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Introduction

Economic risk is the risk of prices falling
Tradition of doing this just using negative returns

semivariance,

value at risk

expected shortfall

� estimated using daily returns.
New measure of the variation of asset prices based on high frequency data.
It is called realised semivariance (RS).
Derive its limiting properties, relating it to quadratic variation and, in
particular, negative jumps.



Realised terms

ABDL(2001) and BNS(2002) formalised realised variances (RV),
establishing links these commonly used statistics to the quadratic variation
process.
BNS(2004,2006) went inside the quadratic variation process and separate
out components of the variation of prices into that due to jumps and that
due to the continuous evolution. Bipower variation.
This work has prompted papers by, for example, ABD(2003), Huang and
Tauchen (2005) and Lee and Mykland (2007) on the importance of this
decomposition empirically in economics.
Surveys of this kind of thinking are provided by ABD(06) and BNS(2007),
while a lengthy discussion of the relevant probability theory is given in
Jacod(2007).



Quadratic variation

Realised variance (RV) estimates the ex-post variance of asset prices over
a �xed time period.
We will suppose that this period is 0 to 1.
In our applied work it can be thought of as any individual day of interest.
Then RV is de�ned as

RV =
n

∑
j=1

�
Ytj � Ytj�1

�2
.

where 0 = t0 < t1 < ... < tn = 1 are the times at which (trade or quote)
prices are available.



RV =
n

∑
j=1

�
Ytj � Ytj�1

�2
.

For arbitrage free-markets, Y must follow a semimartingale. This
estimator converges as we have more and more data in that interval to the
quadratic variation at time one,

[Y ]1 = p� lim
n!∞

n

∑
j=1

�
Ytj � Ytj�1

�2
,

(e.g. Protter (2004)) for any sequence of deterministic partitions
0 = t0 < t1 < ... < tn = 1 with supjftj+1 � tjg ! 0 for n! ∞. This
limiting operation is often referred to as �in-�ll asymptotics� in statistics
and econometrics



Being blind to signs

RV solely uses squares of the data, while the research of, for example,
Black (1976), Nelson (1991), Glosten, Jagannathan and Runkle (1993)
and Engle and Ng (1993) has indicated the importance of falls in prices as
a driver of conditional variance.
The reason for this is clear, as the high frequency data becomes dense, the
extra information in the sign of the data can fall to zero for some models.
Elegant framework in which to see this is where Y is a Brownian
semimartingale

Yt =
Z t

0
asds +

Z t

0
σsdWs , t � 0,

where a is a locally bounded predictable drift process and σ is a càdlàg
volatility process �all adapted to some common �ltration Ft , implying the
model can allow for classic leverage e¤ects.



QV

Yt =
Z t

0
asds +

Z t

0
σsdWs , t � 0,

For such a process

[Y ]t =
Z t

0
σ2sds,

and so
d[Y ]t = σ2tdt,

which means for a Brownian semimartingale the QV process tells us
everything we can know about the ex-post variation of Y . The signs of the
returns are irrelevant in the limit � this is true whether there is leverage
or not.



Sign of jumps

If there are jumps in the process there are additional things to learn than
just the QV process. Let

Yt =
Z t

0
asds +

Z t

0
σsdWs + J t ,

where J is a pure jump process. Then, writing jumps in Y as
∆Yt = Yt � Yt�, then

[Y ]t =
Z t

0
σ2sds+ ∑

s�t
(∆Ys )

2 ,

and so QV aggregates two sources of risk. Even when we employ bipower
variation (BNS(2004, 2006)), which allows us to estimate

R t
0 σ2sds

robustly to jumps, this still leaves us with estimates of ∑s�t (∆Js )
2. This

tells us nothing about the asymmetric behaviour of the jumps � which is
important if we wish to understand downside risk.



Downside realised semivariance

We introduce the downside realised semivariances (RS�)

RS� =
tj�1

∑
j=1

�
Ytj � Ytj�1

�2 1Ytj�Ytj�1�0,
where 1y is the indicator function taking the value 1 of the argument y is
true.
We will study the behaviour of this statistic under in-�ll asymptotics.
In particular we will see that

RS�
p! 1
2

Z t

0
σ2sds+ ∑

s�1
(∆Ys )

2 1∆Ys�0,

under in-�ll asymptotics.
Hence RS� provides a new source of information, one which focuses on
squared negative jumps.



Upside realised semivariance

Of course the corresponding upside realised semivariance

RS+ =
tj�1

∑
j=1

�
Ytj � Ytj�1

�2 1Ytj�Ytj�1�0
p! 1
2

Z t

0
σ2sds+ ∑

s�1
(∆Ys )

2 1∆Ys�0,

maybe of particular interest to investors who have short positions in the
market (hence a fall in price can lead to a positive return and hence is
desirable), such as hedge funds.
Of course,

RV = RS� + RS+.



Initial empirical features

Analysis of trades on General Electric (GE) carried out on the New York
Stock Exchange from 1995 to 2005 (giving us 2,616 days of data).
Notice by 2004 the tick size has fallen to one cent.
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Information content

In the realised volatility literature, authors have typically worked out the
impact of using realised volatilities on volatility forecasting using
regressions of future realised variance on lagged realised variance and
various other explanatory variables. Engle and Gallo (2006) prefers a
di¤erent route, which is to add lagged realised quantities as variance
regressors in Engle (2002) and Bollerslev (1986) GARCH type models of
daily returns � the reason for their preference is that it is aimed at a key
quantity, a predictive model of future returns, and is more robust to the
heteroskedasticity inherent in the data. Typically when Engle generalises
to allow for leverage he uses the Glosten, Jagannathan and Runkle (1993)
(GJR) extension. This is the method we follow here. Throughout we will
use the subscript i to denote discrete time.



Model based analysis

We model daily open to close returns fri ; i = 1, 2, ...,Tg as

E (ri jGi�1) = µ,

hi = Var (ri jGi�1) = ω+ α (ri�1 � µ)2 + βhi�1

+δ (ri�1 � µ)2 Iri�1�µ<0 + γ0zi�1,

and then use a standard Gaussian quasi-likelihood to make inference on
the parameters, e.g. Bollerslev & Wooldridge (1992). Here zi�1 are the
lagged daily realised regressors and Gi�1 is the information set generated
by discrete time daily statistics available to forecast ri at time i � 1.



Main results

Table 1 shows the �t of the GE trade data from 1995-2005.



Main results

ARCH type models and lagged realised semivariance and variance
GARCH GJR

RS��1 0.685
(2.78)

0.371
(0.91)

RV�1 �0.114
(�1.26)

0.228
(3.30)

0.037
(0.18)

0.223
(2.68)

ARCH 0.040
(2.23)

0.046
(2.56)

0.040
(2.11)

0.017
(0.74)

0.016
(1.67)

0.002
(0.12)

GARCH 0.711
(7.79)

0.953
(51.9)

0.711
(9.24)

0.710
(7.28)

0.955
(58.0)

0.708
(7.49)

GJR 0.055
(1.05)

0.052
(2.86)

0.091
(2.27)

Log-L -4527.3 -4577.6 -4533.5 -4526.2 -4562.2 -4526.9

Table: Gaussian quasi-likelihood �t of GARCH and GJR models �tted to daily
open to close returns on General Electric share prices, from 1995 to 2005. We
allow lagged daily realised variance (RV) and realised semivariance (RS) to appear
in the conditional variance. They are computed using every 15th trade.
T-statistics, based on robust standard errors, are reported in small font and in
brackets. Code: GARCH_analysis.ox



Econometric theory

We start this section by repeating some of the theoretical story from
Section 1.
Consider a Brownian semimartingale Y given as

Yt =
Z t

0
asds +

Z t

0
σsdWs , (1)

where a is a locally bounded predictable drift process and σ is a càdlàg
volatility process. For such a process

[Y ]t =
Z t

0
σ2sds,

and so d[Y ]t = σ2tdt, which means that when there are no jumps the QV
process tells us everything we can know about the ex-post variation of Y .



When there are jumps this is no longer true, in particular let

Yt =
Z t

0
asds +

Z t

0
σsdWs + J t , (2)

where J is a pure jump process. Then

[Y ]t =
Z t

0
σ2sds+ ∑

s�t
(∆Js )

2 ,

and d[Y ]t = σ2tdt + (∆Yt )
2. Even when we employ devices like bipower

variation (BNS(2004, 2006))

fY g[1,1]t = µ�21 p� lim
n!∞

tj�t

∑
j=2

��Ytj � Ytj�1 �� ��Ytj�1 � Ytj�2 �� , µ1 = E jU j , U � N(0, 1),

we are able to estimate
R t
0 σ2sds robustly to jumps, but this still leaves us

with estimates of ∑s�t (∆Js )
2. This tells us nothing about the asymmetric

behaviour of the jumps.



The empirical analysis we carry out throughout this paper is based in
trading time, so data arrives into our database at irregular points in time.
However, these irregularly spaced observations can be thought of as being
equally spaced observations on a new time-changed process, in the same
stochastic class, as argued by, for example, BNHLS(2006). Thus there is
no intellectual loss in initially considering equally spaced returns

yi = Y i
n
� Y i�1

n
, i = 1, 2, ..., n.



yi = Y i
n
� Y i�1

n
, i = 1, 2, ..., n.

We study the functional

V (Y , n) =
bntc

∑
i=1

�
y2i 1fyi�0g
y2i 1fyi�0g

�
. (3)

The main results then come from an application of some limit theory of
Kinnebrock and Podolskij (2007) for bipower variation. This work can be
seen as an important generalisation of Barndor¤-Nielsen, Graversen, Jacod
and Shephard (2006) who studied bipower type statistics of the form

1
n

n

∑
j=2
g(
p
nyj )h(

p
nyj�1),

when g and h were assumed to be even functions. Kinnebrock and
Podolskij (2007) give the extension to the uneven case, which is essential
here.



Suppose BSM holds, then

V (Y , n)
p! 1
2

Z t

0
σ2sds

�
1
1

�
.

Proof. Trivial application of Theorem 1 in Kinnebrock and Podolskij
(2007).



Corollary Suppose

Yt =
Z t

0
asds +

Z t

0
σsdWs + J t ,

holds, where J is a �nite activity jump process then

V (Y , n)
p! 1
2

Z t

0
σ2sds

�
1
1

�
+ ∑
s�t

 
(∆Ys )

2 1f∆Ys�0g
(∆Ys )

2 1f∆Ys�0g

!
.



The above means that

(1,�1)V (Y , n) p! ∑
s�t
(∆Ys )

2 1f∆Ys�0g � (∆Ys )
2 1f∆Ys�0g,

the di¤erence in the squared jumps. Hence this statistic allows us direct
econometric evidence on the importance of the sign of jumps. Of course,
by combining with bipower variation

V (Y , n)� 1
2

Z t

0
σ2sds

�
1
1

�
p! ∑
s�t

 
(∆Ys )

2 1f∆Ys�0g
(∆Ys )

2 1f∆Ys�0g

!
,

we can straightforwardly estimate the QV of just positive or negative
jumps.



In order to derive a central limit theory we need to make two assumptions
on the volatility process.
(H1). If there were no jumps in the volatility then it would be su¢ cient to
employ

σt = σ0 +
Z t

0
a�sds +

Z t

0
σ�sdWs +

Z t

0
v �s dW �

s . (4)

Here a�, σ�, v � are adapted càdlàg processes, with a� also being
predictable and locally bounded. W � is a Brownian motion independent of
W .
(H2). σ2t > 0 everywhere.
The assumption (H1) allows for �exible leverage e¤ects, multifactor
volatility e¤ects, jumps, non-stationarities, intraday e¤ects, etc.
Kinnebrock and Podolskij (2007) also allow jumps in the volatility under
the usual (in this context) conditions introduced by Barndor¤-Nielsen,
Graversen, Jacod, Podolskij and Shephard (2006) and discussed by, for
example, Barndor¤-Nielsen, Graversen,Jacod and Shephard (2006) but we
will not detail this here.



Proposition 1. Suppose BSM, (H1) and (H2) holds, then

p
n
�
V (Y , n)�1

2

Z t

0
σ2sds

�
1
1

��
Dst! Vt

where

Vt =
Z t

0
αs (1)ds +

Z t

0
αs (2)dWs +

Z t

0
αs (3)dW 0

s ,

αs (1) =
1p
2π
f2asσs + σsσ

�
s g
�
1
�1

�
,

αs (2) =
2p
2π

σ2s

�
1
�1

�
,

As =
1
4

σ4s

�
5 �1
�1 5

�
,

αs (3) αs (3)
0 = As � αs (2) αs (2)

0 ,

where αs (3) is a 2� 2 matrix. Here W 0 ?? (W ,W �), the Brownian
motions which appears in the Brownian semimartingale BSM and (H1).



When we look at
RV = (1, 1)V (Y , n),

then we produce the well known result

p
n
�
RV�

Z t

0
σ2sds

�
Dst!

Z t

0
2σ2sdW

0
s

which appears in Jacod (1994) and BNS(2002).



Assume a, σ ?? W then

p
n
�
V (Y , n)�1

2

Z t

0
σ2sds

�
1
1

��
Dst! MN

�
1p
2π

Z t

0
f2asσs + σsσ

�
s gds

�
1
�1

�
,
1
4

Z t

0
σ4sds

�
5 �1
�1 5

��
.

If there is no drift and the volatility of volatility was small then the mean
of this mixed Gaussian distribution is zero and we could use this limit
result to construct con�dence intervals on these quantities. When the drift
is not zero we cannot use this result as we do not have a method for
estimating the bias which is a scaled version of

1p
n

Z t

0
f2asσs + σsσ

�
s gds.

Of course in practice this bias will be small. The asymptotic variance of
(1,�1)V (Y , n) is 3n

R t
0 σ4sds, but obviously not mixed Gaussian.



When the a, σ ?? W result fails, we do not know how to construct
con�dence intervals even if the drift is zero. This is because in the limit

p
n
�
V (Y , n)�1

2

Z t

0
σ2sds

�
1
1

��
depends upon W . All we know is that the asymptotic variance is again

1
4n

Z t

0
σ4sds

�
5 �1
�1 5

�
.

Notice, throughout the asymptotic variance of RS� is

5
4n

Z t

0
σ4sds

so is less than that of the RV (of course it estimates a di¤erent quantity so
perhaps this observations is not so particularly important). It also means
the asymptotic variance of RS+ � RS� is

3
n

Z t

0
σ4sds.





Noise

Suppose instead of seeing Y we see

X = Y + U,

and think of U as noise. Let us focus entirely on

n

∑
i=1
x2i 1fxi�0g =

n

∑
i=1
y2i 1fyi��u i g+

n

∑
i=1
u2i 1fyi��u i g + 2

n

∑
i=1
yiui1fyi��u i g

'
n

∑
i=1
y2i 1fui�0g+

n

∑
i=1
u2i 1fui�0g + 2

n

∑
i=1
yiui1fui�0g.

If we use the framework of Zhou (1996), where U is white noise,
uncorrelated with Y , with E(U) = 0 and Var(U) = ω2 then it is
immediately apparent that the noise will totally dominate this statistic in
the limit as n! ∞.
Pre-averaging based statistics of Jacod, Li, Mykland, Podolskij and Vetter
(2007) could be used here to reduce the impact of noise on the statistic.



Conclusions

There is much more empirical work in the paper, replicating this result.
Main points

We can look inside QV in another way

We can tease out features of negative jumps

These seem to drive conditional variance of asset returns


