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Turbulence and Finance:

Instationary Processes



'tp Motivation
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'tp Motivation
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® CTRWs are potential generators of Lagrangian tracer dynamics

# Similar structure of increment statistis in Finance and Atmospheric turbulence
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'tp Motivation
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[Friedrich 2003]
[Mordant, Metz, Michel & Pinton 2001]

[Bottcher, Bath & Peinke 2007] yo
[Nawroth & Peinke 2003]

Outline:

# Introduction to Continuous Time Random Walks (CTRWS)

o Initial definition

s Continuous sample paths, application to finance

® CTRW model for atmospheric turbulence
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Continuous time random walks
(CTRWSs)
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’cp Discrete Random Walks
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Continuous time random walk:
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Time Evolution

PDFs of jumping times are continuous , paths are discontinuous

[Metzler & Klafter 2000]
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'tp Diffusion Limit of CTRWSs

Evolution of CTRWSs

#® Sums of random variables = Fourier / Laplace-Representation

# Montroll-Weiss equation:

1 — Pi(u)
u [1 — Py(k) P, (u)]

f?(k:, u) = (1)
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'tp Diffusion Limit of CTRWSs

Evolution of CTRWSs

#® Sums of random variables = Fourier / Laplace-Representation

# Montroll-Weiss equation:

1 — Pi(u)
u [1 — Py(k) P, (u)]

f?(k:, u) = (2)

Diffusion Limit (= Long Time)
& Assumptions:

s Jump PDF has finite variance

s Asymptotical Power-Law decay ~ x—(1+) of waiting time PDF (heavy tailed)

# Fractional Diffusion equation

82
85(37; 8xj

a O'2 1
— Wiz, t) = d(k)o(t — D, ¢
g2 (.0 =380 + 72 DI S

W(x,1t) (3)
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'tp Diffusion Limit of CTRWSs

With o D}~ f(t), 0 < a < 1: Riemann-Liouville integro-differential fractional operator

B 18 [ £(1)
D}« t::——/dt’ 4
oDy () ['(«) Ot (t —tHt—® “
0

Connection to integer PDEs: Memory Kernel  [Metzler & Klafter 2000, Barkai 2001]
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Long Time Limit:

t>1

Waiting time PDF  P(7) =

T < 100
T > 100

Lo.g,1(7)

N (0.8,100)Lg.s,1(T)
0
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p Continuous Trajectories at Finite Time

Adequate scaling of processes: Continuous (fractional) trajectories at finite time

= Monte-Carlo simulation of fractional PDEs
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p Continuous Trajectories at Finite Time

Adequate scaling of processes: Continuous (fractional) trajectories at finite time

= Monte-Carlo simulation of fractional PDEs

Initial work:
Heinsalu, Patriarca, Goychuk, Schmid & Hanggi 2006,

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations
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p Continuous Trajectories at Finite Time

Adequate scaling of processes: Continuous (fractional) trajectories at finite time

= Monte-Carlo simulation of fractional PDEs

Initial work:
Heinsalu, Patriarca, Goychuk, Schmid & Hanggi 2006,

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations

Recent advancements:

# Magdziarz & Weron 2007,

Fractional FP dynamics: Stochastic representation and computer simulation

® Gorenflo, Mainardi & Vivoli 2007,

Continuous-time random walk and parametric subordination in fractional diffusion

® Kleinhans & Friedrich 2007,

Continuous time random walks: Simulation of continuous trajectories
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P Continuum limit [Fogedby 1994]

According to Fogedby: Continuum limit  of discrete equations,

Tit1 = T+ e La(s) = n(s)
=
tiv1 = ti+ Ty %t(s) = 7(s)

David Kleinhans — Continuous Time Random Walks in the Continuum Limit — Stochastics in Turbulence and Finance, January 2008



P Continuum limit [Fogedby 1994]

According to Fogedby: Continuum limit  of discrete equations,

Li41

tit1

= i+ s La(s) = n(s)
=
= ti+Ti Lt(s) = 7(s)

Notation:
dxs — dWS
dts = dLY
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P Continuum limit [Fogedby 1994]

According to Fogedby: Continuum limit  of discrete equations,

Tit1 = T+ e La(s) = n(s)
=
tiv1 = ti+ Ty %t(s) = 7(s)
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P Continuum limit [Fogedby 1994]

According to Fogedby: Continuum limit  of discrete equations,

Li+1 = T; + s i %.’IZ(S) = 77(3)
R Lt(s) = T(s)
2.5 pg—
0=0.8 -
Here: n(s) and 7(s) have to obey stable distribution .l 32832 =
0=0.4 --oeie
T =
Laste) = LR [ o [t~ o (7] |
0

Result: Fractional dynamics at finite time
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tp Intrinsic Time in Finance [Mdiller 1993]

FRACTALS AND INTRINSIC
TIME - A CHALLENGE
TO ECONOMETRICIANS

U. A. MULLER, M. M. DACOROGNA, R. D. DAVE,
O. V. PICTET, R. B. OLSEN AND J. R. WARD *

UAM.1993-08-16

June 28, 1995
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'tp Intrinsic Time in Finance [Muller 1993]

6 Intrinsic time: a time scale to model the volatility

The daily and weekly seasonal aspect of volatility has been modeled by the #-time introduced
in section 3. The volatility also exhibits non-seasonal, autoregressive clusters, as can be seen in
Figures 5 and 6 and in the ARCH literature.

For modeling the volatility in all its aspects, the introduction of intrinsic time is proposed.
The intrinsic time 7 is defined as the cumulated sum of a market activity variable which is a
statistical measure of very recent volatility. The T value at the j’th time series observation is
defined as

i =Y 1o

T T 6.1)

Tj = Tj—l —|—]~€

The last two factors together are inverse scaling law, equation 2.1, applied to a variable v,,
which is the recent volatility (not annualized); ¥, is a range parameter (the ¥-time-interval size
of the price changes considered for computing the recent volatility »,). In the implementation
of (Dacorogna et al., 1992), this volatility is defined quite simply as an absolute price change:

o, = lo(d;) — (0, ~9,)] (6.2)

where ¥, = 1 hour is chosen to reflect a short-term volatility. The factor £ is calibrated in such
a way that 7-time flows neither more slowly nor faster than physmal time or Y-time in the

David Kleinhans — Continuous Time Random Walks in the Continuum Limit — Stochastics in Turbulence and Financé, January 2008

10



 Numerical algorithm

Numerical Integration Scheme: (It0)

z(s+ As) = x(s)+ AsF(z(s)) + (As)/ 2 n(s)
ts+As) = t(s)+ (As) ¥ 14(s)
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 Numerical algorithm

Numerical Integration Scheme: (It0)

z(s+ As) = x(s)+ AsF(z(s)) + (As)/ 2 n(s)
ts+As) = t(s)+ (As) ¥ 14(s)

Discontinuous character of t(s):

4 . . . . ——
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 Numerical algorithm

Numerical Integration Scheme: (It0)

z(s+ As) = x(s)+ AsF(z(s)) + (As)/ 2 n(s)
ts+As) = t(s)+ (As) ¥ 14(s)

Algorithm for simulation of  z(t):
# Initialisation of x5(0) and ¢t5(0), sets =0

o foreveryj =0to N:
1. while (ts(s) < t;):
(a) calculate z5(s + As) and ts(s + As) from discrete equations (see above)

(b) increase s by As

2. setz(t;) :=xs(s)
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 Numerical algorithm

Numerical Integration Scheme: (It0)

z(s+ As) = x(s)+ AsF(z(s)) + (As)/ 2 n(s)
ts+As) = t(s)+ (As) ¥ 14(s)

Appropriate As can be determined:

As
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’cp Numerical results
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’cp Validation: Fractional statistics

P(x)
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’cp Validation: Fractional statistics

<X(t,=1)x(t,)>

[Kleinhans & Friedrich 2007, Baule & Friedrich 2007]
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Simulation of

Atmospheric Wind Fields
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P Atmospheric Wind Fields

100 S
=~
logarithmic profile: %ﬁ
atmosphere =P \\‘:s
80 1 unstable / neutral §
—
— 60 - ‘\\&‘S )
E %\5& A
5 S
2 40 1 5%
20 +
0 = ks T T T T
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wind speed (m/s)

[NS visibI‘e erh] [Berg (2004)] [R. Gasch, Windkraftanlagen,

Teubner, 1993.]
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P Turbulence intensity

Engineer: Character of wind field fully specified by (here: T = 600s)

# Mean wind speed (u(t))

(u?) p=[(w®) 7]
GO

# Turbulence intensity T1 :=
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P Turbulence intensity

Engineer: Character of wind field fully specified by (here: T = 600s)

# Mean wind speed (u(t))

(u?) p=[(w®) 7]

# Turbulence intensity T1 :=
(u(t))

Example:
(u'(t)) = (tu'(t)) =0

T | drift of wind velocity u(t) = t +u'(t) with
emporal drift of wind velocity w(t) = uo + at + u/(t) wi (1)) = o

2
o TI= 100\/a2% + 02 /ug

#® = Turbulence intensity very weak parameter

13 .
12 .

11
IM ‘.\”M\‘Uw Ji U l HL ‘ |||\”| ‘ IH \
10 i"'w' ' w H|‘ ‘l"“ | " 'll[f i

u(t) [m/s]
u(t) [m/s]

9
8 -
7t - 7t -

-300 -150 0 150 300 -300 -150 0 150 300
t [s] t[s]

Two sample time series with turbulence intensity TI= 10%
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'tp Windfield models: Overview

® DNS, Large Eddy Simulation (LES), Reynolds Averaged Navier Stokes (RANS)

#® Spectral Models (IEC compliant)

s Veers: Three-dimensional wind fiels simulation (1984)

o Mann: Wind field simulation (1998)

s some further works e.g. by Bierbooms, Nielsen, Larsen, Hansen ...

s (Fung: Kinematic Simulation (KS) (1992))

® Fractal models

» Schertzer, Lovejoy: ... anisotropic scaling multiplicative processes (1987)

» Cleve: Fractional Brownian motion (2005)

® Stochastic / Probabilistic

» Nawroth: Reconstruction of processes with Markov properties in scale
s Schmiegel / Barndorff-Nielsen: Delay kernel

o Cleve: Cascade model
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p Spectral surrogate data (1D)  ismmemsa oessus s

Aim: Simulation of v’ (¢) with (/) = 0 and proper energy spectrum .

'Fourier-Stieltjes-Integral’ : | u/(t) =

o9

[cos(wt)du(w) + sin(wt)dv(w)]

Properties of the coefficients  (for w,w’ > 0):

Mean (du(w)) = (dv(w)) =
Autocorrelation (du(w)du(w)) = 26(w' — w)S(w)dw

(dv(w)dv(w’)) = 26(w — w)S(w)dw
Crosscorrelation  {(du(w)dv(w’)) =0
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P Intermittent velocity increments

Atmospheric measurement:

p(ur) [a.u]

103t
10"t
1011

103}

105

[Shinozuka, Deodatis 1991; Veers 1988;

Log[P(AX)]

14

12
10

AN O N M O ®
‘ ——

Spectral surrogates:

Mann 1998]

® Spectral surrogates do not reproduce intermittent statistics

How could they?

#® Advanced methods for fast simulation of atmospheric winds required
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P Motivation: Starting point

Requirements
# Intermittent statistics of atmospheric wind
# Simulation of a 2D (3D?) field in time

® Adaptability to measured wind data

Recent work:

# [Friedrich (2003)]
Motivation of the applicability of CTRW'’s for Lagrangian tracers

# [Baule (2005)]

Several tools for the application of CTRW processes.

# [Castaing (1990), Beck (2003), Bottcher (2005)]
Analysis of turbulent data sets:

Generation of intermittency by superposition of gaussian p rocesses .
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'tp Model

Coupled Langevin equations

%xref(s) - Tref [x""ef(s) o 330} + Drefrref(s)
%azz(S) = 7 [%(S) —Oé'ixref(S)] +Z‘/Dijrj(8) &)
2is) = (s

Properties
® 1x:. Mean wind speed at reference height

# Reference process z,.. r: Models wind variations on larger timescales (v, < 7)
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'tp Model

Coupled Langevin equations

0

axref(s) - Tref [337~ef(8) o 330} + Drefrref(s)
%azz(S) = 7 [%(S) —Oé'ixref(S)] +Z‘/Dijrj(8) &)
%t(s) = 7'(3)

Properties

K

K

xo: Mean wind speed at reference height

Reference process z,.. s Models wind variations on larger timescales (v, < )
«; incorporate (logarithmic) wind profile

Interaction of fluctuations decays exponentially, D;; ~ exp(— |r; — 7;])
Kramers-like equations (11a,11a) can be treates analytically

Stochastic process t(s) naturally introduces intermittency
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P Fokker-Planck Equation

Evolution equation for PDF:

0
&P(a}’ xrefa S) = [Vm'y [m + axref] + Vm VgD (13)
82
+ x + xo| + D P(x,x,cr,s
axref Y [ ref O] axgef ref ( ref )
# Time evolution of expectation values
# Estimation of stationary results
Here: Mean and Variance:
(ki) = o;xo (14)
D D
(@i—@)?) = Z+af—"—=d (15)
Y Y + Yref Tref
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p Spectrum

Spectrum of (hidden) x(s):
(8 > Vs Vref und i = k)

_ 3 D,. 1
fw) = {D+a? ] 2l
(7+’7ref)(f7_’7ref) Yref v+ w

v 1

+a? D
’ (’Y‘|"Yref)(’)/ - fY’ref) Teffyzef + w?

-04 ¢ 1
-0.6 ¢ 1
-0.8 | T

-1.2 | T
-14 T
-1.6 ¢ g

_1.8 I \ |
_2 | | | | | I
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loglw]
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p Spectrum

Spectrum of (hidden) x(s):
(8 > Vs Vref und i = k)

_ 3 D,. 1
fw) = {D+a? ] 2l
(7+’7ref)(f7_’7ref) Yref v+ w
2
¥ 1
+a? D
Z(’Y‘|"Yref)(’)/_7ref) Tef’}/?%ef‘l‘wQ

™) log {7(10g[w])}

d
d(log

-9 ‘
0 8 6 4 2 0 2 4
loglw]
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tp Comparisson: Measurement «— Model

X(t)

X(t)

X(t)
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9 W WL Ay g
H‘ I W ' -
8 i
7 | | |
0 100 200 300 400 500 600
t[s]
=
d
o
>
o
|
0 100 200 300 400 500 600
t[s]
18
16
14 l —
12 "j ] é
2 f) .,,, m ’ W, h 5
8 | M’f ' 3
6 —
4 - _
2 | | | | |
0 100 200 300 400 500 600
t[s] Ax [o m/s]

David Kleinhans — Continuous Time Random Walks in the Continuum Limit — Stochastics in Turbulence and Finance, January 2008 24



'tp Results: Loads on Wind Turbine Blade

Comparison between the Kaimal and the von Karman models and the Kleinhans
model, Vwind=8m/s, m=12, config Kleinhans: B

14 -

12 5

10+

@ Kaimal,
Mean=100%,

> 8 Stddv=100%
= m Kleinhans,
% I Mean=107.6%,
.8 5. Stddv=102.1%
: ] I

1 I I I ‘ . I

.,,-—,——‘,,—,—‘:—:‘—, : L Ll L - : = =L =-_ == == =

<862 888 92.8 6.7  100.7 1046 1086 1125 1165 1204 1244
Load range (% /Mean Kaimal)

(@]

[H. Gontier, A.P. Schaffarczyk, Fachhochschule Kiel, Germany]
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'tp Results: Loads on Wind Turbine Blade

probability

Comparison between the Kaimal and the Kleinhans model, Vwind=12m/s, m=12,
config Kleinhans: B

14
12 -
10 + = Kaimal,
Mean=100%,
Stddv=100%
8
m Kleinhans,
Mean=102.4%,
64 Stddv=97%
44
2
O _lz

<84.1 86.78 90.83 94.87 98.92 102.97 107.01 111.06 115.11
Load range (% /Mean Kaimal)

[H. Gontier, A.P. Schaffarczyk, Fachhochschule Kiel, Germany]
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'tp Results: Loads on Wind Turbine Blade

=] Kaimal,
Mean=100%,
Stddv=100%

m Kleinhans,
Mean=96.7%,
Stddw=117.6%

Comparison between the Kaimal and the von Karman models and the Kleinhans
model, Vwind=15m/s, m=12, config Kleinhans: B
14 -
12 4
10 -
Fy 8-
E
©
Q
o 6+
o
4 -
2
0-
<74 76.6 80.6 84.6 88.6 92.6 96.5 100.5 104.5 108.5 112.5
Load range (% /Mean Kaimal)

[H. Gontier, A.P. Schaffarczyk, Fachhochschule Kiel, Germany]
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Conclusion
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'tp Conclusion

CTRWs
#® Powerfull tool for numerical simulation of fractional processes

# Simulation of continuous sample paths

= Accurate reproduction of fractional dynamics at finite time

# Multivariate joint statistics?

Wind field model
#® Modells currently applied: Poor reproduction of intermittent statistics

#® Stochastic approach based on CTRW

= Intermittency can be controlled
# Infinite waiting times unphysical: Truncation of power laws (k )

#® Multiplicative character of atmospheric turbulence?
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'tp Conclusion

1.1

"Fit: 0.027 u + 0.009
Analysis of FINO data O O

—
I

sqrt[<(u-<u>)2>] [m/s]

o | | | | | |

0 5 10 15 20 25 30 35
u [m/s]
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Thank you
for your attention!
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