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From Lévy bases to random vector fields

We seek to construct random vector fields with a certain set of
desirable features.

Computationally tractable on a computer.
Computationally tractable with pen and paper.

Capable of reproducing the features of the problem at hand, e.g.,
correlation structure (spectrum), distributions (non-Gaussian,
one-point, multi-point, increments), volatility/intermittency
(energy dissipation, strain), geometric statistics (alignment of
vorticity), stationarity/homogeneity/isotropy (or not), etc.



A Gaussian example

Consider a homogeneous Gaussian random vector field,
v(x) = fw Fx—y)W(dy),

where F: R® — Mats(R) is a deterministic matrix-valued kernel
function and W is a homogeneous Gaussian vector-valued white

noise,
i f2 fis W
F=|f1 f2 f3], W=|W,|.
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This model is computationally tractable.



A Gaussian example

v(x) = fw F(x—y)W(dy) (1)

The correlation structure is entirely determined the kernel F,
R(x) := cov(v(x), v(0)) = fm@ F(x—y)F(—y)Tdy.
Equivalently, in Fourier space,
F IRl = 2n)  FIFIF[F]".
Given a correlation structure R, e.g., isotropic von Kdrman, we solve

the above equation for F and obtain the representation (1) of the
random vector field v.



A Gaussian example

v(x) = fR Flx-y)W(dy)
In this model, inhomogeneity and anisotropy is possible.
But everything is Gaussian.
If we use the model for turbulence, we get Gaussisan velocity

increments, no intermittency of the energy dissipation and
incorrect geometric statistics.



Enter Lévy bases and stochastic volatility

V() = fR Fx-y)o() Lidy

New integrator, the vector-valued Lévy basis L.
New integrand with a stochastic component o.

A Lévy basis L assigns random variables to subsets of R such that
» L(Ay),...,L(A,) are independent when Ay, ..., A, are disjoint,
» L(U;A;) =Y iL(A;) when Aj, A, ... are disjoint,
» L(A) is infinitely divisible.

The first two properties provides a way of constructing the integral.
The infinite divisibility provides a convenient calculus of
characteristic functions.



Infinite divisibility
Definition

A random variable X is infinitely divisible if it for any 7 can be
expressed as a sum of nindependent random variables,

X=Xy 4ot X .

Theorem

For an infinitely divisible R® -valued random variable X, its
characteristic function ¢px can be written as a certain exponential,

¢x (1) = E[exp(i(t, X))]

= exp(i(a, ty— 1(t,Bt) +fR3 (€SP —1—i(s, t)1]||s||51)c(ds)),

whereacR3, Be Mat] and c is a Lévy measure on R3.



Infinite divisibility

Many distributions are infinitely divisible.
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Some are not: Uniform, Beta.
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The normal inverse Gaussian distribution

Many possible shapes with normal inverse Gaussian distributions.

1.0

steepness &

S o
DR O

<
o

-1.0

asymmetry y



Calculus of characteristic functions

For the model
e e fR F(x-y)o() Lidy

the characteristic function ¢y) of v(x) becomes

(,bv(x)(t) =E

exp URS logpry) (Fx-po() ') dJ’)] )
where L'(y) is an infinitely divisible random variable.
Think of L' (y) as L(dy).

Ifo =1, then

log Py (8) = fR logyy (Flx— wiyady.



Building models is not more difficult

Under mild conditions (homogeneous L and o, E[L'] =0, cov(L) =1
and E[o2] = 1), the covariance tensor R becomes

R(x) = cov(v(x), v(0)) = fR FE=y)F(=y) Tdy,
and the spectral tensor & [R] becomes
F IRl = 2n)  FIFIF[F]*.
Thus, finding a kernel F that reproduces a given covariance tensor R

is just as easy (or difficult) as in the purely Gaussian case with no
volatility!



Case study: Isotropic incompressible turbulence

The spectral tensor is given in terms of the energy spectrum S,

Syl

F(Rily) = e

(6ﬂc ) Ak)
where y=y/|yll.

One can then show that two possible choices of F are the following.

FR@) = A (Ixeju,
FRve ) = fy (Il e + fo (1218 k,
where the functions fp, fi,2: R — R are given in terms of certains

one-dimensional integrals involving the energy spectrum and the
spherical Bessel functions.



Case study: Isotropic incompressible turbulence
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Case study: Isotropic incompressible turbulence
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Case study: Three-dimensional turbulence

Isotropic DNS FiSO « Faniso .

FISO Wlnhomo FISO FISO




Case study: Non-Gaussian Lévy basis

Consider a simple one-dimensional model with no volatility,

v(x) = fR fx=yLdy),
where everything is scalar-valued.

From the spectral density function & [p;], even and odd kernels
may be derived,

oY) = vV2/msin [F(p11Y?] (),
e (%) = v2/mcos [F1p1]'?] (%).



Case study: Non-Gaussian Lévy basis
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Case study: Non-Gaussian Lévy basis
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Case study: Non-Gaussian Lévy basis

Velocity increments v(x + ¢) — v(x) should have heavy-tailed and
slightly skewed distributions, approaching normal in the limit of
large lag ¢.
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Case study: Non-Gaussian Lévy basis

Without volatility (o), the correct development of increment
distributions and two-point correlators of the energy dissipation is
not reproduced. Intermittency is provided by o.
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Summary

For a model like

p(x) = fR Flx-y)o(y) Ldy)

» F determines the correlation structure

» o provides volatility and non-Gaussianness

» L can provide non-Gaussianness

» “poor man’s” non-Gaussian turbulence is possible with o = 1
» anisotropy is possible through F and L

» inhomogeneity is possible through o and L

Still remaining to be reproduced: the swirls. Recent results by
Chevillard, Robert and Vargas (2010, Europhys. Lett. 89) suggest that
a matrix-valued o closely related to the exponential of the strain
tensor may hold the key to the swirls.



Outlook

Current ongoing work is to implement simulators of

D) = fR F(x-y) o) Lidy)

in the following settings

» isotropic, incompressible, periodic boundary conditions: to
the used in connection with DNS of the Navier-Stokes
equations

» anisotropic, incompressible, atmospheric boundary layer
turbulence: to be used in connection with wind energy

» particle transport. ..

Spatio-temporal models

v(x, 1) = f Fx—y,t—3s)oa(y,s) Ldyds)
A(x,1)



