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lokal isotrope turbulence - experiment

• at least we can measure the turbulence
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turbulence

open question: to understand the correlations of the 
disorder of the turbulent field
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statistics of turbulence

 challenge to know  - general n-scale statistics
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statistics of turbulence

 n-scale statistics
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statistics of turbulence -2-

 n-scale statistics   
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what are possible simplifications?
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statistics of turbulence -3-

simplification
(1)

(2)

experimental test

experimental result:

       p(u1|u2,u3) = p(u1|u2)

(1) holds 

(2) not
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statistics of turbulence -4-

  general n-scale statistics can be expressed by

and not

with cascades picture 

Cascade a Markov process
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stochastic cascade process
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 idea of a turbulent cascade: 
large vortices are generating small ones

=> stochastic cascade process evolving in r
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stochastic cascade process - 2 -
summary: characterization of the disorder by joint 
n-scale statistics by a stochastic process, 

1.  proof of Markov properties

2. estimation of the Kramers Moyal coefficients results in 
simplification:

3. obtain information for the n-scale statistics by process equation 
(Fokker-Planck or Kolomogorov equation)
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stochastic cascade process -3-

1. property of a  Markov process: 

- evidence by conditional  

probability densities

   p(u1|u2, ... ,uN) = p(u1|u2) 

- experimental result:

       p(u1|u2,u3) = p(u1|u2) 
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stochastic cascade process -4-

2. measured: D(1)(u,r)  and D(2)(u,r)

Phys. Rev. Lett.  89, (2002)

D(1)(u,r) ≅ γ(r) u(r)

D(2)(u,r) ≅ α(r) + δ(r) u(r) + β(r) u2(r)

with the definition of (after Kol. 1931)
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stochastic cascade process -5-

measured Fokker-Planck equation 

- closed equation for structure functions if

D(1)(u,r) ≅ γ(r) u(r)
D(2)(u,r) ≅ α(r) + δ(r) u(r) + β(r) u2(r)
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stochastic cascade process -6-

3. Verification of the measured Fokker-Planck equation

- numerical solution compared with experimental results 

- => n-scale statistics 
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stochastic cascade process

Kolmogorov Obukhov 41:

Kolmogorov Obukhov 62
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p!x" =
N!

##ẋ2$x%%
exp&'

x

##ẍ$u%%
##ẋ2$u%%

du( , !8"

where the dot denotes temporal derivative and the notation

## %% stresses the fact that the interpretation of the conditional
averages is different from those of Eqs. !4" and !5". In fact,
the averages in Eq. !8" refer to an infinitesimal window be-
tween x and x+dx, rather than to a fixed temporal interval.

Hence, each contribution in the averages of Eq. !8" needs to
be weighted by the time spent in the window of width dx.

This is clear if one considers that, for stationary signals,

##ẋ $x%% is zero, in contrast to #!x% /!t. In Langevin equations,
the latter is equal to A!x" )see Eq. !4"* and, in general, is
different from zero in signals that are not symmetric in time

)19*. Similar observations were made by Sokolov )20*, who
also reported explicit formulas for the conditional averages

in Eq. !8".
Pope and Ching derived Eq. !8" under the hypothesis of

twice differentiable signals. However, as shown in )21*, the
previous expression is also valid for signals that are only

differentiable once. Along these lines, one can expect that the

same equation also applies, in a generalized sense, to Lange-

vin equations with Gaussian noise !that are nondifferen-
tiable". The starting point to find a link between the two
approaches is already partly contained in the analysis of

Stolovistky and Ching )21*, who derived the conditional av-
erages for the second-order process

ẋ = v ,

v̇ = f!x" ! "v + +"g!x"#!t" , !9"

as ##v̇ $x%%= ##ẍ $x%%= f!x" for any ", and 2##v2 $x%%=2##ẋ2 $x%%
=g!x" for the limiting case of "→$.
Since it is also known that, for "→$, the system !9"

can be reduced to the first-order Langevin equation

)15,16,21,22*,

ẋ =
f!x"
"
++g!x"

"
#!t" , !10"

one also has

f!x"
"
=

##ẍ$x%%
"

=
#!x%
!t

= A!x" !11"

and

g!x"
"
= 2

##ẋ2$x%%
"

=
#!x2%

!t
= B!x" . !12"

Thus, apart from a constant and provided the conditional

averages are interpreted correctly, the terms in Eqs. !3" and
!8" for one-dimensional Langevin equations give the same
behavior as a function of x.

The analysis of the second-order difference of x com-

pletes the link between the two approaches. For the system

!9" it is possible to show that !)16*, p. 215"

#!x% = v!t !13"

and

#!2x% = #!v% = )f!x" ! "v*!t , !14"

with !t→0. From the previous expressions it is clear that,

for "→$ , #!2x%=")A!x"!A!x"*!t=0. Thus, similarly to

Eqs. !4" and !5", the application of Eq. !14" also corresponds
to a forward !or causal" estimate of the second-order differ-
ence. In fact, writing explicitly the expression

#!2x% = $#x!t + 2!t" ! x!t + !t"%$x!t+!t" ! $#x!t + !t" ! x!t"%$x!t",

!15"

we see that it tends to zero for !t→0 as both averages tend

to A!x". Note that the same thing is obtained with a backward
estimate. However, a totally different result is obtained when

using a centered estimate for the second-order difference.

This approach was pursued by Tang )14*, who actually em-
ployed it to estimate ##ẍ $x%%, instead of the correct interpre-
tation. Interestingly, however, in the case of Langevin equa-

tions, we have, using Eq. !7",

$#x!t + !t" ! x!t"%$x!t" ! $#x!t" ! x!t ! !t"%$x!t"
= $2#!x%$x!t" = 2A!x"!t , !16"

that, apart from a multiplicative constant, agrees with ##ẍ $x%%
)see Eq. !11"*.
We tested the previous results using numerical simula-

tions of the stochastic pitchfork bifurcation process, ẋ!t"
=%x!t"!x3!t"+g#!t", with %=0.1,g=0.05, and integration

time step !t=0.5. Figure 1 shows the estimate of the drift
term using Eq. !4" along with the difference between the
causal and acausal estimates of Eq. !7". The estimates of the
second-order difference computed using Eqs. !15" and !16"
are shown in Fig. 2. As expected, the forward estimate is

practically zero, while the centered estimate follows very

well its theoretical behavior that is proportional to the drift

coefficient )see Eq. !16"*. Finally, we show a comparison

between the ratios #!x% / #!x2% and ##ẍ $x%% / ##ẋ2 $x%%. While

FIG. 1. Estimated values of the drift coefficient for the pitchfork

bifurcation process. The solid line represents the theoretical term,

the solid diamonds are the causal estimates, and the open circles are

the acausal ones.

BRIEF REPORTS PHYSICAL REVIEW E 71, 027101 !2005"

027101-2

Langevin equations from time series

E. Racca
Dipartimento di Idraulica, Trasporti e Infrastrutture Civili, Politecnico di Torino, Torino, Italy

A. Porporato*
Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, USA

!Received 18 August 2004; published 9 February 2005"

We discuss the link between the approach to obtain the drift and diffusion of one-dimensional Langevin

equations from time series, and Pope and Ching’s relationship for stationary signals. The two approaches are

based on different interpretations of conditional averages of the time derivatives of the time series at given

levels. The analysis provides a useful indication for the correct application of Pope and Ching’s relationship to

obtain stochastic differential equations from time series and shows its validity, in a generalized sense, for

nondifferentiable processes originating from Langevin equations.

DOI: 10.1103/PhysRevE.71.027101 PACS number!s": 02.50.Ey, 05.40.Ca, 89.75.Kd, 92.40.!t

Measured time series are often highly fluctuating, result-
ing from complex, high-dimensional systems whose dynam-
ics may not even be completely known. This justifies the
interest in obtaining simple models that are able to capture
the essential features of the series, such as the probability
density function !PDF" and the correlation structure, being at
the same time parsimonious and flexible enough to adapt to
possible nonlinearities in the underlying dynamics.
In many cases, if the measured series proves to be ap-

proximately Markovian, a first modeling assumption may be
represented by general one-dimensional Langevin equations.
For these equations, the functional forms of the drift and
diffusion terms can be easily determined directly from the
time series, employing the finite-difference form of their
definition together with suitable interpolations of the result-
ing trends. Such an approach was proposed by Friedrich et
al. #1–6$ and was already partly contained in the works of
Primak et al. #7–9$.
A different approach to model stationary time series re-

lates its PDF to the functional form of the temporal deriva-
tives at a given level. It is based on a relationship due to
Pope and Ching #10,11$ that is valid for any stationary and
sufficiently smooth signal, not necessarily Markovian. Re-
cently, the Pope and Ching formula was also used to derive
the one-dimensional Langevin equation from !financial" time
series, although the link with such equations and the different
interpretation of the corresponding conditional averages
were not rigorously assessed #12–14$. It is thus interesting to
discuss the link between the Pope and Ching formula and the
approach of Friedrich et al. and show that the Pope and
Ching formula also holds, in a generalized sense, for these
nondifferentiable stochastic processes.
Consider the following Langevin equation, according to

the Ito interpretation:

ẋ = A!x" + %B!x""!t" , !1"

where A!x" is the drift coefficient, B!x" is the diffusion term,
and "!t" is a Langevin force, i.e., white Gaussian noise with

zero mean. As is well known, the PDF of x ,p!x , t", is given
by the Fokker-Plank equation,

!p!x,t"
!t

= !
!

!x
#A!x"p!x,t"$ +

1

2

!2

!x2
#B!x"p!x,t"$ , !2"

from which the steady-state PDF of x is obtained as

p!x" =
N

B!x"
exp&2'

x

A!u"
B!u"

du( , !3"

where N is a normalization constant.
Considering a fixed temporal interval, #t, it is possible to

show #15,16$ that

)#x* = A!x"#t , !4"

)#x2* = B!x"#t , !5"

for #t→0. The fixed #t ensures that all the increments #x
have the same weight. It is important to stress that the dif-
ference #x must be computed in a “causal” or “forward”
way, i.e.,

)#x* = +)x!t + #t" ! x!t"*+x!t". !6"

Moreover, as noticed by Just et al. #17$, if the probability
current vanishes, as is always the case for stationary signals
!#15$, p. 124", it is possible to show that

+)x!t + #t" ! x!t"*+x!t" = ! +)x!t" ! x!t ! #t"*+x!t". !7"

Equations !4" and !5" have been used to estimate drift and
diffusion from time series #1–6$, assuming that they are gen-
erated by Langevin processes; other authors proposed correc-
tions to reduce the errors due to finite #t #18$.
The approach of Pope and Ching #10,11$ also relates, in a

more general way, the steady-state PDF of stationary pro-
cesses to its temporal increments at given levels, as*Electronic address: amilcare@duke.edu
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Measured time series are often highly fluctuating, result-
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ics may not even be completely known. This justifies the
interest in obtaining simple models that are able to capture
the essential features of the series, such as the probability
density function !PDF" and the correlation structure, being at
the same time parsimonious and flexible enough to adapt to
possible nonlinearities in the underlying dynamics.
In many cases, if the measured series proves to be ap-

proximately Markovian, a first modeling assumption may be
represented by general one-dimensional Langevin equations.
For these equations, the functional forms of the drift and
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time series, employing the finite-difference form of their
definition together with suitable interpolations of the result-
ing trends. Such an approach was proposed by Friedrich et
al. #1–6$ and was already partly contained in the works of
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A different approach to model stationary time series re-
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the one-dimensional Langevin equation from !financial" time
series, although the link with such equations and the different
interpretation of the corresponding conditional averages
were not rigorously assessed #12–14$. It is thus interesting to
discuss the link between the Pope and Ching formula and the
approach of Friedrich et al. and show that the Pope and
Ching formula also holds, in a generalized sense, for these
nondifferentiable stochastic processes.
Consider the following Langevin equation, according to

the Ito interpretation:

ẋ = A!x" + %B!x""!t" , !1"

where A!x" is the drift coefficient, B!x" is the diffusion term,
and "!t" is a Langevin force, i.e., white Gaussian noise with

zero mean. As is well known, the PDF of x ,p!x , t", is given
by the Fokker-Plank equation,

!p!x,t"
!t

= !
!

!x
#A!x"p!x,t"$ +

1

2

!2

!x2
#B!x"p!x,t"$ , !2"

from which the steady-state PDF of x is obtained as

p!x" =
N

B!x"
exp&2'

x

A!u"
B!u"

du( , !3"

where N is a normalization constant.
Considering a fixed temporal interval, #t, it is possible to

show #15,16$ that

)#x* = A!x"#t , !4"

)#x2* = B!x"#t , !5"

for #t→0. The fixed #t ensures that all the increments #x
have the same weight. It is important to stress that the dif-
ference #x must be computed in a “causal” or “forward”
way, i.e.,

)#x* = +)x!t + #t" ! x!t"*+x!t". !6"

Moreover, as noticed by Just et al. #17$, if the probability
current vanishes, as is always the case for stationary signals
!#15$, p. 124", it is possible to show that

+)x!t + #t" ! x!t"*+x!t" = ! +)x!t" ! x!t ! #t"*+x!t". !7"

Equations !4" and !5" have been used to estimate drift and
diffusion from time series #1–6$, assuming that they are gen-
erated by Langevin processes; other authors proposed correc-
tions to reduce the errors due to finite #t #18$.
The approach of Pope and Ching #10,11$ also relates, in a

more general way, the steady-state PDF of stationary pro-
cesses to its temporal increments at given levels, as*Electronic address: amilcare@duke.edu
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the behavior is similar in both cases and in agreement with

their theoretical value, A!x" /B!x", it is clear that the estimate
of the conditional averages in Eq. !8" using Sokolov’s for-
mulas is statistically less efficient than the direct use of Eqs.

!4" and !5" !see Fig. 3".
In summary, we showed the link between the approach to

obtain drift and diffusion of Langevin equations from time

series and the Pope and Ching formula for stationary pro-

cesses. We stressed the importance of the correct interpreta-

tion of the estimators used and proved the validity !in a
generalized sense" of the Pope and Ching formula also for
nondifferentiable one-dimensional Langevin processes.
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complexity of turbulence
thermodynamical (nonequilibrium) interpretation

- the Fokker- Planck or Kolmogov equation gives access

ideal gas 

state vector 

n- particle description
 p(q1, q2, …, qn)

single particle approximation

p(q1,…, qn)=p(q1)*…*p(qn)

Boltzmann equation

isotropic turbulence

state vector  ur, 

n- scale statistics
 p(ur0, ur1, ..., urn) 

Markov property
p(ur0,., urn) = p(ur0|ur1)*…..

*p(urn-1|urn) p(urn)

Fokker-Planck equation
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turbulence: new insights 

Einstein- Markov-length - a coherence length

statistics of longitudinal and transversal increments

universality of turbulence: 

role of transfered energy er:

fusion rules ri   => ri+1  (Davoudi, Tabar 2000; L’vov, Procaccia 1996)

passive scalar (Tutkun, Mydlarski 2004)
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L

r2

η

r1

 turbulent cascade: larger Re larger cascade range

turbulent length scales

L integral length scale

Re =

(

L

η

)3/4

η

λ Taylor length scale

dissipation length scale
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turbulent length scales
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Einstein-Markov length

Einstein-Markov-length - a coherence length lmar
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Einstein-Markov length -2-

stochastic Wilcoxon test defines  lmar
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Einstein-Markov length -3-

Einstein-Markov length lmar   a new coherence length

• is about the Taylor length

• is like the maximal dissipation length proposed by Yakhot

• dissipation causes memory 

• degree of freedom L/lmar like Re1/2
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Markov-Einstein Length
A. Einstein Ann. Phys. 17, 549 (1905) 
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Einstein-Markov length - for seismic data
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Einstein-Markov length - for seismic data

Saravan, 13/03/2005, Ms=5.4 Baladeh, Iran, 28/05/2004,  M=6.4

M.R.R. Tabar, et.al. Lecture Notes in Physics , Vol. 705,  (Springer, 2006) 281-301. 
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turbulence: further results

r

↔

↔

spatial correlation in different directions

Quantities 
- longitudinal increment

- transversal increment

  

€ 

ur(x) =
r 
u ( r 

x +
r 
r ) − r 

u (r x )[ ] ⋅ ˆ r 

  

€ 

vr(x) =
r 
u (r x +

r 
r ) − r 

u ( r 
x )[ ] × ˆ r 
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turbulence: long/transversal -2-
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supposed scaling laws 
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turbulence: long/transversal -2-
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extended selfsimilartiy ESS

supposed scaling laws 

open problem: (Antonia 97, Benzi 97, 

van der Water 99, Grossman et.al. 97....)

are transversal structures more intermittent?

ξt
n > ξl

n

〈|ur|n〉 ∝ 〈|ur|3〉ξ
l
n

〈|vr|n〉 ∝ 〈|ur|3〉ξ
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turbulence: long/transversal -3-

−r
∂
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turbulence: long/transversal -4-

< |v(r)|n >∝< |u(3r/2)|3 >ξn

< |v(r)|n >∝< |u(r)|3 >ξt
n

rescaling symmetry: r => 3r/2

new ESST : 
25
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FIG. 32: The ESS representation of the longitudinal structure functions in comparison to the ESST representation of the
transverse structure functions. a) The ESS representation of the transverse third order structure function. The exponent is
ξt
3 = 1.02 and with that close to Kolmogorov’s 4/5-law, see the line with the exponent 1. b) The fourth order structure functions

and c) the sixth order structure functions. The transverse structure functions come significant closer to the longitudinal ones
in comparison to Fig. 3.

E. Transverse scaling exponents

In this section we focus on the wide debate about possible differences between the scaling exponents of longitudinal
and transverse structure functions and consider the implications of the rescaling symmetry on it. In Fig. 4 we have
shown the recognized result that using ESS the transverse exponents are smaller than the longitudinal. Nevertheless,
we use a new ansatz to reconsider this result and combine the differences of the longitudinal and transverse cascade
speeds with ESS.

Because the assumption for the longitudinal structure functions in ESS is 〈|un(r)|〉 ∝ (rfl(r))
ξl

n , see (40), the

corresponding relation for the transverse increments has to be 〈|vn(r)|〉 ∝ (rft(r))
ξt

n with a function ft different from fl.
Notice that the implicit assumption in ESS was ft ≡ fl, see (41) and (42). Using for the second order structure function
the 3/2-rescaling found from the Fokker-Planck equation and assuming that the differences between skewness and
intermittency are small for this order, we find a relation for the two functions: Starting with 〈|v2(r)|〉 = 〈|u2(3r/2)|〉
we get rft(r) = (3rfl(3r/2)/2)ξ

l
2
/ξt

2 (we have chosen the proportionality in ESS without loss of generality in such a
way, that the equals sign holds). Because the intermittency corrections is small for the second order, it is ξl

2 ≈ ξt
2 and

we get

ft(r) = 3fl(3r/2)/2. (38)

For arbitrary structure functions it then holds

〈|v(r)|n〉 ∝
(

3

2
rfl(

3

2
r)

)ξt
n

∝ 〈|u(
3

2
r)|m〉ξ

t
n/ξl

m = 〈|u(
3

2
r)|3〉ξ

t
n (ESST), (39)

which we call in the following ESST, extended self similarity for the transverse structure function.
Fig. 32 shows the application of ESST to the transverse structure functions. As an remarkably result, the differences

between both exponents vanish. Thus one scaling group is sufficient to characterize both increments.
Notice that the differences between the exponents found with ESS are due to a none existing scaling behavior of

the structure functions with r. It is evident that our rescaling does not change the exponents in case of pure scaling
behavior 〈|v(r)|n〉 ∝ (3r/2)ξt

n ∝ rξt
n , which is expected to be valid if the Reynolds number goes to infinity (see also

[55]).
Next we perform the analog analysis for our second data set with the higher Reynolds number Rλ = 550. In Fig.

33a) the sixth order structure function is plotted using ESS and in Fig. 33b) using ESST. Again we find that the
differences in the scaling exponents vanish for ESST (ESS: ξl

6 = 1.74± 0.03, ξt
6 = 1.60± 0.03; ESST: ξl

6 = 1.74± 0.03,
ξt
6 = 1.75 ± 0.03). In Fig. 34 the exponent ξl

n as well as ξt
n is plotted up to order 8. The differences between the

exponents ESS vanish within the uncertainties applying ESST instead of ESS.
To see in more detail the influence of ESST to the exponents, in Fig. 35 the local exponents ξα

n (r) =
∂ log〈αn〉/∂ log〈|u|3〉 (α = u, v n = 4, 6) are shown. The use of ESS for the longitudinal exponents results in
an almost constant local exponent. The transverse exponents have oscillations, which were explained by log-periodic
oscillations. If ESST is applied, the differences between longitudinal and transverse exponents vanish within these
oscillations.
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rescaling symmetry: r => 3r/2

new ESST : 
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FIG. 32: The ESS representation of the longitudinal structure functions in comparison to the ESST representation of the
transverse structure functions. a) The ESS representation of the transverse third order structure function. The exponent is
ξt
3 = 1.02 and with that close to Kolmogorov’s 4/5-law, see the line with the exponent 1. b) The fourth order structure functions

and c) the sixth order structure functions. The transverse structure functions come significant closer to the longitudinal ones
in comparison to Fig. 3.

E. Transverse scaling exponents

In this section we focus on the wide debate about possible differences between the scaling exponents of longitudinal
and transverse structure functions and consider the implications of the rescaling symmetry on it. In Fig. 4 we have
shown the recognized result that using ESS the transverse exponents are smaller than the longitudinal. Nevertheless,
we use a new ansatz to reconsider this result and combine the differences of the longitudinal and transverse cascade
speeds with ESS.

Because the assumption for the longitudinal structure functions in ESS is 〈|un(r)|〉 ∝ (rfl(r))
ξl

n , see (40), the

corresponding relation for the transverse increments has to be 〈|vn(r)|〉 ∝ (rft(r))
ξt

n with a function ft different from fl.
Notice that the implicit assumption in ESS was ft ≡ fl, see (41) and (42). Using for the second order structure function
the 3/2-rescaling found from the Fokker-Planck equation and assuming that the differences between skewness and
intermittency are small for this order, we find a relation for the two functions: Starting with 〈|v2(r)|〉 = 〈|u2(3r/2)|〉
we get rft(r) = (3rfl(3r/2)/2)ξ
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/ξt

2 (we have chosen the proportionality in ESS without loss of generality in such a
way, that the equals sign holds). Because the intermittency corrections is small for the second order, it is ξl
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we get
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which we call in the following ESST, extended self similarity for the transverse structure function.
Fig. 32 shows the application of ESST to the transverse structure functions. As an remarkably result, the differences

between both exponents vanish. Thus one scaling group is sufficient to characterize both increments.
Notice that the differences between the exponents found with ESS are due to a none existing scaling behavior of
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turbulence: long/transversal -5-

universality of turbulence: 
D(1)(u,r) ≅ γ(r) u(r)
D(2)(u,r) ≅ α(r,Re) + δ(r) u(r) + β(r,Re) u2(r)
=> Exp: cascade process depends on Re 

roll of transfered/dissipated energy er:‚

D(2)(u,r, er) ≅ α(r) + m f (er )
D(2)  does not any more lead to multiplicative noise

=> er causes intermittency of the velocity field

Phys. Rev. Lett.  89, (2002)

Renner et.al in preparation
see also Gagne st al 1994; 
Naert et al 1998
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The breakup of vortices into smaller ones in the turbulent cascade is often described by mul-
tipliers. We derive a closed expression for the joint probability distribution of these multipliers
based on a Fokker-Planck equation, which can be estimated directly from experimental data. Single
multipliers are Cauchy distributed in accordance to previous findings. The joint distribution shows
strong dependences between multipliers of different scales. This shed new light on the statistics of
multipliers and their often assumed independence. For the statistical features of the multipliers no
intermittency of turbulence is needed.

PACS numbers: 47.27.-i, 47.27.Ak, 05.40.-a, 05.10.Gg

The breaking up of vortices into smaller ones, is still
the common basis for mathematical models of the tur-
bulent cascade, although Richardson’s original cascade
picture has undergone substantial changes during the last
time, cf. [1, 2]. One prominent example is to describe the
evolution of large scale quantities towards smaller scales
by a sucessive multiplication with random variables, the
so-called multipliers. This has been used expecially to
examine intermittency phenomena on small scales.

In the last part of his famous 1962-article, Kolmogorov
has defined multipliers

wn := un+1/un (1)

as the ratio of velocity increments un ≡ u(x + rn)− u(x)
and formulated three hypotheses as an alternative ap-
proach to his intermittency model [3]. The assumption
of their independence is the central point of this consider-
ation from which he derived the log-normal distribution
of the multipliers. Chen et. al. found that the multipliers
have short-range correlation and are Cauchy-distributed
in contradiction to Kolmogorov’s work [4].

In this article we relate the multipliers’ statistic to the
experimental finding that the statistics of the small-scale
turbulent velocity field can be described by a Fokker-
Planck equation [5–7]. In particular we derive from the
Fokker-Planck equation the Cauchy distribution of the
multipliers and give furthermore a closed expression for
their n-scale joint distribution p(wn, ..., w1), which allows
a detailed study of the statistical dependence of the mul-
tipliers. It becomes clear that the multipliers are strongly
linked to an other. Furthermore we show the influence of
intermittency.

We verify our results with two experimental data sets.
The first one is measured in a wake behind a cylinder.

∗Electronic address: malte.siefert@gmail.com
†Electronic address: peinke@uni-oldenburg.de

The Reynolds number is 13.000 and the set consists of
1.25 · 106 data points. for further details see [8]. For
comparison we use data measured in a cryogenic free jet
at Re=757.000, c.f. [6, 9].

I. FOKKER-PLANCK DESCRIPTION OF THE
TURBULENT CASCADE

The small-scale turbulence can be characterized by
velocity increments ur := u(x + r

2 ) − u(x − r
2 ), which

describe the fluctuations of the velocity field on differ-
ent scales r. To examine the increments’ statistic often
structure functions 〈un

r 〉 ∝ rξn are considered, which are
equivalent to the simple probability distribution p(ur, r).
For a more detailed examination of the small-scale tur-
bulence it is of interest to consider joint probabilities,
i.e. p(un, rn; un−1, rn−1; ...; u1, r1), where ui are the in-
crements on the scale ri with common reference point x.
Because of the number of variables, this joint distribu-
tion cannot observed directly from data. But in [5] and
references therein, it has be shown that the increments
ur obey a Markov process in r, i.e. the joint probability
can be expressed by the conditional probabilities,

p(un, rn; un−1, rn−1; ...; u1, r1) = (2)
p(un, rn|un−1, rn−1) · · · p(u2, r2|u1, r1)p(u1, r1).

The conditional distributions p(un+1, rn+1|un, rn) are
given by a Kramers-Moyal expansion, which, as it was
shown for example in [5], truncates after the second term,
resulting in a Fokker-Planck equation

−r
∂p(u, r|u′, r′)

∂r
= (3)

(
− ∂

∂u
D(1)(u, r) +

∂2

∂u2
D(2)(u, r)

)
p(u, r|u′, r′).

Both coefficients, the drift term D(1) and the diffusion
term D(2), can be estimated via the Kramers- Moyal coef-
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−r
∂p(u, r|u′, r′)

∂r
= (3)

(
− ∂

∂u
D(1)(u, r) +

∂2

∂u2
D(2)(u, r)

)
p(u, r|u′, r′).

Both coefficients, the drift term D(1) and the diffusion
term D(2), can be estimated via the Kramers- Moyal coef-

2

ficients directly from measured time series, see [5]. Typi-
cally, the coefficients have the following dependence on u:
D(1)(u, r) = γ(r)u, D(2)(u, r) = α(r)+αu(r)u+αuu(r)u2

(the upper u is an index denoting the order of the coef-
ficient). The term αu(r)u describes the skewness of the
probability distribution, the term αuu(r)u2 the intermit-
tency. The r-dependence is given by α(r) = α1r and
γ(r) = γ0 + γ1r, see [8].

It is important to note that every step for the deriva-
tion of the Fokker-Planck equation has been checked by
us on data [5]. This mean that there are no assump-
tions in the derivative which are not compatible to exper-
iments. In detail: We have tested the Markovian prop-
erties for different scales and for different flows, they are
well fulfilled. Higher order Kramers-Moyal coefficients
are small so that the general expansion reduces to the
Fokker-Planck equation. Finally, it has been shown that
the increments’ distribution, as well as the joint distribu-
tion of the measured increments is well described by the
Fokker-Planck equation.

Next, we consider an essential simplification and ne-
glect the skewness and the intermittency term of the
diffusion coefficient, i.e. we set D(1)(u, r) = γ(r)u and
D(2)(u, r) = α(r). This is motivated by the fact that the
Cauchy distribution results from the ratio of symmetric,
normal distributed stochastic variables; a detailed expla-
nation is given below. Then, the solution of the Fokker-
Planck equation can be given by a Gaussian distribution

p(u, r|u′, r′) = N exp
(
−u2

a
+

2bu′

a
u

)
. (4)

Inserting this in the Fokker-Planck equation (3), the
functions a, b and N are given by the differential equa-
tions

r
∂N

∂r
= −γN + 4

αb2u′2

a2
N + 2

α

a
N, (5)

r
∂b

∂r
= γb (6)

and

r
∂a

∂r
= 2γa + 4α. (7)

The solutions of these differential equations are:

a(r) = −4α1

∫ r

r′

(r

s

)−2γ0

exp(−2γ1(r − s))ds, (8)

b(r) =
( r

r′

)−γ0

exp(−γ1(r − r′)). (9)

The equation for N is just the normalization condition:

N =
1√
aπ

exp
(
−b2u′

2
/a

)
. (10)

So far we have used the Markovian properties of the ve-
locity increments and their statistical description by a
Fokker-Planck equation to derive an expression for the
conditional probability distribution p(u, r|u′, r′), see Eq.
(4). Next, we will use this result to derive the distribu-
tion of the multipliers and their multi-scale statistics.

II. DERIVATION OF THE MULTIPLIER’S
CAUCHY DISTRIBUTION

From Fokker-Planck equation the statistics of every
combination of increments can be derived, too. Thus the
distribution p(w) of the multiplier wn, see Eq. (1), can
be derived from the joint distribution p(un+1, un) by

p(wn) =
∫

δ

(
wn −

un+1

un

)
p(un+1, un)dun+1dun. (11)

The joint distribution can be expressed by the
conditioned probability by using p(un+1, un) ≡
p(un+1|un)p(un). Equation (11) gives after integrating
with respect to un+1

p(wn) =
∫

p(unwn|un)p(un)|un|dun. (12)

Next, we express the right hand side of (12) by the solu-
tion of the Fokker-Planck equation given by (4):

p(unwn|un)p(un) = (13)
1√

2an+1π
exp

{
− u2

n

an+1
(wn − bn+1)2

}
exp

{
− u2

n

2σ2
n

}
.

Eq. (12) together with (14) results in the Cauchy distri-
bution

p(wn) =
1
π

λn+1

λ2
n+1 + (bn+1 − wn)2

(14)

with λn+1 = √
an+1/

√
2σn (with the notation: an ≡

a(rn), bn ≡ b(rn)).
So far we have derived an analytic expression for the

Chauchy distribution from the Fokker-Planck equation
using the above mentioned simplifications and the exper-
imentally estimated coefficients of D(1) and D(2). Next,
we compare the Cauchy distribution, Eq. (14), with the
distribution of multipliers obtained directly from exper-
imental data, see Fig. 1. If the parameter values of λ
are changed by about 2%, we find that the Cauchy dis-
tribution coincides within error bars with the empirical
multiplier distribution. This is true from the integral
length scale L down to the Taylor length scale λ. Thus
Eq. (8), (9) and (14) give a closed description of the
multiplier’s statistics over a broad range of scales.

As a second finding, see Fig.1b), we show that the
Cauchy distribution (14) can not describe the data any-
more if the differences of the scales, |rn+1 − rn|, are be-
low the Taylor micro scale. This feature holds through-
out the whole inertia range and is in our interpretation
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distribution of multipliers obtained directly from exper-
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are changed by about 2%, we find that the Cauchy dis-
tribution coincides within error bars with the empirical
multiplier distribution. This is true from the integral
length scale L down to the Taylor length scale λ. Thus
Eq. (8), (9) and (14) give a closed description of the
multiplier’s statistics over a broad range of scales.

As a second finding, see Fig.1b), we show that the
Cauchy distribution (14) can not describe the data any-
more if the differences of the scales, |rn+1 − rn|, are be-
low the Taylor micro scale. This feature holds through-
out the whole inertia range and is in our interpretation
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distribution of multipliers obtained directly from exper-
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are changed by about 2%, we find that the Cauchy dis-
tribution coincides within error bars with the empirical
multiplier distribution. This is true from the integral
length scale L down to the Taylor length scale λ. Thus
Eq. (8), (9) and (14) give a closed description of the
multiplier’s statistics over a broad range of scales.

As a second finding, see Fig.1b), we show that the
Cauchy distribution (14) can not describe the data any-
more if the differences of the scales, |rn+1 − rn|, are be-
low the Taylor micro scale. This feature holds through-
out the whole inertia range and is in our interpretation
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The breakup of vortices into smaller ones in the turbulent cascade is often described by mul-
tipliers. We derive a closed expression for the joint probability distribution of these multipliers
based on a Fokker-Planck equation, which can be estimated directly from experimental data. Single
multipliers are Cauchy distributed in accordance to previous findings. The joint distribution shows
strong dependences between multipliers of different scales. This shed new light on the statistics of
multipliers and their often assumed independence. For the statistical features of the multipliers no
intermittency of turbulence is needed.
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The breaking up of vortices into smaller ones, is still
the common basis for mathematical models of the tur-
bulent cascade, although Richardson’s original cascade
picture has undergone substantial changes during the last
time, cf. [1, 2]. One prominent example is to describe the
evolution of large scale quantities towards smaller scales
by a sucessive multiplication with random variables, the
so-called multipliers. This has been used expecially to
examine intermittency phenomena on small scales.

In the last part of his famous 1962-article, Kolmogorov
has defined multipliers

wn := un+1/un (1)

as the ratio of velocity increments un ≡ u(x + rn)− u(x)
and formulated three hypotheses as an alternative ap-
proach to his intermittency model [3]. The assumption
of their independence is the central point of this consider-
ation from which he derived the log-normal distribution
of the multipliers. Chen et. al. found that the multipliers
have short-range correlation and are Cauchy-distributed
in contradiction to Kolmogorov’s work [4].

In this article we relate the multipliers’ statistic to the
experimental finding that the statistics of the small-scale
turbulent velocity field can be described by a Fokker-
Planck equation [5–7]. In particular we derive from the
Fokker-Planck equation the Cauchy distribution of the
multipliers and give furthermore a closed expression for
their n-scale joint distribution p(wn, ..., w1), which allows
a detailed study of the statistical dependence of the mul-
tipliers. It becomes clear that the multipliers are strongly
linked to an other. Furthermore we show the influence of
intermittency.

We verify our results with two experimental data sets.
The first one is measured in a wake behind a cylinder.
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The Reynolds number is 13.000 and the set consists of
1.25 · 106 data points. for further details see [8]. For
comparison we use data measured in a cryogenic free jet
at Re=757.000, c.f. [6, 9].

I. FOKKER-PLANCK DESCRIPTION OF THE
TURBULENT CASCADE

The small-scale turbulence can be characterized by
velocity increments ur := u(x + r

2 ) − u(x − r
2 ), which

describe the fluctuations of the velocity field on differ-
ent scales r. To examine the increments’ statistic often
structure functions 〈un

r 〉 ∝ rξn are considered, which are
equivalent to the simple probability distribution p(ur, r).
For a more detailed examination of the small-scale tur-
bulence it is of interest to consider joint probabilities,
i.e. p(un, rn; un−1, rn−1; ...; u1, r1), where ui are the in-
crements on the scale ri with common reference point x.
Because of the number of variables, this joint distribu-
tion cannot observed directly from data. But in [5] and
references therein, it has be shown that the increments
ur obey a Markov process in r, i.e. the joint probability
can be expressed by the conditional probabilities,

p(un, rn; un−1, rn−1; ...; u1, r1) = (2)
p(un, rn|un−1, rn−1) · · · p(u2, r2|u1, r1)p(u1, r1).

The conditional distributions p(un+1, rn+1|un, rn) are
given by a Kramers-Moyal expansion, which, as it was
shown for example in [5], truncates after the second term,
resulting in a Fokker-Planck equation

−r
∂p(u, r|u′, r′)

∂r
= (3)

(
− ∂

∂u
D(1)(u, r) +

∂2

∂u2
D(2)(u, r)

)
p(u, r|u′, r′).

Both coefficients, the drift term D(1) and the diffusion
term D(2), can be estimated via the Kramers- Moyal coef-
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ficients directly from measured time series, see [5]. Typi-
cally, the coefficients have the following dependence on u:
D(1)(u, r) = γ(r)u, D(2)(u, r) = α(r)+αu(r)u+αuu(r)u2

(the upper u is an index denoting the order of the coef-
ficient). The term αu(r)u describes the skewness of the
probability distribution, the term αuu(r)u2 the intermit-
tency. The r-dependence is given by α(r) = α1r and
γ(r) = γ0 + γ1r, see [8].

It is important to note that every step for the deriva-
tion of the Fokker-Planck equation has been checked by
us on data [5]. This mean that there are no assump-
tions in the derivative which are not compatible to exper-
iments. In detail: We have tested the Markovian prop-
erties for different scales and for different flows, they are
well fulfilled. Higher order Kramers-Moyal coefficients
are small so that the general expansion reduces to the
Fokker-Planck equation. Finally, it has been shown that
the increments’ distribution, as well as the joint distribu-
tion of the measured increments is well described by the
Fokker-Planck equation.

Next, we consider an essential simplification and ne-
glect the skewness and the intermittency term of the
diffusion coefficient, i.e. we set D(1)(u, r) = γ(r)u and
D(2)(u, r) = α(r). This is motivated by the fact that the
Cauchy distribution results from the ratio of symmetric,
normal distributed stochastic variables; a detailed expla-
nation is given below. Then, the solution of the Fokker-
Planck equation can be given by a Gaussian distribution

p(u, r|u′, r′) = N exp
(
−u2

a
+

2bu′

a
u

)
. (4)

Inserting this in the Fokker-Planck equation (3), the
functions a, b and N are given by the differential equa-
tions
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The equation for N is just the normalization condition:

N =
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exp
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2
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)
. (10)

So far we have used the Markovian properties of the ve-
locity increments and their statistical description by a
Fokker-Planck equation to derive an expression for the
conditional probability distribution p(u, r|u′, r′), see Eq.
(4). Next, we will use this result to derive the distribu-
tion of the multipliers and their multi-scale statistics.

II. DERIVATION OF THE MULTIPLIER’S
CAUCHY DISTRIBUTION

From Fokker-Planck equation the statistics of every
combination of increments can be derived, too. Thus the
distribution p(w) of the multiplier wn, see Eq. (1), can
be derived from the joint distribution p(un+1, un) by

p(wn) =
∫

δ

(
wn −

un+1

un

)
p(un+1, un)dun+1dun. (11)

The joint distribution can be expressed by the
conditioned probability by using p(un+1, un) ≡
p(un+1|un)p(un). Equation (11) gives after integrating
with respect to un+1

p(wn) =
∫

p(unwn|un)p(un)|un|dun. (12)

Next, we express the right hand side of (12) by the solu-
tion of the Fokker-Planck equation given by (4):
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Eq. (12) together with (14) results in the Cauchy distri-
bution

p(wn) =
1
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n+1 + (bn+1 − wn)2

(14)

with λn+1 = √
an+1/

√
2σn (with the notation: an ≡

a(rn), bn ≡ b(rn)).
So far we have derived an analytic expression for the

Chauchy distribution from the Fokker-Planck equation
using the above mentioned simplifications and the exper-
imentally estimated coefficients of D(1) and D(2). Next,
we compare the Cauchy distribution, Eq. (14), with the
distribution of multipliers obtained directly from exper-
imental data, see Fig. 1. If the parameter values of λ
are changed by about 2%, we find that the Cauchy dis-
tribution coincides within error bars with the empirical
multiplier distribution. This is true from the integral
length scale L down to the Taylor length scale λ. Thus
Eq. (8), (9) and (14) give a closed description of the
multiplier’s statistics over a broad range of scales.

As a second finding, see Fig.1b), we show that the
Cauchy distribution (14) can not describe the data any-
more if the differences of the scales, |rn+1 − rn|, are be-
low the Taylor micro scale. This feature holds through-
out the whole inertia range and is in our interpretation
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(the upper u is an index denoting the order of the coef-
ficient). The term αu(r)u describes the skewness of the
probability distribution, the term αuu(r)u2 the intermit-
tency. The r-dependence is given by α(r) = α1r and
γ(r) = γ0 + γ1r, see [8].

It is important to note that every step for the deriva-
tion of the Fokker-Planck equation has been checked by
us on data [5]. This mean that there are no assump-
tions in the derivative which are not compatible to exper-
iments. In detail: We have tested the Markovian prop-
erties for different scales and for different flows, they are
well fulfilled. Higher order Kramers-Moyal coefficients
are small so that the general expansion reduces to the
Fokker-Planck equation. Finally, it has been shown that
the increments’ distribution, as well as the joint distribu-
tion of the measured increments is well described by the
Fokker-Planck equation.

Next, we consider an essential simplification and ne-
glect the skewness and the intermittency term of the
diffusion coefficient, i.e. we set D(1)(u, r) = γ(r)u and
D(2)(u, r) = α(r). This is motivated by the fact that the
Cauchy distribution results from the ratio of symmetric,
normal distributed stochastic variables; a detailed expla-
nation is given below. Then, the solution of the Fokker-
Planck equation can be given by a Gaussian distribution

p(u, r|u′, r′) = N exp
(
−u2

a
+

2bu′

a
u

)
. (4)

Inserting this in the Fokker-Planck equation (3), the
functions a, b and N are given by the differential equa-
tions

r
∂N

∂r
= −γN + 4

αb2u′2

a2
N + 2

α

a
N, (5)

r
∂b

∂r
= γb (6)

and

r
∂a

∂r
= 2γa + 4α. (7)

The solutions of these differential equations are:

a(r) = −4α1

∫ r

r′

(r

s

)−2γ0

exp(−2γ1(r − s))ds, (8)

b(r) =
( r

r′

)−γ0

exp(−γ1(r − r′)). (9)

The equation for N is just the normalization condition:

N =
1√
aπ

exp
(
−b2u′

2
/a

)
. (10)

So far we have used the Markovian properties of the ve-
locity increments and their statistical description by a
Fokker-Planck equation to derive an expression for the
conditional probability distribution p(u, r|u′, r′), see Eq.
(4). Next, we will use this result to derive the distribu-
tion of the multipliers and their multi-scale statistics.

II. DERIVATION OF THE MULTIPLIER’S
CAUCHY DISTRIBUTION

From Fokker-Planck equation the statistics of every
combination of increments can be derived, too. Thus the
distribution p(w) of the multiplier wn, see Eq. (1), can
be derived from the joint distribution p(un+1, un) by

p(wn) =
∫

δ

(
wn −

un+1

un

)
p(un+1, un)dun+1dun. (11)

The joint distribution can be expressed by the
conditioned probability by using p(un+1, un) ≡
p(un+1|un)p(un). Equation (11) gives after integrating
with respect to un+1

p(wn) =
∫

p(unwn|un)p(un)|un|dun. (12)

Next, we express the right hand side of (12) by the solu-
tion of the Fokker-Planck equation given by (4):

p(unwn|un)p(un) = (13)
1√

2an+1π
exp

{
− u2

n

an+1
(wn − bn+1)2

}
exp

{
− u2

n

2σ2
n

}
.

Eq. (12) together with (14) results in the Cauchy distri-
bution

p(wn) =
1
π

λn+1

λ2
n+1 + (bn+1 − wn)2

(14)

with λn+1 = √
an+1/

√
2σn (with the notation: an ≡

a(rn), bn ≡ b(rn)).
So far we have derived an analytic expression for the

Chauchy distribution from the Fokker-Planck equation
using the above mentioned simplifications and the exper-
imentally estimated coefficients of D(1) and D(2). Next,
we compare the Cauchy distribution, Eq. (14), with the
distribution of multipliers obtained directly from exper-
imental data, see Fig. 1. If the parameter values of λ
are changed by about 2%, we find that the Cauchy dis-
tribution coincides within error bars with the empirical
multiplier distribution. This is true from the integral
length scale L down to the Taylor length scale λ. Thus
Eq. (8), (9) and (14) give a closed description of the
multiplier’s statistics over a broad range of scales.

As a second finding, see Fig.1b), we show that the
Cauchy distribution (14) can not describe the data any-
more if the differences of the scales, |rn+1 − rn|, are be-
low the Taylor micro scale. This feature holds through-
out the whole inertia range and is in our interpretation

Fokker-Planck equ. with

Chauchy distribution with parameters
λ and b given by D(1) and by D(2)

Chauchy distribution
arises if one divides two 
Gaussian stoch. variables

multiplier statistics
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FIG. 1: Both figures show the Cauchy distribution calculated according to (14) (lines) in compar-

ision to the data (symbols). a) r1 = L, r2 = L/2 (straight line), rn = 2λ, rn+1 = λ (dotted line).

b) rn = λ, rn+1 = λ/2. Parameters are γ0 = −0.78, γ1 = −7.7 · 10−2, α1 = 8.13 · 10−2.

see Eq. (1), can be derived from the joint distribution p(un+1, un) by

p(wn) =

∫
δ

(
wn −

un+1

un

)
p(un+1, un)dun+1dun. (11)

The joint distribution can be expressed by the conditioned probability by using p(un+1, un) ≡

p(un+1|un)p(un). Equation (11) gives after integrating with respect to un+1

p(wn) =

∫
p(unwn|un)p(un)|un|dun. (12)

Next, we express the right hand side of (12) by the solution of the Fokker-Planck equation

given by the Gaussian truncation (4):

p(unwn|un)p(un) =
1√

2an+1π
exp

{
− u2

n

an+1
(wn − bn+1)

2

}
exp

{
− u2

n

2σ2
n

}
. (13)

Eq. (12) together with (13) can be solved and results in the Cauchy distribution

p(wn) =
1

π

λn+1

λ2
n+1 + (bn+1 − wn)2

(14)

with λn+1 =
√

an+1/
√

2σn (an ≡ a(rn), bn ≡ b(rn)).

Sofar we have derived explicitely an analytic expression for the Chauchy distribution from

the Fokker-Planck equation using the above mentioned simplifications. Next, we compare

the Cauchy distribution given by (14) with the distribution of multipliers obtained directly

from experimental data. In Fig. 1 the distribution given by (14) is compared with the
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finance

scale dependent quantity for measuring the disorder

return or log return for different time scales

€ 

Q(x,r) => r(t,τ) =
x(t + τ )
x(t)

or R(t,τ ) = log r(t,τ)
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finance -2-

Functional form of the coefficients D(1) and D(2) is presented
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finance -3-
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comparison of data with
numerical solution of the
Kolmogorov equation

Physica A 298 ,499 (2001)
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 Does the method always work ?

 further applications for time series
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finance 
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the estimation of the Kramers Moyal 
coefficient gives divergencies for 

€ 

Δτ → 0

€ 

D(n )(R) = limΔτ→0
1

n!⋅Δτ
( ′ R − R)∫

n
p ′ R ,τ + Δτ |R,τ( )d ′ R 

FX DM/$ Olsen
data

(Physica A 298, 499 (2001))
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finance

divergent Kramers Moyal coefficients are due 
to measurement noise (jump processes)

(Physica A 298, 499 (2001), Euro. Phys. Lett.61(2003); F. Böttcher, D. Kleinhans Phys. Rev. Lett. 97 (2006)

process variable 
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universal small scale statistics

Numerical solution of the Fokker-Planck equation for the coefficients D(1)

and D(2), which were directly obtained from the data.
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universal small scale statistics

measure of distance d
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τ1
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τ 2

timescale 

The reference distribution & The considered distribution
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universal small scale statistics

Comparison of pN and pR   -  The Measures

-- Kullback-Leiber-Entropy:

-- Weighted mean square error in logarithmic space:

-- Chi-square distance:

€ 

dK (pN (Q,τ), pR ) ≡ pN (Q,τ ) ⋅ ln
pN (Q,τ)
pR
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universal small scale statistics

€ 

τ
1 s

Small timescales are special ! Example: Volkswagen
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universal small scale statistics
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Eur. Phys. J. B 50, 147–151 (2006) 
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universal small scale statistics

scale dependent complexity
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τ

Markov process 
- Fokker-Planck Regime - 

Finance
New Universal Feature?
Small Timescale Regime

Turbulence 
viscous subrange

scale

subrange inertia range

Non Markov

Physica A 382, 193 (2007)
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END
shown that for stochastic 

processes   drift and 
diffusion can be measured

dXt = b(Xt, t)dt + σ(Xt, t)dwt

b(Xt, t) = D(1)(Xt, t)

σ2(Xt, t) = D(2)(Xt, t)
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see also http://www.physik.uni-oldenburg.de/hydro/20660.html

R. Friedrich and J. Peinke :Description of a Turbulent Cascade by a Fokker-Planck Equation

 Phys. Rev. Lett. 78, 863 (1997)

S. Siegert,  R. Friedrich, and J. Peinke :Analysis of Data of Stochastic Systems

 Phys. Lett. A  243, 275 (1998)

Ch. Renner, J. Peinke, and R. Friedrich :Experimental indications for Markov properties of small scale turbulence,
Journal of Fluid Mechanics 433, 383 (2001)

Ch. Renner, J. Peinke and R. Friedrich :Markov properties of high frequency exchange rate data

 Physica A 298, 499 (2001)

Ch. Renner, J. Peinke, R. Friedrich, O. Chanal, and B. Chabaud :Universality of small scale turbulence

 Phys. Rev. Lett.  89,124502 (2002)

M. Wächter, F. Riess, H. Kantz, and J. Peinke :Stochastic analysis of raod surface roughness

 Europhys. Lett. 64, 579 (2003)

R. Friedrich, Ch. Renner, M. Siefert, and J. Peinke :Comment on : Indispensable Finite Time corrections for Fokker-Planck equations from time series data,

 Phys. Rev. Lett.  89, 149401 (2002)

M. Siefert and J. Peinke :Joint multi-scale statistics of longitudinal and transversal increments in small-scale wake turbulence
Journal of Turbulence 7, (No 50) 1-35 (2006).

D. Kleinhans, R. Friedrich, A.Nawroth, and J. Peinke :
An iterative procedure for the estimation of drift and diffusion coefficients of Langevin processes

 Phys. Lett. A 346, 42 (2005)

St. Lück, Ch. Renner, J. Peinke, and R. Friedrich :The Markov -Einstein coherence length – a new meaning fort he Taylor length in turbulence
Phys. Lett. A 359, 335 (2006)

A. P. Nawroth and J. Peinke : Small scale behavior of financial data 

 
 Euro. Phys. Journal B 50, 147 (2006)

F. Böttcher, J. Peinke, D. Kleinhans, R. Friedrich, P.G. Lind and M. Haase :Reconstruction of complex dynamical systems affected by strong measurement noise

 
 Phys. Rev. Lett. 97, 090603 (2006)

A.P. Nawroth and J. Peinke :Multiscale reconstruction of time series

 Physics Letters A 360, 234 (2006)

M. Siefert and J. Peinke : Complete Multiplier Statistics Explained by Stochastic Cascade Processes

 
 Phys. Lett. A 371, 34 (2007) 


