t) dτ ,

hence
p(x ; t) ≡ K 0

α,β(x ; t) . (44)
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Product of Random Variables
In terms of random variables it follows that

Z = X t−β/α and Z = Z1Z 1/2
2 , (45)

hence it holds

X = Z tβ/α = Z1 tβ/α Z 1/2
2 = G2β/α(t)

√
Λα/2,β . (46)

Since the random variable Z1 is Gaussian, i.e., p1 ≡ G, the
stochastic process G2β/α(t) = Z1tβ/α is a standard fBm with
Hurst exponent β/α < 1.

The random variable Λα/2,β = Z2 emerges to be distributed

according to p2 ≡ K−α/2
α/2,β .
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H-sssi Processes

Following the same constructive approach adopted by Mura
(PhD 2008) to built up the generalized grey Brownian motion
(Mura, Pagnini J. Phys. A 2008), the following class of H-sssi
processes is established.

Let Xα,β(t), t ≥ 0, be an H-sssi defined as

Xα,β(t) =
d
√

Λα/2,β G2β/α(t) , 0 < β ≤ 1 , 0 < β < α ≤ 2 , (47)

where =
d

denotes the equality of the finite-dimensional
distribution, the stochastic process G2β/α(t) is a standard fBm
with Hurst exponent H = β/α < 1 and Λα/2,β is an independent

non-negative random variable with PDF K−α/2
α/2,β (λ), λ ≥ 0,

then the marginal PDF of Xα,β(t) is K 0
α,β(x ; t).
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H-sssi Processes
Tthe finite-dimensional distribution of Xα,β(t) is obtained from
(40) according to

fα,β(x1, x2, . . . , xn; γα,β) =
(2π)−

n−1
2√

det γα,β
×∫ ∞

0

1
λn/2 G

( zn

λ1/2

)
K−α/2
α/2,β (λ) dλ , (48)

where zn is the n-dimensional particle position vector

zn =

 n∑
i,j=1

xi γα,β
−1(ti , tj) xj

1/2

,

and γα,β(ti , tj) is the covariance matrix

γα,β(ti , tj) =
1
2

(t2β/α
i + t2β/α

j − |ti − tj |2β/α) , i , j = 1, . . . ,n .
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Stochastic Solution of Space-Time Fractional Diffusion
For the one-point case, i.e., n = 1, formula (48) reduces to

fα,β(x ; t) =

∫ ∞
0

1
λ1/2 G

(
x t−β/α

λ1/2

)
K−α/2
α/2,β (λ) dλ

= K 0
α,β(x t−β/α) , (49)

or, after the change of variable λ = τ t−2β/α,

∫ ∞
0

1
τ1/2 G

( x
τ1/2

)
K−α/2
α/2,β

( τ

tβ/α

)
dτ = t−β/αK 0

α,β

( x
tβ/α

)
. (50)

This means that the marginal PDF of the H-sssi process Xα,β(t)
is indeed the solution of the symmetric space-time fractional
diffusion equation (1).
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Stochastic Process Generation

From (14) it follows that

K−α/2
α/2,β (ξ; t) =

∫ ∞
0

L−α/2
α/2 (ξ; τ) Mβ(τ ; t) dτ , 0 < β ≤ 1 , (51)

and by using the self-similarity properties and the changes of
variable ξ = t2β/αλ and τ = tβy it holds

K−α/2
α/2,β (λ) =

∫ ∞
0

L−α/2
α/2

(
λ

y2/α

)
Mβ(y)

dy
y2/α , 0 < β ≤ 1 . (52)
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Stochastic Process Generation

Integral (52) suggests to obtain Λα/2,β again by means of the
product of two independent random variables, i.e.

Λα/2,β = Λ1 · Λ
2/α
2 = Lext

α/2 · M
2/α
β , (53)

where Λ1 = Lext
α/2 and Λ2 =Mβ are distributed according to the

extremal stable density L−α/2
α/2 (λ1) and Mβ(λ2), respectively, so

that λ = λ1 λ
2/α
2 .
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Stochastic Process Generation

Moreover, from (16) and setting t = 1, the random variableMβ

can be determined by an extremal stable random variable
according to

Mβ =
[
Lext
β

]−β
, (54)

so that the random variable Λα/2,β is computed by the product

Λα/2,β = Lext
α/2 ·

[
Lext
β

]−2β/α
. (55)

Finally, the desired H-sssi processes are established as follows

Xα,β(t) =
√
Lext
α/2 ·

[
Lext
β

]−β/α G2β/α(t) . (56)
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Numerical Generation (by P. Paradisi)

Computer generation of extremal stable random variables of
order 0 < µ < 1 is obtained by using the method by Chambers,
Mallows and Stuck

Lext
µ =

sin[µ(r1 + π/2)]

(cos r1)1/µ

{
cos[r1 − µ(r1 + π/2)]

− ln r2

}(1−µ)/µ

, (57)

where r1 and r2 are random variables uniformly distributed in
(−π/2, π/2) and (0,1), respectively.

Chambers, Mallows, Stuck J. Amer. Statist. Assoc. 1976
Weron Statist. Probab. Lett. 1996
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Numerical Generation (by P. Paradisi)

The Hosking direct method is applied for generating the fBm
G2H(t), 0 < H < 1. In particular, first the so-called fractional
Gaussian noise Y2H is generated over the set of integer
numbers with autocorrelation function

〈Y2H(k)Y2H(k + n)〉 =
1
2

[
|n − 1|2H − |n|2H + |n + 1|2H

]
. (58)

Finally, the fBm is then generated as a sum of stationary
increments, i.e. Y2H(n) = G2H(n + 1)−G2H(n)

G2H(n + 1) = G2H(n) + Y2H(n) . (59)

Hosking Water Resour. Res. 1984
Dieker PhD Thesis Univ. of Twente, The Netherlands, 2004
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Numerical Set-up (by P. Paradisi)

For a given set of parameter values (α,β), 104 trajectories are
generated and the motion tracked for 103 time steps, which is
stated equal to 1 following formula (59).

Changing the time scale requires changing the time step, and
the associated trajectories can be simply derived without any
further numerical simulations by exploiting the self-similar
property.
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Simulations (by P. Paradisi)
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Simulations (by P. Paradisi)
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Simulations (by P. Paradisi)

-400
-300
-200
-100

 0
 100
 200
 300
 400

 0  200  400  600  800  1000

_=0.5 ; `=0.45
Sample Paths

X

t  0.001  0.003  0.005

PDF, t=1000

-30

-20

-10

 0

 10

 20

 30

 0  200  400  600  800  1000

_=1.5 ; `=0.5
Sample Paths

X

t  0.02  0.06

PDF, t=1000



Gianni PAGNINI - Workshop on particle transport; with emphasis on stochastics. 6–7 November, 2014, Aarhus University

Simulations (by P. Paradisi)
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Simulations (by P. Paradisi)
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