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Branching Processes — and Sgren

* Long before queuing S@ren, simulating Sgren, ruin
Sgren —there was Branching Sgren!

1. Convergence rates for branching processes. Ann. Probab. 4, 139-146 (1976).
2. (with N. Kaplan) Branching random walks I. Stoch. Proc. Appl. 4, 1-13 (1976).

3. (with N. Kaplan) Branching random walks II. Stoch. Proc. Appl. 4, 15-31
(1976).

4. (with H. Hering) Strong limit theorems for general supercritical branching
processes..........

12. On some two-sex population models. Ann. Probab. 8, 727-744 (1980).

13. (with H. Hering) Branching Processes. Birkhdauser, Boston Basel Stuttgart
(1983).

* Like queuing etc, branching makes extensive use of
regeneration properties, and thus Markov Renewal
Theory.

* Unlike it, branching deals with (natural) science.



Branching processes — from a
population theoretic viewpoint

* Unlike deterministic theory, branching
orocesses can handle finite populations
of individuals with varying behaviour.

* Closed real populations change at the
initiative of members.

* Independence is a natural but (too) far-
reaching idealisation of this.



Independence leads to:

The Malthusian dichotomy between
extinction and exponential growth.

The probability of extinction can be
determined,

as well as the rate of growth.

During exponential growth the population
composition — from age distribution to
pedigree - stabilises.



What if the independence
requirement is relaxed?

* Deterministic theories with a feedback loop
individual -> population -> environment ->
individual can create stable populations
asymptotically.

* But no reasonable finite stochastic population
models (even with environmental feedback)
can stabilise; very weak Markovianness
suffices to yield the explosion-or-extinction

dichotomy. So, what are the stabilities we seem
to observe?



The New Frontier: Carrying Capacity

What can be obtained if the basic ecological concept
of a carrying capacity is introduced?

Assume that there is a (large) number K such that the
population is supercritical, when the population is < K
and subcritical, otherwise — whatever that means....

Background:

— Age- and size-dependent general branching (PJ & FK, SPA
2000). Earlier papers by Kersting and FK. Explanation of
linear growth in PCR (PJ & FK, JTB 224, 2003)

— Sylvie Méléard and the French school, notably Tran, ESAIM
(2008): age-dependent birth-and-death, with the death
rate population dependent.

Similar ideas in queuing?



What is the basic pattern? A toy example.

* Z = population size at time (generation) n,

e ¢ =offspring random variable, =0 or 2.

* K= carrying capacity.

* P(£=2]2,,2Z,, ...2.)=K/(K+Z). (Like PCR.)

* The probability of splitting is > if Z_ is small
— reproduction is supercritical —and it is < 72,
it Z, > K—subcritical.

* Such a population must die out.
* Will it ever take off? (Come close to K?)

 And then, will it stay there (long)?



It the starting number Z, =z, T= time to
extinction, and T, = time to reaching size
dK, 0<d<1, then P(T<T, ) < d=.

e Easy to see: at any size k<dK, the probability of no
children = k/(K+k) < dK/(K+dK) = d/(1+d).

* Hence the probability of dying out without crossing
dK must be smaller than the same probability for
binary G-W {Y_} with P(£=0) = d/(1+d). But

P.(Y, =0 before dK) < P_(Y,— 0)=qg*.

* And g=d/(d+1) + (1/(d+1) )g?, yielding g=d.




Similarly: T, = O(log K)

Z>Y on{T, > n}
Hence, dK~ ZTdZ YTd ~ W(2/(1+d))"d and
T,=0(log K).

Further, E[T,] < CK for some C (Vatutin,
to appear).



Lingering around K

And once in a band around K, it stays there for a
long time, of the order e*f for some ¢>0, with a
probability that — 1, as K— oo (Large Deviation
Theory).

This example is much more elementary — large

deviations for binomial r. v., (Janson) and ¢ can
be calculated,

c=d(1-d)? /8(1+d) .

Actually, for any K, the expected time to leaving a
band (1+ d)Kis > eX .

FK, Sagitov, Vatutin, PJ and Haccou: J. Biol. Dyn.
March 2011.




Arél this is what things look like

K=50, and not one direct extinction
among 10 simulations.



Is this behaviour general?

Birth during life, and/or split at death, after a life
span with an arbitrary distribution, all dependent
upon population size, in this way:

If the age structure is A=(a,, a,, ..., 3,), the birth
rate of an a-aged individual is b,(a) and the death
rate is h,(a).

Litter size then is 1 (for simplicity).

At death & (bounded) children are produced .
The distribution may depend on mother’s age at
death and on A.. Expectation and variance: m,(a),
Va(a) <oo.

Population size dependence: b,=b,, h,=h_, etc.



Markovianness

The process is Markovian in the age structure, A, = the
array of ages att, Z, =(1,A,), (f,A)=) f(a)), A=(a,, ...a,).
Lf=1f —h f+f(0)(b,+h,m )

— f'(a) reflects linear growth in age.

— h,(a) the risk of disappearing,

— b,(a) the birth intensity, resulting on a 0-aged individual, and
— h,(a)m,(a) is the splitting intensity.

Dynkin’s formula: For fe C?,

(f, A) = (f,Aq) + [t (Lyf, A)ds + MF, where Z(s)=Z, and
M is a local square integrable martingale (PJ & FK
pA0]0]0)

In particular,

Z,=(1, A) = Zy + [t (b + hyey(my—1), A)ds + MF



Growth
Z,=Zy+ [of (bye) + hygy(myg=1), A)ds + MYy
means that there is a growth trend at t iff
(bZ(t) + hz(t)(mz(t) _1), At) > O.

The most natural criticality concept is thus
criticality in the age distribution:

¢ (bZ(t) + hz(t)(mz(t) _1), At) — O.

A stronger concept is strict criticality at
population size z:

b,(a) +h,(a)(m, (a)-1) = 0 for all a.



Criticality

Finally, a population can be called annealed critical
at a size z if the expected number of children during a
whole life in a population of that size is = 1.

The three concepts coincide in the Bellman-Harris
case, where b, vanishes and m,(a) is constant in a.

We assume strict criticality at K.

Then it is also annealed critical there and critical in
the age distribution.



The risk of direct extinction

Assume monotonicity in the sense that if {Z,'} and {Z,},
are annealed at sizes z’< z, but start at the same size
and age distribution, then Z,” > Z, in distribution.

Then, the probability of direct extinction, without
reaching dK, 0<d<1, is < q %, where:

— g4 < 1is the extinction probability of a supercritical
branching process with the fixed reproduction determined
by size dK —the annealed extinction probability and

— z is the starting number.
The chance of reaching dK is > 1- q*, if Z,=z.

With m, and v, the reproduction mean and variance.
of the embedded GW-process, annealed at pop size
dK, q4 < 1-2(mg-1)/(v4+my(m -1)) (Haldane).



And otherwise:

* By the assumed monotonicity in parameters,
Z. grows quicker to dK than does the process
annealed there (if it does not die out before).

 Hence, the time to reach the level is O(log K).

 And once there, we would expect it to remain
for a time of order e, K— oo, for some c>0,

by large deviation theory.



What we actually prove

* Introduce the criticality function x,,=
b.(a) +h_(a)(m_(a)-1) and assume it is Lipschitz in
the density x= z/K around the carrying capacity,
| x| <C|x-1]. Write X,*=Z, /K.

* Then, if X,* — 1, then X,* — 1 uniformly in
probability on compacts, as K — oo.

* Assume that exponential reproduction moments
exist, that the number of children at splitting is
bounded (and a technical condition) then, the
expected time around K is O(e).



The age (etc) distribution (under work)

Write A for the age structure at time s for fixed K and
also normed by K.

Assume that parameters b,“(a) , the death rate h,“(a)
>c>0, and the mean number of children at split, m,“(a),
all are “smooth enough” and that

supE[|A|] < 0o and A — some A, as K —=o0.

Then, as K —o00, the random measure function t ~ AX
converges weakly on any compact to the solution of

(F,A) = (f,Ag) + [ (Lo A s, Als)=A, Luf = ' —h,f+f(0)
(b,+h,m,), in terms of parameter limits, as K —o0.

Randomness only in the start, the rest is McKendrick-
von Foerster.



What if the population starts small?

Then A%, — 0.

But the population size will reach any vicinity
dK, 0<d<1, of the carrying capacity in time
O(log K) with positive probability, whereas it
will die out only after time O(e®X).

Study the process in an evolutionary time
scale K, {AX . ; 0<u<oo}. Then it stays around K.

This is the right limit, rather than lim AKX,



The End.

The general case is joint work with F. C. Klebaner,
Monash, and will appear in the Journal of Applied
Probability 48A, 2011.

The “fluid approximation” is ongoing work with
Fima Klebaner and K. Hamza.

The binary splitting is due to Klebaner, Sagitov,
Vatutin, Haccou, and PJin J. Biol. Dyn. 5, 2011.

A more mathematical version of the latter is
under way, and will also include simple adaptive
dynamics (of evolution).



