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Power variation for some class of processes The power variation

For any p > 0, a natural number n and for any stochastic process
Z ={Z,t €0, T]} the (normalized) power variation of order p is

defined as
(]

Vn( - nn;‘z, ZI 1

where 7, is a normalization factor.

i
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Consider a complete probability space (2, F, P) and a Gaussian
subspace Hy of L2(Q, F, P) whose elements are zero-mean Gaussian
random variables. Let be H a separable Hilbert space with scalar
product denoted by (-, )y and norm || - ||y, we will assume there is an
isometry

W : H-—H;
h — W(h)

in the sense that

E(W(h))W(h2)) = (hy, ho)p.

José M. Corcuera (University of Barcelona) 4/53



Power variation for some class of processes Sequences of functionals of Gaussian processes

For any m > 2, we denote by H,, the m-th Wiener chaos, that is, the
closed subspace of L?(Q, F, P) generated by the random variables
Hm(X), where X € Hy, E(X?) = 1, and Hp, is the m-th Hermite

X2 m X2
polynomial, i.e. Hy(x) =1 and Hp(x) = (—1)"e= g(—m(e*T).
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Suppose that H is infinite-dimensional and let {g;,/ > 1} be an
orthonormal basis of H. Denote by A the set of all sequences
a=(ay,an,...),a € N, such that all the terms except a finite number of
them, vanish. For ac A we set a! = N%°,a;! and |a| = 2, &;. For any
multiindex a € A we define

1

(Da:ﬁ

=1 Ha,(W(ei))-
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Power variation for some class of processes Sequences of functionals of Gaussian processes

The family of random variables {®,, a € A} is an orthonormal system.
In fact
E (N2 Ha (W (€)M Hp,(W(e))) = dapal.

And {®4,a € A, |a] = m} is a complete orthonormal system in H, .
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Let a € A, with |a] = m, the mapping

Im: H™ — Hp

@5?213?% = MZ4Hg (W(e))),
where © denotes the symmetrization of the tensor product ®, between
the symmetric tensor product H®™, equipped with the norm
vm!|-||yem and the m-th chaos, is a linear isometry. We also define Iy
as the identity in R.
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Foranyh=h @ ---@hpand g = g1 @ --- @ gm €H®™, we define the
p-th contraction of h and g, denoted by h ®, g, as the element of
H®2(m=p) given by

h®pg =< hm, g1 >H - < hm_p11,Gp SHM @ - @Nm_pRYp41®- - -@Ym.

This can be extended by linearity to any element ofH®™. Note that if h
and g belong to H®™, h®, g does not necessarily belong to Ho@m=p),
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Power variation for some class of processes Sequences of functionals of Gaussian processes

We have the following properties

o Ip(h)lg(g) = P23 r! < P ) ( Cr’ > lo+q-2r(h®rg)

r
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Note that if we take h = ¢;®P, g = ;9 we obtain

oW HaW(e0) = Y- rt () (9 ) Hor aWie)

r
r=0
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Let G the o-field generated by the random variables {W(h), h € H}.
Any square integrable random variable F € L?(Q,G , P) can be
expanded as

F = i In(fn).-
m=0
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Consider a sequence of d-dimensional random vectors
Fn=(F}),F2,...,F9), such that F¥ € [?(Q,G , P) and

Fro="> In(fs.n)
m=0
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Power variation for some class of processes Sequences of functionals of Gaussian processes
Theorem

Assume the following conditions hold:
() Fork,I=1,...,d we have

o0
Jlim > I I = T
m=1

Z n“m <fr{l(7,n7 fr{n,n> =X u, k#1,
m=1

(i) Foranym>1,k=1,...,dandr=1,..., m—1

A Kk Kk 2
nILmoo ||fm,n r fm,n |H®2(mfr) = 0.

Then we have »
Fn— fO,n — Nd(o7 Z)- (1)

as n tends to infinity.
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Power variation for some class of processes Sequences of functionals of Gaussian processes

Consider the simple case where we have a family of stationary,
centered, Gaussian random variables {X;};>1, with E(X2) = 1, and we
want to know the behavior of the sequence

Y = \15 (; H(X) — E(H(xm)

when n goes to infinity. We assume that E(H(X;)?) < co. We can take
Hy =span{X;,i > 1}, and H = H, |, then
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Power variation for some class of processes Sequences of functionals of Gaussian processes

H(x) = i CmHm(X)
m=0

and
o0 1 n
Yn = Z — Z CmHm(Xi)
m=1 n i=1
o0 1 n
= D 7 2 Cmln(X7)
n
m=1 i=1
[e’e] 1 n
= > [ =D cmX?"
m=1 \m i=1
then
1 n
_ Q@m
fmn = \ﬁ ; CmX;
and
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Power variation for some class of processes Sequences of functionals of Gaussian processes

L 5 > mic3, . am
E m!||fmnllgem = E n p(i —J)
m=1 Ni

and
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Power variation for some class of processes Sequences of functionals of Gaussian processes

|| fm,n ®r fm,n“i@Z(mfr)

ct o . o _
= 3 D o= plk = p(i = k)™ p(j = ™
ik, =1
S AVHAVE
= SN i) ol K)o (n - YK
i j. k=0
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Power variation for some class of processes Gaussian processes with stationary increments

Let X be a centered Gaussian process X with stationary increments
and such that

E(X;— Xs)? = [t—sPPL(t—s]), O0<H<A1,

where L is a continuous function on (0, co) slowly varying at zero, that
is

IimM =1,vt>0.

x10 L(x)
Since L is a continuous function slowly varying at zero, for any § > 0
and x € (0, 1] there exists a constant K(¢) such that

IL(x)| < K(8)x~°,
SO
E(X;— Xs)?2 < K(O)|t—s|?F9,0<s,t<1

and then (a version of) X; has trajectories (H — ¢)-Hdlder continuous.
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Power variation for some class of processes Gaussian processes with stationary increments

Consequently the trajectories of X; have p-finite variation with p > 1/H:

n 1/p
Varp(X;[a,b]) = sup (Z Xy — Xy, ‘P>

& i=1

n 1/p
< ||fl|y_.Sup (Z It — by |p(He)>

i=1
n 1/p
= [Iflly—-sup <Z!T/—ff—1!> = |flly_. (b—2a)"P,
T N\i=t

where ||f||,_. is the Hélder norm and where we take p = 1/(H — ¢).
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Power variation for some class of processes Integral processes

Young (1936) proved that the Riemann-Stieltjes integral f: fdg exists if
f and g do not have common discontinuities and they have finite

p variation and finite g-variation, respectively, in the interval [a, b] and
14151,

‘?hen we can consider processes Z of the form

t
Zt == / USdXS
0

where u is a process with finite g-variation g < 1/(1 — H).
The purpose is to study asymptotic behavior of the power variation of Z

/ UsdXs

n

[nt]

LIRS

NTn i3

o

where 7, = Var(X:)'/2.
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Power variation for some class of processes Convergence in probability

Set ¢p = E(|N(0,1)|P) = 2pr(:(/2) ) Fix T > 0, denote by u.c.p. the

uniform convergence in probability in the time interval [0, T] and || - ||
for the supremum norm on [0, T]. Assume conditions

C1 t?HL(t) € C? and (tQHL(t))N = 2H=2[,(t) where Ly is slowly
varying and continuous in (0, o).
C2 There exits b, 0 < b < 1, such that

, Li(y) ’
C =limsu su <
3 IR
x<y<xb

then
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Power variation for some class of processes Convergence in probability

Suppose that u = {uy, t e [0 T1} is a stochastic process with finite
g-variation, where q < 1 . Set

t
Zt = / Usts.
0

Then, t
Vi) e ¢, /0 us|Pds,

as n tends to infinity for any t > 0.

José M. Corcuera (University of Barcelona) 23/53



Power variation for some class of processes Convergence in probability

Assume first that us = 1. Then Z; = X; and

1 [nt] (] X,
V00— Ly 3w 13 S
nrp = 1o
therefore [ t] [ t]
n n
E(V5(2)) = =~ E(IN(0,1)P) =
and
oty 1 oAl X =Xl
ar(Vy(X)) = 5 (cop— o) + /;(”—!) ov(| 2| | =)

José M. Corcuera (University of Barcelona) 24 /53



Power variation for some class of processes Convergence in probability

Set
H(x) = |x|P — cp

we can write

= Z amHm(x
m=2

where Hp(x) are Hermite polynomials and a, = Z2. Then

Xl p X/ﬁ _XL oo
Cov( T—” | —T— :Zafnmlpn
n
=2
where
. Xi X1 —X;
pn(f) = COV(?,,’T)
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Power variation for some class of processes Convergence in probability

EXX) = 2(EOR) + E(XR) — E(X — X))

= %(tZHL(t) +8%7L(s) — |t — sPPPL(]t - s]))

and consequently

o) = ey (04 DL 4 G- P T 2l ) e

2L(5)
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Power variation for some class of processes Convergence in probability

By conditions C1 and C2, and m > 2

[nt]—1 1 [nt]—1
Z( Dyon)™ ~ 13 )"
j=1
with
o) = 3 (G127 4 G 12— 27) =1
Then
Var(Vg(X)t) =0

and therefore ,
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Power variation for some class of processes Convergence in probability

For the general case we can write, forany m > nand if p < 1

|Vm Cp/ ‘Us|pd3‘
1 |Im L p i
mrP /;(/nﬂ usaXs| — |ut(X; —x%)) )
1 [mt] , - . p
S R O o N S
" j:1 m ’ =t " jen()
(] »
mrp, mP Z ‘U, 1 Z ‘X/ X, — cpn™ Z ‘Ui;1
j€n(i) ~—

[nt]

+cp|n! Z‘u, 1

where (i) = {j: L e (=1 I}, 1 <i<[nf].
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Power variation for some class of processes Convergence in probability

For any fixed n, an’m) converges in probability to zero, uniformly in ¢,

as m tends to infinity. In fact,

[nT]
o] <5 o
R "

and we can use the result for u = 1. In a similar way we can prove that
as mtends to infinity

meZ’X’ X”‘ — G’

. C
iimsup [BC™|| < =2 sup lut P |usl?| + (][]
m o —1 SEIn(i)UIn(if‘l) n

where Z,(i) = [, 1], and this tends to zero as n goes to infinity

because |u|P is regulated.
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Power variation for some class of processes Convergence in probability

1 [mt] i P
[aem] < LS v - i (X~ Xi)
o mTrl% j:1 % m m m
[mT]
1 T MV X T (] P
< c,ig,q,ﬁ;(qu(u, mU)Var s (X:Zn(j)
< o g TIIulgIX|P, m 9+
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Power variation for some class of processes Central limit theorem |

For H € (0, %) the fluctuations of the power variation, properly
normalized, have Gaussian asymptotic distributions. Write

oh=1+2> p(j))"
j=1

with

o) = 5 (G+ 127+ (=12 —22H) =1,

N —

and

(o9}
02 = Z a%m!a,zn
m=2
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Power variation for some class of processes Central limit theorem |

Theorem
Fixp > 0. Assume 0 < H < 3/4. Then

(X, VP VE(X)t — Cot) 5 (Xe, o W), 2)

as n tends to infinity, where W = {W;, t € [0, T|} is a Brownian motion
independent of the process X, and the convergence is in the space
D([0, T])? equipped with the Skorohod topology.
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Power variation for some class of processes Central limit theorem |

The proof has two steps. Set

Z{" = /n( VH(X): = cot)

Step 1. First we have to show the convergence of the finite
dimensional distributions. Let Jx = (ak, bx] , k =1,..., N be pairwise
disjoint intervals contained in [0, T]. Define the random vectors

X = (Xp, — Xay, - - Xoy — Xay) and Y = v\ vy where

]
Y,E”):T 3

[nak]<j<[nbx]

P

M AN

Tn

k=1,...,Nand |J| = bx — ax. We have to show that
(X, Y 5 (X, V), (3)

where X and V are independent and V is a Gaussian random vector
with zero mean, and independent components of variances o2 |J|.
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Power variation for some class of processes Central limit theorem |

Set X, = X0=X0=0in and H(x) = |x|P — ¢,. Then, {X;n,j > 1} is a
stationary Gaussian triangular system with zero mean, unit variance
and E(Xi,yXi+1,n) = pn(j).Thus, the convergence (3) is equivalent to

the convergence in distribution of (X, Y(M) to (X, V), where

X"=7m S Xn1<k<N (4)
[nak]<j<[nbx]
and 1
Y,f") - Z H(X;n), 1 <k <N. (5)
[nak]<j<[nbx]
34/53
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Power variation for some class of processes Central limit theorem |

Then we can take H4 to be the closed subspace of L?(Q, F, P)
generated by the random variables X, ;. and to apply the results on
sequences of functionals of Gaussian processes mentioned before.
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Step 2. We need to show that the sequence of processes Z(" is tight
in D([0, T]). Let us compute for s < ¢

[n] 4

Y. HXn)

j=[ns]+1

4
E(‘Z,(”) _ZW = n2E

If H is polynomial we have that, for all N > 1
4

this is guaranteed by the behavior of the contractions mentioned
before, thenforall t; <t <t
2 2

) < Clo —t]7,

2
Bz -z |z - Z"

and by Billingsley (1968, Theorem 15.6) we get the desired tightness
property, finally, for general H, we can use an approximation argument.
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Power variation for some class of processes Central limit theorem I

Theorem

Fixp > 0. Let H € (0,3/4). Suppose thatu = {u;,t € [0, T]} is a
stochastic process, measurable with respect to X, with Hélder
continuous trajectories of order a > m. Set Z; = fot usdXs. Then

t t
(xf, VAVIZ): — 6 /0 |us|Pds)) 4 (xt,a / |usrpdws) ,
0

as n tends to infinity, where W = {W;,t € [0, T|} is a Brownian motion
independent of X and the convergence is in D([0, T])?.
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Power variation for some class of processes Central limit theorem I

For any m > n, we can write,
t
VA(VE(2): = o [ uspds) = AT + B < 0 D™,
0

where

[mt] j p

P
pz / USdXS Uj 1(X —Xj—1) 3

m

A(m _
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Power variation for some class of processes Central limit theorem I

1 [mt] p [mt]
B{"m Ui (X, — X > us
t mﬁf;‘lm1( n 171)‘ \/»p;|/1’
[nt] [nt]
1 P V/m
= usa Py 5 (X =Xt | + 3¢ Ju P,
i— " jeh() vmm " noiE T
[t 1 P C
nm
" =3 lus P | Vim( 3 B Xt = X -)
i=1 J€(i)
and
[mt]
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Power variation for some class of processes Central limit theorem I

Thenas m —

[nt]

G 5, 05 o ()

and as n — oo

[nt]
> Jua P (Wi - Wf;1> =P /t\Us|des
:1 n n n 0
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More general functionals

Let Z = {Z;,t > 0} be a stochastic process, define

- - .
Yz -zl <!

Zt(n) = Zi + n(t - i i—1 n E

that is the broken line approximation of Z;. The derivative of Zt(”), that

we denote by Zt(”), is defined except for a finite number of points. We
are going to study the asymptotic behavior of functionals of the form

[nt]
F2) = [ nz)g (270 ) s )

where h and g are continuous functions.
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More general functionals

In the particular case g(x) = |x|P, where p > 0, and h = 1,F§§”,3(Z) [

the normalized power variation of order p that we will write Vé (2)t- In
fact

|

h

These kind of functionals have been conS|dered in Leon and Ludena
(2004). There the authors study their asymptotic behavior by assuming
that Z is the solution of an stochastic differential equation driven by a
fBm with H > 1/2.

)H1)pds 1[ ‘(z, z )|
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More general functionals

We are going to impose the following condition on the function g:
H: There exist constants « € (0,1], a,b > 0 and 0 < p < 2 such that
forall 0 < x < y we have

19(y) — 9(x)| < C(&)|y — x|,

where ¢ € [x, y] and the function C satisfies 0 < C(u) < aeblV’.

We will denote by W a standard normal random variable independent
of the process B", and E" will denote the mathematical expectation
with respect to W. Let cg(z) = EW(g(zW)) for any z > 0.
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More general functionals Convergence in probability

Suppose that u = {u;, t € [0, T|} is an stochastic process with finite
q-variation, where q < 1. Set

t
Zi = / usdBY .
0

Then,

t
FiN(2): 8 0 h(Zs)cy(us)ds,

as n tends to infinity.

José M. Corcuera (University of Barcelona) 44 /53



More general functionals Convergence in probability

For any m > n,

FO(2): — /0 h(Zs)E™ (g(usW)) ds

[mi] L
}: " h(Z\™)dr (g (m”/, 1 usdBQ’) g(m”uHAB*/))'
=1 =1 m m
[mi] i [
m (m) H H 1 H H
+D / Wz )ar Q(m Ul’iABL) = h(Zi-1)g (m UgABL)
1= m m n n m
= = =1 jel()

+ —Z Zh(Z, 1)g(m Ui 1ABH)—7Zh(Z, 1)EW( (U%W))

[n] |

1 [nt] ,
+ln 2 M22)E s (W) _/0 h(Z:)E"™ (g (usW))ds

:Agm) +B§n,m) + Ct(n,m) + Dgn)

I
<
3~

m
—
:‘l.

N
31~

u—

where foreach i =1,...,n, I(i)
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For any fixed n, ||C(®™||__converges in probability to zero as m tends
to infinity, by the ergodic theorem on Banach spaces. In fact, fix n and
for any constant K define

Yok =+ 3 g (mHK(B’7 —Bﬂﬂ)) ,

jel (i)

and

ZnK = Y g (K(B,H - B}L)) :

(i—1)m _._im
n <<

By the self-similarity of the fractional Brownian motion, and for any
constant M > 0 the family of random variables

{Ym,KaK € [_M7 M]vm > 1}
has the same distribution as

{Zmk, K € [-M,M],m>1}.
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More general functionals Convergence in probability

Let C([-M, M],R) be the Banach space of continuous functions from
[-M, M] to R with the supremum norm. Then

{g (| -(Bf' - B, )|) ,j > 1}, is a stationary sequence with values in
C([-M, M],R). Then, by the ergodic theorem in Banach spaces and
the uniqueness of the L' limit we have that

E ( sup
Ke[-M,M]

as m tends to infinity.

Znk - lEWg(KW))D ~0
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More general functionals Convergence in probability

As a consequence we can write
1
P < Vmuy — HE" (g(u,»,T1 W))‘ > 5)

3P< 1

n
The second summand in the above expression converges to zero as M
tends to infinity. The first one is bounded by

P sup
Ke[-M,M]

1
<-E sup
0\ kel-mm

which converges to zero as m tends to infinity.

EY (o(u W) > 6. Jull < M) + P(lull > M).

Ym,U,'_1 -
n

Yook — 1% (kW) > 6)

Zonsc - lEWg(KW))D ,
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More general functionals Convergence in probability

For the term Agm) we have to use the properties of the modulus of
continuity of the fractional Brownian, that imply the existence of a finite
random variable Gy such that if |t — 5| < 1,

|Bf — B| < Gyt — 5|y /log |t — 5|1

Fernique’s theorem and the ergodic theorem.
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More general functionals Central limit theorems

Let 02(2) = liMp_o0 Var (% S, g(z(BH — BH 1))) . Assume that
H < 3/4 and that g is an even function.
Then

(B, Vn(V{"(2BM); - co(2)1)) & (Bf. o(2)W), (8)

as n tends to infinity, where W = {W;, t € [0, T|} is a Brownian motion
independent of the process B', and the convergence is in the space
D([0, T])? equipped with the Skorohod topology.

José M. Corcuera (University of Barcelona) 50/53



More general functionals Central limit theorems

Theorem

Suppose that u = {uy, t € [0, T]} is a stochastic process measurable
with respect to BY, with Hélder continuous trajectories of order

a> ;—a Set Z; = fot usdBY  with1/2 < H < 3/4. Assume the function
h is Lipschitz and verifies also condition H. Then

(8. vaFg@) - [ th(ZS)cg(us)ds)> 5 (st t (Ze)o(us)aWe).

as n tends to infinity, where W = {W;,t € [0, T|} and the convergence
is in D([0, T])?.

v
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