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Plan of the talk

1. Nord Pool – example of an electricity market

2. Multi-factor arithmetic spot price modelling

3. Forward pricing

4. Cross commodity modelling



The NordPool Market
Multi-factor arithmetic models

Forward pricing
Cross-commodity multi-factor models

The NordPool Market



The NordPool Market
Multi-factor arithmetic models

Forward pricing
Cross-commodity multi-factor models

I The NordPool market organizes trade in

I Hourly spot electricity, next-day delivery
I Financial forward contracts

I In reality mostly futures, but we make no distinction here
I Frequently called swaps

I European options on forwards

I Difference from “classical” forwards:

I Delivery over a period rather than at a fixed point in time

I Crucial point in modeling
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Elspot: the spot market

I A (non-mandatory) hourly market with physical delivery of
electricity

I Participants hand in bids before noon the day ahead

I Volume and price for each of the 24 hours next day
I Maximum of 64 bids within technical volume and price limits

I NordPool creates demand and production curves for the next
day before 1.30 pm
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I The system price is the equilibrium

I Reference price for the forward market

I Due to congestion (non-perfect transmission lines), area prices
are derived

I Sweden and Finland separate areas
I Denmark split into two
I Norway may be split into several areas

I The area prices are the actual prices for the
consumers/producers in the area in question
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I Historical system price from the beginning in 1992
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The forward market

I Forward with delivery over a period

I Financial market

I Settlement with respect to system price in the delivery period

I Delivery periods

I Next day, week or month
I Quarterly (earlier seasons)
I Yearly

I Overlapping settlement periods (!)

I Contracts also called swaps: Fixed for floating price
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The forward curve March 25, 2004
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The option market

I European call and put options on electricity forwards

I Quarterly and yearly electricity forwards

I Low activity on the exchange

I OTC market for electricity derivatives huge

I Average-type (Asian) options, swing options ....
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A stochastic spot price model

I Desirable features of a stochastic electricity spot model are

1. Honours the statistical properties of the observed price data
I Seasonality
I Mean reversion (multi-scale)
I Price spikes

2. Analytically tractable
I Possible to price electricity forwards (swaps) analytically
I Option pricing feasible
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The model and properties

I The spot price as a sum of non-Gaussian OU-processes
I BNS stochastic volatility model

S(t) = Λ(t)×
n∑

i=1

Yi (t)

dYi (t) = −αiYi (t) dt + dLi (t)

I Λ(t) deterministic seasonality function

I Li (t) are independent increasing time-inhomogeneous pure
jump Lévy processes

I Called independent increment processes
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I A simulation of S(t) fitted to EEX electricity data
I Calibration will come later....
I Top: simulated, bottom: EEX prices
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I Dynamics of S(t)

dS(t) =

{
X (t)−

(
αn −

Λ′(t)

Λ(t)

)
S(t)

}
dt + Λ(t) dL̄(t)

I AR(1)-process, with stochastic mean and seasonality
I Mean-reversion to stochastic base level

X (t) = Λ(t)×
n−1∑
i=1

(αn − αi )Yi (t)

I Seasonal speed of mean-reversion αn − Λ′(t)/Λ(t)
I Seasonal jumps, where dL̄(t) =

∑n
i=1 dLi (t), dependent on the

stochastic mean
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I Autocorrelation function for S̃(t) := S(t)/Λ(t)

ρ(t, τ) = corr[S̃(t), S̃(t + τ)] =
n∑

i=1

ωi (t, τ)e
−αiτ

I If Yi are stationary, ωi (t, τ) = ωi

I The weights ωi sum to 1

I The theoretical ACF can be used in practice as follows:

1. Find the number of factors n required
2. Find the speeds of mean-reversion by calibration to

empirical ACF
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I Li (t) jumps only upwards
I Jump size is a positive random variable
I Called a subordinator process

I Yi will mean-revert to zero
I However, Yi is always positive

I Ensures that S(t) is positive
I NO Brownian motion component in the factors

I Probability for S(t) becoming negative

I In practice, one may use a Brownian motion component
I Very small probability for negative prices
I Calibration may become simpler?
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Calibration to the EEX spot price

I Report here a calibration study by Thilo Meyer-Brandis (CMA
& TU Munich)

I We only give basic ideas here....

I 1652 daily Phelix Base electriity spot prices, starting from
medio June, 2000

I Assume 3-factor model
I First factor accounts for spikes (fast reversion)
I Two remaining the “normal” variations in the market (medium

and slow reversion)

S(t) = Λ(t) {Y1(t) + Y2(t) + Y3(t)}
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Steps in the estimation procedure

1. Fit a seasonal function to S(t)
I Using a linear trend and trigonomewtric functions with 6 and

12 months periods
I De-seaonalize data; X (t) = S(t)/Λ(t)

2. Separation of data into a spike component and a base
component

3. Fitting the spike component to Y1

4. Fitting Y2 + Y3 to the base component
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Step 2: Spike component

I Estimate the mean-reversion of spikes as

α1 = − log

(
min

t

X (t)

X (t − 1)

)
= 1.3

I α1 = 1.3 corresponds to a half-life of 0.5 days for a spike
I A spike is halfed over 0.5 days on average

I Transform the data into reversion-adjusted differences

∆X (t) := X (t)− e−α1X (t − 1) = (Y2(t) + Y3(t))

− e−α1(Y2(t − 1) + Y3(t − 1)) + ε(t)

I ε(t) ≈ L1(t)− L1(t − 1) is the size of the spikes (iid)
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Step 3: Fitting the spike component to data

I Estimation of ε(t) goes in two steps

1. Estimating a threshold u which identifies spikes
2. Estimating the spikes distribution

I Use techniques from Extreme Value Theory to fit a
generalized Pareto distribution

P(∆X (t)−u ≤ x |∆X (t) > u) = Gξ,β(x) = 1−(1+ξx/β)−1/ξ
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I Following estimates are found:

u = 1.6 , ξ = 0.384 , β = 0.472

I Based on 38 exceedances
I Gives a jump frequency of 0.023

I Hence, L1(t) = ZdN(t)
I Z jump size: generalized Pareto distributed
I N Poisson process, with frequency 0.023
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I Next step is to filter out the spike component from the data

I This is simply done by subtracting X1(t) from the data X (t)

X (t)− X1(t) , X1(t) = e−α1X1(t − 1) + ε̂(t)

with
ε̂(t) = (∆X (t)− u)1(∆X (t) > u)

I This leaves us with data cleaned of spikes

I Modelled using Y2(t) + Y3(t)
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Step 4: Fitting the base component

I Calibration of mean-reversion using empirical ACF
I Estimates: α2 = 0.243 and α3 = 0.009
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I Stationary distribution of Y2 + Y3 described by Γ(14.8, 14.4)
I Both Y2 and Y3 are mean-reversion models
I A stationary distribution for both exists
I The sum must be stationary as well
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I We assume Y2 ∼ Γ(10.2, 14.4) and Y3 ∼ Γ(4.6, 14.4)
I Then, Y2 + Y3 ∼ Γ(14.8, 14.4)

I Choice based on that the medium mean-reversion process
(Y2) should have bigger jumps than the slow one (Y3)

I BDLP of Y2 and Y3 known
I Compound Poisson process with exponential jump distribution
I Fast simulation algorithms exist

I We have a full specification of the model
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I A simulation of S(t) fitted to EEX electricity data
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The spot and electricity forward relation

I Let S(t) be the spot price

I Not necessarily a semimartingale

I Consider a forward contract delivering (financially) electricity
over a period [T1,T2]

I Payoff from a long forward position entered at time t ≤ T1∫ T2

T1

S(t) dt − (T2 − T1)F (t,T1,T2)

I The forward price F (t,T1,T2) denoted in Euro/MWh
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I From general theory:
I Price of any derivative is given as the present expected value

with respect to a risk-neutral measure Q

I The spot S(t) not storable
I Any Q ∼ P risk-neutral

I Cost of entering the contract should be zero
I Price of a forward with constant interest rate

I Assuming financial settlement at maturity T2

I Using adaptedness of F (t,T1,T2)

F (t,T1,T2) = EQ

[
1

T2 − T1

∫ T2

T1

S(u) du |Ft

]
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I Interchanging expectation and integration leads to

F (t,T1,T2) =
1

T2 − T1

∫ T2

T1

f (t, u) du

I Here, f (t, u) is the price of a forward with fixed-delivery time
at u,

f (t, u) = EQ [S(u) |Ft ]

I Question: What Q to use?
I No hedging argument possible (buy-and-hold)
I No storage or convenience yield arguments can be used
I Possible approaches

1. Condition on future information (B., Meyer-Brandis)
2. Utility indifference (B, Cartea and Kiesel)
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I Choose a simple approach here
I Restrict to a subclass of measures Q

I Usual choice: Esscher transform
I Structure preserving

I Essentially, a measure change introduces an modification in
the spot drift

I Coined the market price of risk

I Jump measure under Q

`Qi (dz , dt) = eθi (t)z`i (dz , dt)
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I Radon-Nikodym derivative for measure change:

dQ

dP
|Ft =

n∏
i=1

Zi (t)

I Zi martingales defined as

Zi (t) = exp

(∫ t

0
θi (s) dLi (s)− ψi (0, t,−iθi (·))

)
I ψi is the cumulant function of Li
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Derivation of the forward price

I Calculate f (t, u)

f (t, u) = Λ(u)× EQ [Y (u) | Ft ]

= Λ(u)×
n∑

i=1

Yi (t)e
−αi (u−t) +

∫ u

t
e−αi (u−s) dγi (s)

+ Λ(u)
n∑

i=1

∫ u

t

∫
R+

e−αi (u−s)z{eθi (s)z − 1|z|<1} `i (dz , ds)

I Integrating over the delivery period [T1,T2] yields the
electricity forward price
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I In conclusion:

F (t,T1,T2) = Θ(t,T1,T2) +
n∑

i=1

αi (t,T1,T2)Yi (t)

where Θ is a risk-adjustment function, defined as

(T2 − T1)Θ(t,T1,T2) =
n∑

i=1

∫ T2

t

∫ τ2

max(v ,T1)
Λ(u)e−αi (u−v) du dγi (v)

+
n∑

i=1

∫ T2

t

∫
R+

∫ T2

max(v ,T1)
Λ(u)e−αi (u−v) du z{eθi (v)z − 1z<1} `i (dz , dv)
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I αi is the seasonally weighted average of exp(−αi (u − t)) for
u ∈ [T1,T2)

αi (t,T1,T2) =
1

T2 − T1

∫ T2

T1

Λ(u)e−αi (u−t) du

I Seasonally weighted average Samuelson effect
I exp(−αi (u − t)) increasing when time to maturity u − t goes

to zero
I “Volatility” goes up as we approaches delivery at time u
I Delivery over a period, so we average using a seasonal

weighting!
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Dynamics of the forward price

dF (t,T1,T2) =
n∑

i=1

αi (t,T1,T2) dL̃i (t)

I L̃i is the compensated Li

I F (t,T1,T2) is a martingale (under Q)
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Pricing of options on forwards

I Let g be the payoff of an option
I E.g, a put option g(x) = max(K − x , 0)
I Call options require a damping factor in what follows (or one

can use the put-call parity)

I Option price is

p(t,T ;T1,T2) = e−r(T−t)EQ [max (K − F (T ,T1,T2), 0) | Ft ]

I Calculate this using Fourier transformation
I Pricing expression suitable for FFT
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I Using the inverse Fourier transform:

g(x) =
1

2π

∫
ĝ(y) exp(ixy) dy

I By the independent increment property (using n = 1)

EQ [g(F (T ,T1,T2)) | Ft ] =
1

2π

∫
ĝ(y)EQ

[
eiyF (T ,T1,T2) | Ft

]
dy

=
1

2π

∫
ĝ(y)eiyF (t,T1,T2)EQ

[
eiy

∫ T
t α(s,T1,T2) dL̃(s) | Ft

]
dy
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I Introducing a cumulant ψ̃

ψ̃(t,T , θ) =

∫ T

t

∫ ∞

0

{
eiθ(s)z − 1

}
`Q(dz , ds)

I Fourier expression for option price (? the convolution product)

p(t,T ;T1,T2) = e−r(T−t) (g ? Φt,T ) (F (t,T1,T2))

where
Φ̂t,T (y) = exp

(
ψ̃(t,T , yα(·,T1,T2))

)
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I Generalization of the arithmetic model for several commodities

I Applications to spread options and area prices
I Example: Options on the spark spread:

I Option written on the spread between an electricity and gas
forward

I Spark spread forward, supposing the same delivery period
[T1,T2],

Fs(t,T1,T2) = E
[

1

T2 − T1

∫ T2

T1

E (s)− cG (s) ds|Ft

]

I E (t) and G (t) are the spot electricity and gas, resp.

I c is the heat rate (conversion of gas units into electricity)
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I Model electricity and gas spot using the multi-factor
arithmetic model

E (t) = ΛE (t)×
m∑

i=1

Xi (t)

G (t) = ΛG (t)×
n∑

j=1

Yj(t)

I Xi and Yj are non-Gaussian mean-reversion processes (as
defined above)

I Spark spread forward price Fs computable in terms of Xi (t)
and Yj(t), as we have seen

I Expression suitable for transform-based pricing of options
I Use of FFT or numerical Laplace transform
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I Modelling idea: separate into common and unique factors

I Let the jump components in the first k factors be equal
I That is, Xi and Yi are different only in the mean-reversion

speeds αE
i and αG

i
I Similar shock, but the two markets dampen them differently
I Left with m − k and n − k unique factors

I Assuming stationary common factors

Cov
(
Ẽ (t), G̃ (t)

)
=

k∑
i=1

wi

αE
i + αG

i
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Conclusions

I Proposed a multi-factor OU model for electricity spot prices
I Analytical forward prices feasible

I Forwards delivering the power over a period

I Option prices available using transform-based methods
I Extensions to cross-commodity modelling discussed

I Spark spread modelling
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Coordinates

I fredb@math.uio.no

I http://folk.uio.no/fredb

I www.cma.uio.no
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