Ruin Probabilities in a Diffusion Environment

Jan Grandell & Hanspeter Schmidli

KTH Stockholm & University of Cologne

New Frontiers in Applied Probability, Sandbjerg, 2nd of August

Ornstein-Uhlenbeck Intensities

2 Ornstein-Uhlenbeck Intensities

Subexponential Claim Sizes

2 Ornstein-Uhlenbeck Intensities

Subexponential Claim Sizes

$$X_t = \mathbf{x} + ct - \sum_{i=1}^{N_t} Y_i$$

• x: initial capital

$$X_t = x + \frac{c}{t} - \sum_{i=1}^{N_t} Y_i$$

- x: initial capital
- c: premium rate

$$X_t = x + ct - \sum_{i=1}^{N_t} Y_i$$

- x: initial capital
- c: premium rate
- $\{N_t\}$: A single point process

$$X_t = x + ct - \sum_{i=1}^{N_t} Y_i$$

- x: initial capital
- c: premium rate
- $\{N_t\}$: A single point process
- $\{Y_i\}$: iid,

$$X_t = x + ct - \sum_{i=1}^{N_t} Y_i$$

- x: initial capital
- c: premium rate
- $\{N_t\}$: A single point process
- $\{Y_i\}$: iid, independent of $\{N_t\}$

$$X_t = x + ct - \sum_{i=1}^{N_t} Y_i$$

- x: initial capital
- c: premium rate
- $\{N_t\}$: A single point process
- $\{Y_i\}$: iid, independent of $\{N_t\}$
- G(y): distribution function of Y_i , G(0) = 0

$$X_t = x + ct - \sum_{i=1}^{N_t} Y_i$$

- x: initial capital
- c: premium rate
- $\{N_t\}$: A single point process
- $\{Y_i\}$: iid, independent of $\{N_t\}$
- G(y): distribution function of Y_i , G(0) = 0
- $\mu_n = \mathbb{E}[Y_i^n], \qquad \mu = \mu_1, \qquad h(r) = \mathbb{E}[e^{rY} 1].$

Diffusion Intensities

Let $\{Z_t\}$ be a diffusion process following the stochastic differential equation

$$\mathrm{d}Z_t = b(Z_t)\,\mathrm{d}W_t + a(Z_t)\,\mathrm{d}t$$

for some Brownian motion $\{W_t\}$. We assume that there is a strong solution.

Let $\{Z_t\}$ be a diffusion process following the stochastic differential equation

$$\mathrm{d}Z_t = b(Z_t)\,\mathrm{d}W_t + a(Z_t)\,\mathrm{d}t$$

for some Brownian motion $\{W_t\}$. We assume that there is a strong solution.

Let $\Lambda(t) = \int_0^t \ell(Z_s) \, \mathrm{d}s$ for some function ℓ . We define

$$N(t) = \tilde{N}(\Lambda(t))$$
,

where $\{\tilde{N}_t\}$ is a Poisson process with rate 1.

Diffusion Intensities

Let $\{Z_t\}$ be a diffusion process following the stochastic differential equation

$$\mathrm{d}Z_t = b(Z_t)\,\mathrm{d}W_t + a(Z_t)\,\mathrm{d}t$$

for some Brownian motion $\{W_t\}$. We assume that there is a strong solution.

Let $\Lambda(t) = \int_0^t \ell(Z_s) \, \mathrm{d}s$ for some function ℓ . We define

$$N(t) = \tilde{N}(\Lambda(t))$$
,

where $\{\tilde{N}_t\}$ is a Poisson process with rate 1.

Thus, given $\{Z_t\}$, the claim number process $\{N_t\}$ is conditionally an inhomogeneous Poisson process with rate $\{\ell(Z_t)\}$.

The process $M = \{g(Z_t)e^{-r(X_t-x)-\theta(r)t}\}$ is a martingale if

$$\frac{1}{2}b^{2}(z)g''(z) + a(z)g'(z) + [\ell(z)h(r) - \theta - cr -]g(z) = 0.$$

The process $M = \{g(Z_t)e^{-r(X_t-x)-\theta(r)t}\}$ is a martingale if

$$\frac{1}{2}b^2(z)g''(z) + a(z)g'(z) + [\ell(z)h(r) - \theta - cr -]g(z) = 0.$$

Suppose we found a solution with a positive g(z). This is only possible if $\theta = \theta(r)$ depends on the *important* parameter r.

The process $M = \{g(Z_t)e^{-r(X_t-x)-\theta(r)t}\}$ is a martingale if

$$\frac{1}{2}b^2(z)g''(z) + a(z)g'(z) + [\ell(z)h(r) - \theta - cr -]g(z) = 0.$$

Suppose we found a solution with a positive g(z). This is only possible if $\theta = \theta(r)$ depends on the *important* parameter r.

We norm g, such that $\lim_{t\to\infty} \mathbb{E}[g(Z_t)] = 1$.

Consider the measure

$$\mathbb{Q}[A] = \frac{\mathbb{E}[g(Z_T)e^{-r(X_T - x) - \theta(r)T}; A]}{\mathbb{E}[g(Z_0)]}$$

Consider the measure

$$\mathbb{Q}[A] = \frac{\mathbb{E}[g(Z_T)e^{-r(X_T - x) - \theta(r)T}; A]}{\mathbb{E}[g(Z_0)]}.$$

The process $({X_t, Z_t})$ remains a Cox model with claim size distribution

$$\mathbb{Q}[Y \le x] = (h(r) + 1)^{-1} \int_0^x e^{ry} dG(y),$$

Consider the measure

$$\mathbb{Q}[A] = \frac{\mathbb{E}[g(Z_T)e^{-r(X_T - x) - \theta(r)T}; A]}{\mathbb{E}[g(Z_0)]}.$$

The process $({X_t, Z_t})$ remains a Cox model with claim size distribution

$$\mathbb{Q}[Y \le x] = (h(r) + 1)^{-1} \int_0^x e^{ry} dG(y),$$

claim intensity $\ell(Z_t)(h(r)+1)$,

Consider the measure

$$\mathbb{Q}[A] = \frac{\mathbb{E}[g(Z_T)e^{-r(X_T - x) - \theta(r)T}; A]}{\mathbb{E}[g(Z_0)]}.$$

The process $({X_t, Z_t})$ remains a Cox model with claim size distribution

$$\mathbb{Q}[Y \le x] = (h(r) + 1)^{-1} \int_0^x e^{ry} dG(y),$$

claim intensity $\ell(Z_t)(h(r)+1)$, and generator of the diffusion

$$\tilde{\mathfrak{A}}f = \frac{ga + b^2g'}{g}f' + \frac{1}{2}b^2f''.$$

Typically, the function $\theta(r)$ will be convex. Since

$$\mathbb{E}_{\mathbb{Q}}[X_t] = \mathbb{E}_{\mathbb{P}}[X_t g(Z_t) e^{-rX_t} e^{-\theta(r)t}]$$

we have

$$0 = \frac{\mathrm{d}}{\mathrm{d}r} \mathbb{E}_{\mathbb{P}}[g(Z_t) \mathrm{e}^{-rX_t} \mathrm{e}^{-\theta(r)t}]$$
$$= \mathbb{E}_{\mathbb{P}}\left[\left(\frac{\mathrm{d}}{\mathrm{d}r}g(Z_t)\right) \mathrm{e}^{-rX_t} \mathrm{e}^{-\theta(r)t}\right] - \mathbb{E}_{\mathbb{Q}}[X_t] - t\theta'(r).$$

Typically, the function $\theta(r)$ will be convex. Since

$$\mathbb{E}_{\mathbb{Q}}[X_t] = \mathbb{E}_{\mathbb{P}}[X_t g(Z_t) e^{-rX_t} e^{-\theta(r)t}]$$

we have

$$0 = \frac{\mathrm{d}}{\mathrm{d}r} \mathbb{E}_{\mathbb{P}}[g(Z_t) \mathrm{e}^{-rX_t} \mathrm{e}^{-\theta(r)t}]$$
$$= \mathbb{E}_{\mathbb{P}}\left[\left(\frac{\mathrm{d}}{\mathrm{d}r}g(Z_t)\right) \mathrm{e}^{-rX_t} \mathrm{e}^{-\theta(r)t}\right] - \mathbb{E}_{\mathbb{Q}}[X_t] - t\theta'(r).$$

Typically, dividing by t and letting $t \to \infty$, the first term will vanish. Thus $t^{-1}\mathbb{E}_{\mathbb{Q}}[X_t]$ will converge to $-\theta'(r)$.

Typically, the function $\theta(r)$ will be convex. Since

$$\mathbb{E}_{\mathbb{Q}}[X_t] = \mathbb{E}_{\mathbb{P}}[X_t g(Z_t) e^{-rX_t} e^{-\theta(r)t}]$$

we have

$$0 = \frac{\mathrm{d}}{\mathrm{d}r} \mathbb{E}_{\mathbb{P}}[g(Z_t) \mathrm{e}^{-rX_t} \mathrm{e}^{-\theta(r)t}]$$
$$= \mathbb{E}_{\mathbb{P}}\left[\left(\frac{\mathrm{d}}{\mathrm{d}r}g(Z_t)\right) \mathrm{e}^{-rX_t} \mathrm{e}^{-\theta(r)t}\right] - \mathbb{E}_{\mathbb{Q}}[X_t] - t\theta'(r).$$

Typically, dividing by t and letting $t \to \infty$, the first term will vanish. Thus $t^{-1}\mathbb{E}_{\mathbb{Q}}[X_t]$ will converge to $-\theta'(r)$. Hence the safety loading condition will not be fulfilled for $r \ge r_0$, where r_0 is the solution to $\theta'(r) = 0$. That means that $\mathbb{Q}[T_u < \infty] = 1$ if and only if $r \ge r_0$.

Ornstein-Uhlenbeck Intensities

Subexponential Claim Sizes

Ornstein-Uhlenbeck Intensities

Consider the Ornstein-Uhlenbeck process

$$\mathrm{d} Z_t = -aZ_t \; \mathrm{d} t + b \; \mathrm{d} W_t \, .$$

Ornstein-Uhlenbeck Intensities

Consider the Ornstein-Uhlenbeck process

$$\mathrm{d}Z_t = -aZ_t \; \mathrm{d}t + b \; \mathrm{d}W_t \,.$$

We consider the intensity $\lambda_t = Z_t^2$.

Randomly Generated Intensity

The Equation

We have to solve

$$\frac{1}{2}b^2g''(z) - azg'(z) - [\theta(r) + cr - z^2h(r)]g(z) = 0.$$

The Equation

We have to solve

$$\frac{1}{2}b^2g''(z) - azg'(z) - [\theta(r) + cr - z^2h(r)]g(z) = 0.$$

We try $g(z) = \kappa e^{kz^2}$ for some $k < \frac{a}{b^2}$. The restriction is in order to ensure that $\mathrm{I\!E}[g(Z_0)] < \infty$. From $\mathrm{I\!E}[g(Z_0)] = 1$ we find $\kappa = \sqrt{1 - b^2 k/a}$.

The Equation

We have to solve

$$\frac{1}{2}b^2g''(z) - azg'(z) - [\theta(r) + cr - z^2h(r)]g(z) = 0.$$

We try $g(z)=\kappa \mathrm{e}^{kz^2}$ for some $k<\frac{a}{b^2}$. The restriction is in order to ensure that $\mathrm{I\!E}[g(Z_0)]<\infty$. From $\mathrm{I\!E}[g(Z_0)]=1$ we find $\kappa=\sqrt{1-b^2k/a}$.

The equation reduces to

$$\frac{1}{2}b^2(4z^2k^2+2k)-2az^2k-(\theta(r)+cr)+z^2h(r)=0.$$

The Solution

$$2b^{2}k^{2} - 2ak + h(r) = 0$$
,
 $b^{2}k = \theta(r) + cr$.

The Solution

$$2b^2k^2 - 2ak + h(r) = 0,$$

$$b^2k = \theta(r) + cr.$$

Thus we find

$$k = \frac{a}{2b^2} - \sqrt{\frac{a^2}{4b^4} - \frac{h(r)}{2b^2}}, \qquad \theta(r) = \frac{a - \sqrt{a^2 - 2b^2h(r)}}{2} - cr,$$

and

$$\kappa = \sqrt{\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{b^2 h(r)}{2a^2}}}$$
.

M is a martingale. The generator of the diffusion after the change of measure becomes

$$\widetilde{\mathfrak{A}}f(z) = -(a-2kb^2)zf'(z) + \frac{1}{2}b^2f''(z).$$

M is a martingale. The generator of the diffusion after the change of measure becomes

$$\widetilde{\mathfrak{A}}f(z) = -(a-2kb^2)zf'(z) + \frac{1}{2}b^2f''(z).$$

Hence under $\mathbb Q$ the process Z is an Ornstein–Uhlenbeck process with the same diffusion coefficient b and drift $-\sqrt{a^2-2b^2h(r)}z$. Z will turn back to its mean more slowly than under $\mathbb P$ if r>0. The (stationary under $\mathbb Q$) drift of the process X under $\mathbb Q$ is then

$$c - \frac{b^2}{2\sqrt{a^2 - 2b^2h(r)}} \tilde{h}(r) \frac{h'(r)}{\tilde{h}(r)} = -\theta'(r).$$

Cramér–Lundberg Inequalities

Let R be the (non-trivial) solution to $\theta(r) = 0$. Then

$$\psi(u) = \mathbb{E}_{\mathbb{Q}}\left[\frac{1}{g(Z_{T_u})} e^{R(u+X_{T_u})}\right] e^{-Ru} < \kappa^{-1} e^{-Ru}.$$

Cramér-Lundberg Inequalities

Let R be the (non-trivial) solution to $\theta(r) = 0$. Then

$$\psi(u) = \mathbb{E}_{\mathbb{Q}}\left[\frac{1}{g(Z_{T_u})} e^{R(u+X_{T_u})}\right] e^{-Ru} < \kappa^{-1} e^{-Ru}.$$

In the same way we obtain the two finite-time Lundberg inequalities

$$\psi(u, yu) < \kappa^{-1} e^{-R(0, y)u}, \quad (y < y_0),$$

$$\psi(u) - \psi(u, yu) < \kappa^{-1} e^{-R(y, \infty)u}, \quad (y > y_0),$$

where
$$y_0 = 1/\theta'(R)$$
, $R(0, y) = \sup_{r \ge 0} r - y\theta(r)$ and $R(y, \infty) = \sup_{r \ge 0} r - y\theta(r)$.

Cramér-Lundberg Approximation

Using a renewal approach we get

$$\lim_{u\to\infty}\psi(u)\,\mathrm{e}^{Ru}=C\,\mathrm{I\!E}_{\mathrm{I\!P}}[g(Z_0)]$$

for some constant C.

Cox Models

Ornstein-Uhlenbeck Intensities

Subexponential Claim Sizes

Subexponential Distributions

A distribution function is called subexponential, if for some and therefore all $n \ge 2$

$$\lim_{y\to\infty}\frac{1-F^{*n}(y)}{1-F(y)}=n.$$

Subexponential Distributions

A distribution function is called subexponential, if for some and therefore all $n \ge 2$

$$\lim_{y\to\infty}\frac{1-F^{*n}(y)}{1-F(y)}=n.$$

A distribution function F(y) is in the class \mathcal{S}^* , if $\mu_F < \infty$ and

$$\lim_{x \to \infty} \int_0^x \frac{(1 - F(x - y))(1 - F(y))}{1 - F(x)} \, \mathrm{d}y = 2\mu_F.$$

For example are the Pareto, the Weibull and the Lognormal distributions in S^* .

$$F \in \mathcal{S}^*$$
 implies $F(y)$ and $F^s(y) = \mu_F^{-1} \int_0^y 1 - F(z) dz$ are in \mathcal{S} .

Exponential Moments of the Intensity

Let
$$\varepsilon > 0$$
, $S = \inf\{t > 0 : Z_t = \varepsilon\}$, $T_1 = \inf\{t > S : Z_t = 0\}$.

Lemma

Let either $Z_0 = 0$ or Z_0 be normally distributed with mean zero and variance $b^2/(2a)$. There exists a $\gamma > 0$ such that $\exp\left\{\gamma \int_0^{S_1} (1+Z_t^2) \, dt\right\}$ is integrable.

Exponential Moments of the Intensity

Let
$$\varepsilon > 0$$
, $S = \inf\{t > 0 : Z_t = \varepsilon\}$, $T_1 = \inf\{t > S : Z_t = 0\}$.

Lemma

Let either $Z_0=0$ or Z_0 be normally distributed with mean zero and variance $b^2/(2a)$. There exists a $\gamma>0$ such that $\exp\left\{\gamma\int_0^{S_1}(1+Z_t^2)\,\mathrm{d}t\right\}$ is integrable.

Proof.

Construct an appropriate martingale.

The Tails

Lemma

Let either $Z_0=0$ or Z_0 be normally distributed with mean zero and variance $b^2/(2a)$. Then

$$\lim_{x\to\infty} \frac{\mathbb{P}\Big[\sum_{k=1}^{N(S_1)} Y_k > x\Big]}{\mathbb{P}[-X(S_1) > x]} = 1.$$

The Tails

Lemma

Let either $Z_0 = 0$ or Z_0 be normally distributed with mean zero and variance $b^2/(2a)$. Then

$$\lim_{x\to\infty} \frac{\mathbb{IP}\Big[\sum_{k=1}^{N(S_1)} Y_k > x\Big]}{\mathbb{IP}[-X(S_1) > x]} = 1.$$

This shows that $-X(S_1)$ and $cS_1 - X(S_1)$ have the same distribution tail.

The Asymptotic Behaviour

Theorem

Suppose that both G(x) and $G^{\rm s}(x)$ are subexponential, and that $Z_0=0$ or that Z_0 is normally distributed with mean zero and variance $b^2/(2a)$. Then

$$\lim_{u \to \infty} \frac{\psi(u)}{1 - G^{s}(u)} = \frac{\mu b^{2}/(2a)}{c - \mu b^{2}/(2a)} = \frac{\mu b^{2}}{2ac - \mu b^{2}}.$$

Extensions

•
$$\lambda_t = m + Z_t^2$$
 or $\lambda_t = (m + Z_t)^2$.

Extensions

- $\lambda_t = m + Z_t^2$ or $\lambda_t = (m + Z_t)^2$.
- Markov modulation, $dZ_t = -a(J_t)Z_t dt + b(J_t) dW_t$ or $\lambda_t = m_{J(t)} + Z_t^2$ for a Markov chain J.

Extensions

- $\lambda_t = m + Z_t^2$ or $\lambda_t = (m + Z_t)^2$.
- Markov modulation, $dZ_t = -a(J_t)Z_t dt + b(J_t) dW_t$ or $\lambda_t = m_{J(t)} + Z_t^2$ for a Markov chain J.
- Claim size distribution depends on λ_t : $Y_i \sim F_{\lambda(t)}$.

References

- Asmussen, S., S. and Schmidt, V. (1999). Tail probabilities for non-standard risk and queueing processes with subexponential jumps. *Adv. in Appl. Probab.* **31**, 422–447.
- Grandell, J. and S. (2011). Ruin probabilities in a diffusion environment. *J. Appl. Probab.* **48A**, 39–50.

Thank you for your attention