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Introduction

Goal:

Modelling the (3+1)-dimensional turbulent velocity field
as a stochastic process that captures main stylized facts of
turbulent data.

Today:

Modelling the (0+1)-dimensional turbulent velocity field
as a stochastic process that captures main stylized facts of
turbulent data
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Stylized facts of turbulent data:

* Heavy tailed distributions

* Scaling of structure functions

* Scaling of energy dissipation correlators
* Statistics of the Kolmogorov variable
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Heavy tailed distributions

'The probability densities of velocity increments u, = v, — v,
evolve from heavy tails at small time scales s towards an
approximate Gaussian shape at large time scales s.

'The evolution of densities across time scales is well
approximated within the class of normal inverse Gaussian
distributions.
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Heavy tailed distributions: atmospheric boundary layer: Ry, =17000
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Heavy tailed distributions: jet experiment: R, =190
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NIG shape triangle
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NIG shape triangle
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Introduction

Scaling of structure functions

Structure functions of velocity increments of order n
S (s)= E{ug} = E{(VS -V, )n} oc 51 (0)

show (approximate) scaling behaviour for a range of time
scales s (the so-called inertial range) in the limit of large
Reynolds numbers R, .
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Scaling of structure functions

atmospheric boundary layer: R, =17000
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Scaling of energy dissipation correlators

‘Two-point correlators C, o
1> 42

of the (surrogate) energy dissipation (v denotes the viscosity)

2
g, (x)=15v (avg_ix))
are defined as

“ny.n, (8)= E{et(x)nl €4s(X)™ }

Ele ()" [Ble ()}
'These correlators show (approximate) scaling behaviour

—ﬁ(n1 R L) )

Ch, . n, (S)ocs

for time scales s within the inertial range.

(s) at time scale s and order (nl,nz)
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Scaling of energy dissipation correlators

helium jet experiment: R, =208
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Statistics of the Kolmogorov variable

'The Kolmogorov variable V, (in the time domain) is defined as

V,=—4%
LE)"”
where
t
€ = J.esds
0

is the integrated surrogate energy dissipation.
'The conditional probability densities p(Vt |§t) do not depend

on €, for t within the inertial range.
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Statistics of the Kolmogorov variable

atmospheric boundary layer: R, =17000
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'The (0+1)-dimensional modelling framework

We propose to model the timewise dynamics of the main component
of the turbulent velocity field v, at a fixed position and at time t as a

stochastic process of the form

t

VtZJf —s(dB+Bj (t—s)J.ds

—O0Q

where B denotes Brownian motion, f is a deterministic kernel and 3
is a constant. The stochastic process J is called the intermittency

process.
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'The velocity v, is not differentiable, 2
but
dv, ? 2 § -
( dt) =£(0)"J, Ol
and . 5
S, (t) o<t °
for small t (small scale diffusion). ° 1| ; ; 1|o
S

helium jet experiment: R, =283
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Structure functions

S, (t) =E{J}F(t)+B°G(t)

where
t t
G(t)= | [ F(ts)f(t.s)E{1 I, }dsds
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Structure functions

S;(t)=PB, (t)+B B, (t)

where
t t~ N
B,(t)= J- Jf(t,s)z f(t,s")E{JJ, }dsds’
t t t N N N
By(t)= [ | [F(ts)f(t1)f(t.w)E{1J ], }dsdldw
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Intermittency

2
J, (At) = Vera=v) o< €, (At)At

At

We model the intermittency process J at a fixed position G as a

continuous cascade process

—

t o+r(s—t+T)

J, =exps J' j dZ

=T 6—r(s—t+T)

'

where Z is a L.évy basis, T denotes the decorrelation time and
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Intermittency: Scaling of correlators

E{JOH1JSH2} . (S n b)—t(nl, nz)

Cony (8= L1 el
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Weight function

f(t)=(t+ty) e

A(t+tg)

f(t)
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Scaling of second order structure function

f(t) = (1) e M) N
S, (1)=E{I}F(1)+BG(1) oL
n
o
I I I I
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For the simulation of the model we choose a normal Lévy basis for

the intermittency process J and a weight function f of the form

£(t) = (t+1,) e 0<t<T

0, otherwise
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Time series: velocity
Data Simulation
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Simulation

Time series: intermittency

2
Jt (At) _ (Vt+At_Vt)

At

Data Simulation

> >

S S

= -

Q Q

+ +
iy e

= =

o <

Q Q |
+ +

time time

25/ 30



Simulation
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NIG shape triangle
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Scaling of structure functions
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log(p(Vil€:))

Kolmogorov variable

. t =2
\ \ \ \ \
~1.0 -05 00 05 1.0
Vi

29/ 30



W THIELE CENTRE

FOR APPLIED MATHEMATICS IN NATURAL SCIENCE

Generalisation
We propose to model the spatio-temporal dynamics of the velocity

v,(0) at time t and position G as an ambit process of the form

v (0)= J' t—s,6 —p) I (p)dZ+p J t—s,0 —p)J(p)dsdp

A(o)

where [3 is a constant, f and g are deterministic kernels,

{At(G):(t,G)ER4}

and

{Bt(c):(t,c)eR“}

are families of ambit sets and Z is a L.évy basis on R*.
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