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This talk has a number of elements that are aligned with Sgren’s
work:

simulation

sums of random variables
extreme values

large deviations

asymptotics



The Setting

in o0
B

where

a(f) =EX(0)

must be computed via (Monte Carlo) simulation

Assume that «(-) is smooth



The Class of Algorithms to be Studied

e Randomly sample m points 61, ... ,60,, from R
@ Perform simulations at each of the m points

e Estimate the minimum value of «(-) from the observations

Not much intelligent adaptation built into these algorithms (i.e.
simple random search)



a(6)

a(6")




Why Study?

@ Because of their simplicity, they are easy to implement (and
are used in practice)

@ They can be viewed as “benchmark algorithms” (Any “good
algorithm” should beat the rates of convergence associated
with these random search algorithms.)

@ They are tractable mathematically, and provide insights into
more complex algorithms



Outline of Talk

@ Simple Random Search
Consistency
Optimal Convergence Rate
Large Deviations

@ Simple Random Search with Gradient Information

@ Simple Random Search with Point-dependent Sample Size



A More Detailed Description of Simple Random Search

@ Randomly and independently sample m points 61, ..., 80, from
RY from a continuous positive density g

@ At each point 6;, randomly generate n iid copies of X(6;)
(independent of the simulations at the other #-values),
thereby computing X ,(6;)

e Given a computer (time) budget ¢, let n = |c/m]

e Use the minimum of X,(6;) as an estimator of the minimum
a(0*), where 6* is the minimizer of «af(-)

@ Note that our estimator of the minimum is:

a(e) = i, Xo(0)

An extreme value statistic (but with a distribution depending
on n)



Consistency

If the number of points m is too large relative to the sample size n,
the extreme value may not be consistent as an estimator for a(6*)

Light-tailed Case: sup, E exp(v|X(0)|) < oo for some v > 0

Theorem
Q Iflogm/n — 0 as ¢ — oo, then

a(c) = m@in a(f) asc— 0.

@ Iflogm/n — oo as ¢ — oo, then
a(c)=s asc— oo,

where s = ming s(#), and s(0) is the left end-point of support
of X(6)




Theorem (continue)

© Suppose logm/n — 7 € (0,00) as ¢ — oo0. Assume that for
each § € RY, there exists a root 5 = 7(6) > 0 satisfying

0
:yai")/w(ej ;5/) - ¢(9, ;5/) =T,

where ¥(6,7) £ log Eexp(vX(#)). Furthermore, suppose that
1 is twice differentiable on RY x [0,70], where o > sup, 5(6).
Then,

N .0 .
a(c) = min %w(e,v) as ¢ — oo.




Heavy-tailed Case: With stable noise (1 < v < 2), m/n"~! must
converge to zero in order that our method consistently estimate

a(6%)



@ « has a unique minimizer 6*

@ The Hessian of «, when evaluated at 6* (denoted H(6*)), is
positive definite

Theorem (Archetti et 1977, de Haan 1978, Chia and G 2011)
Assume 1 and 2. If X(0) = «(6) a.s. for all 6, then

c?4(a(c) — a(6*)) = Weibull(a, d/2)

as ¢ — oo, where Weibull(a, d/2) is a Weibull rv with shape
parameter d/2 and scale parameter a given by

2/d
2 O g(6")
[(d/2+1)/|detH(6%)] '




The Optimal Convergence Rate in the Noisy Setting

Heuristic Argument:

Noise in the function evaluations: n—1/2

~1/d

Closest point to 6*: m

Function value relative to a(6*) at closest point: m~2/d

For optimal rate, balance two errors: n=%/2 ~ m=2/d

With mn = c:

m o red/(d+4)

o 14/ 44)

for r € (0,1)



© The collection of distributions {F(6,-) : § € R} is weakly
continuous over RY

Q var(X(6*)) >0




Theorem (Chia and G 2011)

Assume 1 through 4. Suppose supg E|X(6)|P < oo for
p > max(3,d3/2). Then,

A/ (a(c) — a(67)) = B,
as ¢ — oo, where, letting o(6*) = /var(X(0%)),

2I’(d+4)/4g(9*)77‘d/2
M(d/2)y/|detH(6*)|

> 2X+ Y\ d/2-1
X/o P(N(0,1) > 20(9*))y dy>

P(6 < x) =e><p(—




Large Deviations Analysis

a(d)

4\4\ ]
P lx| P /

@ Large deviations below can be caused by unusually large
deviations at any one of 61,...,60,

@ Large deviations above requires unusual behavior at all m of
01,...,0m (“cheapest way" is that we were unlucky in the
placement of the m sample points)



The Lower Large Deviations Result

Theorem (Subramanian and G 2011)

Let 1(0; t) = log Ee™X(?) and Z(6; x) be the large deviations rate
function for =137 | X;(0). Then,

P(a(c) < a(6*) — x)
_ 8 <w"(0*: 9(x))>"/2

2 xn
y exp(—nZ(6*; x))
V20 (8% 0() et ")

as ¢ — Q.

g(0")(1 + o(1)),




The Upper Large Deviations Result

Theorem (Subramanian and G 2011)

k

P(a(c) > a(6*)+x) = (1 — p)"exp —mz % +0o(1) |,
j=1

as ¢ — 00, where k is the smallest integer such that mn=%*1 — 0
as ¢ — oo.




Note that

P(&(c) > a(0") + x)
=P(Xn(0;) > a(67) + x)"

=P(a(6) = a(6") + x)" exp <mlog <1— p”_p>>

where
k 2
pn = P(XA(6) Sa(ﬁ*)+x):p+2j+o -

(Lee and G 99)



Simple Random Search with Gradient Information

@ At each point 61, ..., 60, estimate both a(6;) and Va(6;)

o Let VX,(0;) be our estimator for Va(6;) based on:

o likelihood ratio gradient estimation (often unbiased)
o infinitesimal perturbation analysis (often unbiased)

o (noisy) finite difference approximation based on central
differences (always biased)

@ Assume «f+) is strictly convex



The Estimator

a(6)

ald)

a(e)




Theorem (Wu and G 2011)

Suppose that n ~ 3c2P for 3 > 0 as ¢ — oo, where p = 2/(d + 4).
Then,
cP(a(c) — a(6%)) = W

as ¢ — OQ.

@ W can be described in terms of a limiting Poisson random
field with randomly generated hyperplanes/function values at
each Poisson point

@ Heart of the argument: Showing that the estimator ultimately
depends on “local behavior” of Poisson random field

o Generalizes to setting of biased gradient estimators



Simple Random Search with Point-dependent Sample Size

What happens if you do not use common sample size n across all
the 6;'s?
More intelligent approach:
@ Begin sampling simultaneously at each 6; value
@ Continue sampling until it is clear the 6; value is clearly not
optimal
@ Focus sampling on the “best”

@ Note that it is pointless to let n12 « m?/4, even for the
most promising points
Conclusions:
@ One gets a convergence rate arbitrarily close to ¢—2/¢

e Optimal rate is close to that in noiseless setting



Extensions

@ What about if one applies common random numbers for the
simulations at each of the points 61,...,60,7?

@ What happens in the presence of constraints?

@ What about similarly descriptive limit theorems for more
intelligent search?



