# Population Size Dependent, Age Structured Branching Processes Linger around their Carrying Capacity

Peter Jagers and Fima C. Klebaner
Conference and secret Festschrift in Honour of
Sören Asmussen -

New Frontiers in Applied Probability

## Branching Processes – and Søren

- Long before queuing Søren, simulating Søren, ruin Søren – there was Branching Søren!
  - 1. Convergence rates for branching processes. Ann. Probab. 4, 139-146 (1976).
  - 2. (with N. Kaplan) Branching random walks I. Stoch. Proc. Appl. 4, 1-13 (1976).
  - 3. (with N. Kaplan) Branching random walks II. Stoch. Proc. Appl. 4, 15-31 (1976).
  - 4. (with H. Hering) Strong limit theorems for general supercritical branching processes......

•••••

- 12. On some two-sex population models. Ann. Probab. 8, 727-744 (1980).
- 13. (with H. Hering) Branching Processes. Birkhäuser, Boston Basel Stuttgart (1983).
- Like queuing etc, branching makes extensive use of regeneration properties, and thus Markov Renewal Theory.
- Unlike it, branching deals with (natural) science.

# Branching processes – from a population theoretic viewpoint

- Unlike deterministic theory, branching processes can handle finite populations of individuals with varying behaviour.
- Closed real populations change at the initiative of members.
- Independence is a natural but (too) farreaching idealisation of this.

## Independence leads to:

- The Malthusian dichotomy between extinction and exponential growth.
- The probability of extinction can be determined,
- as well as the rate of growth.
- During exponential growth the population composition – from age distribution to pedigree - stabilises.

# What if the independence requirement is relaxed?

- Deterministic theories with a feedback loop individual -> population -> environment -> individual can create stable populations asymptotically.
- But no reasonable finite stochastic population models (even with environmental feedback) can stabilise; very weak Markovianness suffices to yield the explosion-or-extinction dichotomy. So, what are the stabilities we seem to observe?

#### The New Frontier: Carrying Capacity

- What can be obtained if the basic ecological concept of a carrying capacity is introduced?
- Assume that there is a (large) number K such that the population is supercritical, when the population is < K and subcritical, otherwise – whatever that means....
- Background:
  - Age- and size-dependent general branching (PJ & FK, SPA 2000). Earlier papers by Kersting and FK. Explanation of linear growth in PCR (PJ & FK, JTB 224, 2003)
  - Sylvie Méléard and the French school, notably Tran, ESAIM (2008): age-dependent birth-and-death, with the death rate population dependent.
- Similar ideas in queuing?

### What is the basic pattern? A toy example.

- Z<sub>n</sub> = population size at time (generation) n,
- $\xi$  = offspring random variable, = 0 or 2.
- K = carrying capacity.
- $P(\xi = 2 \mid Z_1, Z_2, ... Z_n) = K/(K + Z_n)$ . (Like PCR.)
- The probability of splitting is  $> \frac{1}{2}$  if  $Z_n$  is small reproduction is supercritical and it is  $< \frac{1}{2}$ , if  $Z_n > K$  —subcritical.
- Such a population must die out.
- Will it ever take off? (Come close to K?)
- And then, will it stay there (long)?

If the starting number  $Z_0 = z$ , T = time to extinction, and  $T_d = time$  to reaching size dK, 0 < d < 1, then  $P(T < T_d) \le d^z$ .

- Easy to see: at any size k<dK, the probability of no children = k/(K+k) < dK/(K+dK) = d/(1+d).</li>
- Hence the probability of dying out without crossing dK must be smaller than the same probability for binary G-W  $\{Y_n\}$  with  $P(\xi=0) = d/(1+d)$ . But  $P_z(Y_n = 0 \text{ before dK}) \leq P_z(Y_n \rightarrow 0) = q^z$ .
- And  $q = d/(d+1) + (1/(d+1))q^2$ , yielding q = d.

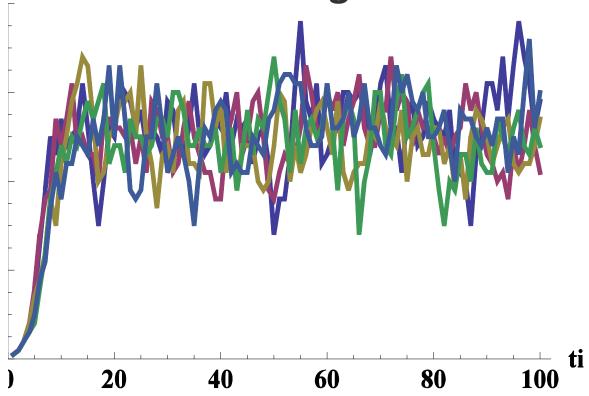
# Similarly: $T_d = O(log K)$

- $Z_n \ge Y_n$  on  $\{T_d \ge n\}$ .
- Hence,  $dK \approx Z_{T_d} \ge Y_{T_d} \approx W(2/(1+d))^{T_d}$  and
- $T_d = O(\log K)$ .
- Further,  $E[T_1] \le CK$  for some C (Vatutin, to appear).

# Lingering around K

- And once in a band around K, it stays there for a long time, of the order  $e^{cK}$  for some c>0, with a probability that  $\rightarrow$  1, as  $K\rightarrow\infty$  (Large Deviation Theory).
- This example is much more elementary large deviations for binomial r. v., (Janson) and c can be calculated,
- $c = d(1-d)^2 / 8(1+d)$ .
- Actually, for any K, the expected time to leaving a band (1 $\pm$  d)K is  $\geq$  e<sup>cK</sup> .
- FK, Sagitov, Vatutin, PJ and Haccou: J. Biol. Dyn. March 2011.

#### And this is what things look like



K=50, and not one direct extinction among 10 simulations.

#### Is this behaviour general?

- Birth during life, and/or split at death, after a life span with an arbitrary distribution, all dependent upon population size, in this way:
- If the age structure is  $A=(a_1, a_2, ..., a_z)$ , the birth rate of an a-aged individual is  $b_A(a)$  and the death rate is  $h_A(a)$ .
- Litter size then is 1 (for simplicity).
- At death  $\xi$  (bounded) children are produced. The distribution may depend on mother's age at death and on A. Expectation and variance:  $m_A(a)$ ,  $v_A(a) < \infty$ .
- Population size dependence:  $b_A = b_z$ ,  $h_A = h_z$ , etc.

#### Markovianness

- The process is Markovian in the age structure,  $A_t = the$  array of ages at t,  $Z_t = (1,A_t)$ ,  $(f,A) = \sum f(a_i)$ ,  $A = (a_1, ...a_7)$ .
- $L_z f = f' h_z f + f(0)(b_z + h_z m_z)$ 
  - f'(a) reflects linear growth in age.
  - $-h_{7}(a)$  the risk of disappearing,
  - $-b_z(a)$  the birth intensity, resulting on a 0-aged individual, and
  - $-h_z(a)m_z(a)$  is the splitting intensity.
- Dynkin's formula: For  $f \in C^1$ ,
- $(f, A_t) = (f, A_0) + \int_0^t (L_{Z(s)}f, A_s)ds + M_t^f$ , where  $Z(s) = Z_s$  and  $M_t^f$  is a local square integrable martingale (PJ & FK 2000)
- In particular,
- $Z_t = (1, A_t) = Z_0 + \int_0^t (b_{Z(s)} + h_{Z(s)}(m_{Z(s)} 1), A_s) ds + M_{t.}^f$

#### Growth

- $Z_t = Z_0 + \int_0^t (b_{Z(s)} + h_{Z(s)}(m_{Z(s)} 1), A_s) ds + M_{t.}^f$ means that there is a growth trend at t iff
- $(b_{Z(t)} + h_{Z(t)}(m_{Z(t)}-1), A_t) > 0.$
- The most natural criticality concept is thus criticality in the age distribution:
- $(b_{Z(t)} + h_{Z(t)}(m_{Z(t)}-1), A_t) = 0.$
- A stronger concept is strict criticality at population size z:
- $b_z(a) + h_z(a)(m_z(a)-1) = 0$  for all a.

# Criticality

- Finally, a population can be called annealed critical at a size z if the expected number of children during a whole life in a population of that size is = 1.
- The three concepts coincide in the Bellman-Harris case, where  $b_{\Delta}$  vanishes and  $m_{\Delta}(a)$  is constant in a.
- We assume strict criticality at K.
- Then it is also annealed critical there and critical in the age distribution.

#### The risk of direct extinction

- Assume monotonicity in the sense that if  $\{Z_t'\}$  and  $\{Z_t\}$ , are annealed at sizes  $z' \le z$ , but start at the same size and age distribution, then  $Z_t' \ge Z_t$  in distribution.
- Then, the probability of direct extinction, without reaching dK, 0<d<1, is  $\leq q_d^z$ , where:
  - q<sub>d</sub> < 1 is the extinction probability of a supercritical branching process with the fixed reproduction determined by size dK – the annealed extinction probability and
  - z is the starting number.
- The chance of reaching dK is  $\geq$  1-  $q_d^z$ , if  $Z_0$ =z.
- With  $m_d$  and  $v_d$  the reproduction mean and variance. of the embedded GW-process, annealed at pop size dK,  $q_d \leq 1-2(m_d-1)/(v_d+m_d(m_d-1))$  (Haldane).

#### And otherwise:

- By the assumed monotonicity in parameters,
   Z<sub>t</sub> grows quicker to dK than does the process annealed there (if it does not die out before).
- Hence, the time to reach the level is O(log K).
- And once there, we would expect it to remain for a time of order  $e^{cK}$ ,  $K \rightarrow \infty$ , for some c>0, by large deviation theory.

# What we actually prove

- Introduce the criticality function  $\chi_{z/K}$ =  $b_z(a) + h_z(a)(m_z(a)-1)$  and assume it is Lipschitz in the density x= z/K around the carrying capacity,  $|\chi_x| < C|x-1|$ . Write  $X_t^K = Z_t/K$ .
- Then, if  $X_0^K \to 1$ , then  $X_t^K \to 1$  uniformly in probability on compacts, as  $K \to \infty$ .
- Assume that exponential reproduction moments exist, that the number of children at splitting is bounded (and a technical condition) then, the expected time around K is O(e<sup>cK</sup>).

#### The age (etc) distribution (under work)

- Write A<sub>s</sub><sup>K</sup> for the age structure at time s for fixed K and also normed by K.
- Assume that parameters  $b_A^{K}(a)$ , the death rate  $h_A^{K}(a)$  >c>0, and the mean number of children at split,  $m_A^{K}(a)$ , all are "smooth enough" and that
- $\sup_{K} E[|A_0^K|] < \infty$  and  $A_0^K \rightarrow \text{some } A_0$ , as  $K \rightarrow \infty$ .
- Then, as K →∞, the random measure function t A<sub>t</sub><sup>K</sup>
  converges weakly on any compact to the solution of
- $(f,A_t) = (f,A_0) + \int_0^t (L_{A(s)}f,A_s)ds$ ,  $A(s)=A_s$ ,  $L_Af = f' h_Af + f(0)$  $(b_A + h_A m_A)$ , in terms of parameter limits, as  $K \rightarrow \infty$ .
- Randomness only in the start, the rest is McKendrickvon Foerster.

#### What if the population starts small?

- Then  $A_0^K \rightarrow 0$ .
- But the population size will reach any vicinity dK, 0<d<1, of the carrying capacity in time O(log K) with positive probability, whereas it will die out only after time O(e<sup>cK</sup>).
- Study the process in an evolutionary time scale K,  $\{A_{uK}^{K}; 0 < u < \infty\}$ . Then it stays around K.
- This is the right limit, rather than  $\lim_{K} A_{t}^{K}!$

#### The End.

- The general case is joint work with F. C. Klebaner, Monash, and will appear in the Journal of Applied Probability 48A, 2011.
- The "fluid approximation" is ongoing work with Fima Klebaner and K. Hamza.
- The binary splitting is due to Klebaner, Sagitov, Vatutin, Haccou, and PJ in J. Biol. Dyn. 5, 2011.
- A more mathematical version of the latter is under way, and will also include simple adaptive dynamics (of evolution).