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Main points

Establish a connection between high order integro-
differential equations and ruin probability

Analyze asymptotic properties of the ruin probabil-
ity in non-Markovian cases.

Introduce a framework for analyzing investment strate-
gies in relation to the Risk process.
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Claims occurring at random times 1, = 71 +7...+ 7%
with interarrival times 7., having a density f-(t).

Claim size (independent of interarrival times and
investment) X having distribution Fx(x).




Basic Modeling Assumptions

Claims occurring at random times 1, = 71 +7...+ 7%
with interarrival times 7., having a density f-(t).

Claim size (independent of interarrival times and
investment) X having distribution Fx(x).

Investment of capital and premium into a risky asset
satisfying a SDE

dZ = w(Z)dt + o(Z)dW.

Solution with Zg = u denoted by Z. It is assumed
that Z > 0 if u > 0.
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Examples

0. Exponential holding times, dZ = ¢ dt. (Classical
Cramer Lundberg model.)

1. Exponential holding times, dZ = (c+a)dt+ odW.
(Perturbed Risk Process.)

2. Exponential holding times, dZ = (¢ + aZ)dt +
cZdW. Investment of capital and premiums into a
risky asset modeled by a Geometric Brownian

In these examples, the Risk process is a Markov
Process
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1. Gamma dist with integer (shape) parameter n
1
t) = NEY N T

2. More general, 7 = s1 + ... + sn, s1,...,8n IN-
dependent exponentials with parameters A1, ...., \p
respectively.

What is required for the framework developed here is
that f-(t), the density of the interrarival times, satisfy
a constant coefficient ode of order n, and, ifn > 1,

A4 PIdoNm==R Rt 7y aRY nE=f g Ry MENEY RN

an=1, f"1(0)=0ag=0.

Example: Sparre-Andersen model, no investments.
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Basic Questions:
Let Ty, = inf{s > 0 : U¥ < 0} the first passage time
trough 0. Determine an equation for ¥(u) = P(Ty, <
oo) (Ruin Probability)

Find the asymptotic behavior of the ruin probability
as the initial capital u — .

No investment - Classical Result - Cramer-Lundberg
Assume claim size distribution is Fyx(z) = 1 —e %/ and
c/(Aw) > 1. Then

(u) = —e~ule=Au)/cp
Al

In general, if h(r) = E(e™) — 1, and v is the positive

solution of the Lundberg equation

Ah(r) = cr,

then, with K = (\u —¢)/(c + AF'(—v)), F the Laplace
Stieltjes transform of Fx(x),
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Investment - Exponential size claim distribution
(Frolova, Kabanov, Pergamenshikov) Geometric Brow-
nian model for risky asset, dZ = aZdt + o ZdW, If

then, as v — oo

w(u) ~ul™P.

Investment - General size claim distribution (Con-

stantinescu - MS Thesis) Assume h(r) moment gen-
erating function of the claim size X is defined in a
neighborhood of the origin. Assume

then, as v — oo




Basic ingredients of proof

(i) Markov property of the Ruin process. This deter-
mines an integro-differential equation for the ruin prob-

ability ¥ (u).

(c+au)p+ 102u2d—¢ M= [~ hu—a)dFx ().




Basic ingredients of proof

(i) Markov property of the Ruin process. This deter-
mines an integro-differential equation for the ruin prob-

ability ¥ (u).

(c+au)p+ 102u2d—¢ M= [~ hu—a)dFx ().

(ii) ¥(s) = Laplace transform of v satisfies a forced sec-
ond order ode with F(s) the Laplace Stieltjes transform
of FX(QZ)
2 d2
5 dsQw HEHD a1 as) w—l—(cs — A+ AF() + 0% — )P

= (0) - (1 - F(s))




(iii) Perturbation theory to characterize behavior of
near 0.




(iii) Perturbation theory to characterize behavior of &
near O.

(iv) Karamata Tauberian Theorems to relate behavior
at the origin for ¥ (s) into behavior at infinity of ¥ (w).
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Generator of the Renewal Jump Diffusion Process

The discrete time ruin process UY = U%(Ty) is a Markov
process with generator

Tg(u,O) T g(u,O) = E(g(ZleX1)|ZO S quO = O) T g(U'?O)

Let A denote the infinitesimal generator of Z, eg

15 5d?

d
A= N ]
(c—I—au)du—I—Qa U .

in the case of investments (of premium and capital)
into a risky asset modeled by a geometric Brownian
motion.

Denote by £*(%) the formal adjoint of L i.e.
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Let Tthg(u,ac) = E(9(Zt,x)|Zg = u). Note that for t > 0,
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In particular, if A is T harmonic, i.e. (T'— I)h(u) = 0,
then

i minta ) e /O ) D E)




For example, since the non ruin probability, ®(u) =
P,(Ugx > 0 Vk) is T harmonic, it satisfies the integrod-
ifferential equation (IDE). As a consequence, the ruin
probability ¥(u) also satisfies the same (IDE).
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For example, since the non ruin probability, ®(u) =
P,(Ugx > 0 Vk) is T harmonic, it satisfies the integrod-
ifferential equation (IDE). As a consequence, the ruin
probability ¥(u) also satisfies the same (IDE).

Examples:

Exponential holding times

gt iB8 RREAnean ]
L A G Dt

dt

di1 d?
dZ = (c+aZ)dt+oZdW, A= (c+au)——+—-—cu’—.
du 2 du?

do 1 d?d o0
—(c—l—au)%—EJQuQW—I—)\CD = )x/o S (u—x)dFx (x).

Now, use & = 1 — ), to get equation for 2.

dy 1 d? oS
—(c—I—au)%—Eaqu%—l—)\w = )x/o Y(u—x)dFx(x).
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Gamma(2,\) holding times, investments

£(2) = (%-I-/\)Q,

dZ = (c+aZ)dt+ocZdW, A= (c—l—au)%{—
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Asymptotic behavior of the ruin probability. p = 2a/0?.
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