Analysis of Ruin Probability under investment for non Markovian interarrival times

Corina Constantinescu (RICAM), Enrique Thomann (OSU)

Main points

Establish a connection between high order integrodifferential equations and ruin probability

Analyze asymptotic properties of the ruin probability in non-Markovian cases.

Introduce a framework for analyzing investment strategies in relation to the Risk process.

Basic Modeling Assumptions

Claims occurring at random times $T_k = \tau_1 + \tau_2 ... + \tau_k$ with interarrival times τ_k having a density $f_{\tau}(t)$.

Claim size (independent of interarrival times and investment) X having distribution $F_X(x)$.

Basic Modeling Assumptions

Claims occurring at random times $T_k = \tau_1 + \tau_2 ... + \tau_k$ with interarrival times τ_k having a density $f_{\tau}(t)$.

Claim size (independent of interarrival times and investment) X having distribution $F_X(x)$.

Investment of capital and premium into a risky asset satisfying a SDE

$$dZ = \mu(Z)dt + \sigma(Z)dW.$$

Solution with $Z_0=u$ denoted by Z_t^u . It is assumed that $Z_t^u>0$ if u>0.

Initial capital $u, U^u(0) = u$

$$U^{u}(t) = \begin{cases} Z_{t-T_k}^{U^{u}(T_k)} & \text{for } T_k \le t < T_{k+1} \\ U^{u}(T_K^{-}) - X_k & \text{for } t = T_k \end{cases}$$

Initial capital $u, U^u(0) = u$

$$U^{u}(t) = \begin{cases} Z_{t-T_k}^{U^{u}(T_k)} & \text{for } T_k \le t < T_{k+1} \\ U^{u}(T_K^-) - X_k & \text{for } t = T_k \end{cases}$$

Examples

0. Exponential holding times, $dZ = c \ dt$. (Classical Cramer Lundberg model.)

Initial capital $u, U^u(0) = u$

$$U^{u}(t) = \begin{cases} Z_{t-T_k}^{U^{u}(T_k)} & \text{for } T_k \le t < T_{k+1} \\ U^{u}(T_K^{-}) - X_k & \text{for } t = T_k \end{cases}$$

Examples

- **0.** Exponential holding times, $dZ = c \ dt$. (Classical Cramer Lundberg model.)
- 1. Exponential holding times, $dZ = (c+a)dt + \sigma dW$. (Perturbed Risk Process.)

Initial capital $u, U^u(0) = u$

$$U^{u}(t) = \begin{cases} Z_{t-T_k}^{U^{u}(T_k)} & \text{for } T_k \le t < T_{k+1} \\ U^{u}(T_K^-) - X_k & \text{for } t = T_k \end{cases}$$

Examples

- **0.** Exponential holding times, $dZ = c \ dt$. (Classical Cramer Lundberg model.)
- 1. Exponential holding times, $dZ = (c+a)dt + \sigma dW$. (Perturbed Risk Process.)
- 2. Exponential holding times, $dZ = (c + aZ)dt + \sigma ZdW$. Investment of capital and premiums into a risky asset modeled by a Geometric Brownian

Initial capital $u, U^u(0) = u$

$$U^{u}(t) = \begin{cases} Z_{t-T_k}^{U^{u}(T_k)} & \text{for } T_k \le t < T_{k+1} \\ U^{u}(T_K^{-}) - X_k & \text{for } t = T_k \end{cases}$$

Examples

- **0.** Exponential holding times, $dZ = c \ dt$. (Classical Cramer Lundberg model.)
- 1. Exponential holding times, $dZ = (c+a)dt + \sigma dW$. (Perturbed Risk Process.)
- 2. Exponential holding times, $dZ = (c + aZ)dt + \sigma ZdW$. Investment of capital and premiums into a risky asset modeled by a Geometric Brownian

In these examples, the Risk process is a Markov Process

1. Gamma dist with integer (shape) parameter n

$$f_{\tau}(t) = \frac{1}{\Gamma(n+1)} (\lambda t)^n \lambda e^{-\lambda t}$$

1. Gamma dist with integer (shape) parameter n

$$f_{\tau}(t) = \frac{1}{\Gamma(n+1)} (\lambda t)^n \lambda e^{-\lambda t}$$

2. More general, $\tau = s_1 + ... + s_n$, $s_1, ..., s_n$ independent exponentials with parameters $\lambda_1, ..., \lambda_n$ respectively.

1. Gamma dist with integer (shape) parameter n

$$f_{\tau}(t) = \frac{1}{\Gamma(n+1)} (\lambda t)^n \lambda e^{-\lambda t}$$

2. More general, $\tau = s_1 + ... + s_n$, $s_1, ..., s_n$ independent exponentials with parameters $\lambda_1, ..., \lambda_n$ respectively.

What is required for the framework developed here is that $f_{\tau}(t)$, the density of the interrarival times, satisfy a constant coefficient ode of order n, and, if n > 1,

$$f_{\tau}^{(k)}(0) = 0, \text{ for } k = 0, 1, ..., n - 2.$$

$$0 = \mathcal{L}(\frac{d}{dt})f_{\tau}(t) \equiv \sum_{k=0}^{n} \alpha_k \frac{d^k f}{dt^k}$$

1. Gamma dist with integer (shape) parameter n

$$f_{\tau}(t) = \frac{1}{\Gamma(n+1)} (\lambda t)^n \lambda e^{-\lambda t}$$

2. More general, $\tau = s_1 + ... + s_n$, $s_1, ..., s_n$ independent exponentials with parameters $\lambda_1, ..., \lambda_n$ respectively.

What is required for the framework developed here is that $f_{\tau}(t)$, the density of the interrarival times, satisfy a constant coefficient ode of order n, and, if n > 1,

$$f_{\tau}^{(k)}(0) = 0$$
, for $k = 0, 1, ..., n - 2$.
 $0 = \mathcal{L}(\frac{d}{dt})f_{\tau}(t) \equiv \sum_{k=0}^{n} \alpha_k \frac{d^k f}{dt^k}$ $\alpha_n = 1$, $f_{\tau}^{(n-1)}(0) = \alpha_0 \neq 0$.

1. Gamma dist with integer (shape) parameter n

$$f_{\tau}(t) = \frac{1}{\Gamma(n+1)} (\lambda t)^n \lambda e^{-\lambda t}$$

2. More general, $\tau = s_1 + ... + s_n$, $s_1, ..., s_n$ independent exponentials with parameters $\lambda_1, ..., \lambda_n$ respectively.

What is required for the framework developed here is that $f_{\tau}(t)$, the density of the interrarival times, satisfy a constant coefficient ode of order n, and, if n > 1,

$$f_{\tau}^{(k)}(0) = 0$$
, for $k = 0, 1, ..., n - 2$.
 $0 = \mathcal{L}(\frac{d}{dt})f_{\tau}(t) \equiv \sum_{k=0}^{n} \alpha_k \frac{d^k f}{dt^k}$ $\alpha_n = 1$, $f_{\tau}^{(n-1)}(0) = \alpha_0 \neq 0$.

Example: Sparre-Andersen model, no investments.

Basic Questions:

Let $T_u = \inf\{s > 0 : U_s^u \le 0\}$ the first passage time trough 0. Determine an equation for $\psi(u) = P(T_u < \infty)$ (Ruin Probability)

Find the asymptotic behavior of the ruin probability as the initial capital $u \to \infty$.

Basic Questions:

Let $T_u = \inf\{s > 0 : U_s^u \le 0\}$ the first passage time trough 0. Determine an equation for $\psi(u) = P(T_u < \infty)$ (Ruin Probability)

Find the asymptotic behavior of the ruin probability as the initial capital $u \to \infty$.

No investment - Classical Result - Cramer-Lundberg Assume claim size distribution is $F_X(x)=1-e^{-x/\mu}$ and $c/(\lambda\mu)>1$. Then

$$\psi(u) = \frac{c}{\lambda \mu} e^{-u(c - \lambda \mu)/c\mu}$$

Basic Questions:

Let $T_u = \inf\{s > 0 : U_s^u \le 0\}$ the first passage time trough 0. Determine an equation for $\psi(u) = P(T_u < \infty)$ (Ruin Probability)

Find the asymptotic behavior of the ruin probability as the initial capital $u \to \infty$.

No investment - Classical Result - Cramer-Lundberg Assume claim size distribution is $F_X(x)=1-e^{-x/\mu}$ and $c/(\lambda\mu)>1$. Then

$$\psi(u) = \frac{c}{\lambda \mu} e^{-u(c - \lambda \mu)/c\mu}$$

In general, if $h(r) = \mathbf{E}(e^{rX}) - 1$, and ν is the positive solution of the Lundberg equation

$$\lambda h(r) = cr,$$

then, with $K = (\lambda \mu - c)/(c + \lambda \mathcal{F}'(-\nu))$, \mathcal{F} the Laplace Stieltjes transform of $F_X(x)$,

Investment - Exponential size claim distribution (Frolova, Kabanov, Pergamenshikov) Geometric Brownian model for risky asset, $dZ = aZdt + \sigma ZdW$, If

$$\rho = \frac{2a}{\sigma^2} > 1$$

then, as $u \to \infty$

$$\psi(u) \sim u^{1-\rho}$$
.

Investment - Exponential size claim distribution (Frolova, Kabanov, Pergamenshikov) Geometric Brownian model for risky asset, $dZ = aZdt + \sigma ZdW$, If

$$\rho = \frac{2a}{\sigma^2} > 1$$

then, as $u \to \infty$

$$\psi(u) \sim u^{1-\rho}$$
.

Investment - General size claim distribution (Constantinescu - MS Thesis) Assume h(r) moment generating function of the claim size X is defined in a neighborhood of the origin. Assume

$$\rho = \frac{2a}{\sigma^2} > 1$$

then, as $u \to \infty$

$$\psi(u) \sim u^{1-\rho}$$
.

Basic ingredients of proof

(i) Markov property of the Ruin process. This determines an integro-differential equation for the ruin probability $\psi(u)$.

$$(c+au)\frac{d}{du}\psi + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}\psi - \lambda\psi = \lambda \int_0^\infty \psi(u-x)dF_X(x).$$

Basic ingredients of proof

(i) Markov property of the Ruin process. This determines an integro-differential equation for the ruin probability $\psi(u)$.

$$(c+au)\frac{d}{du}\psi + \frac{1}{2}\sigma^2u^2\frac{d^2}{du^2}\psi - \lambda\psi = \lambda \int_0^\infty \psi(u-x)dF_X(x).$$

(ii) $\widehat{\psi}(s) =$ Laplace transform of ψ satisfies a forced second order ode with $\mathcal{F}(s)$ the Laplace Stieltjes transform of $F_X(x)$

$$\frac{s^2\sigma^2}{2}\frac{d^2}{ds^2}\hat{\psi} + (2s\sigma^2 - as)\frac{d}{ds}\hat{\psi} + (cs - \lambda + \lambda\mathcal{F}(s) + \sigma^2 - a)\hat{\psi}$$
$$= c\psi(0) - \frac{\lambda}{s}(1 - \mathcal{F}(s))$$

(iii) Perturbation theory to characterize behavior of $\widehat{\psi}$ near 0.

(iii) Perturbation theory to characterize behavior of $\widehat{\psi}$ near 0.

(iv) Karamata Tauberian Theorems to relate behavior at the origin for $\hat{\psi}(s)$ into behavior at infinity of $\psi(u)$.

Generator of the Renewal Jump Diffusion Process

The discrete time ruin process $U_k^u = U^u(T_k)$ is a Markov process with generator

$$Tg(u,0) - g(u,0) = \mathbf{E}(g(Z_{\tau_1}, X_1)|Z_0 = u, X_0 = 0) - g(u,0)$$

Generator of the Renewal Jump Diffusion Process

The discrete time ruin process $U_k^u = U^u(T_k)$ is a Markov process with generator

$$Tg(u,0) - g(u,0) = \mathbf{E}(g(Z_{\tau_1}, X_1)|Z_0 = u, X_0 = 0) - g(u,0)$$

Let A denote the infinitesimal generator of Z, eg

$$A = (c + au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}$$

in the case of investments (of premium and capital) into a risky asset modeled by a geometric Brownian motion.

Generator of the Renewal Jump Diffusion Process

The discrete time ruin process $U_k^u = U^u(T_k)$ is a Markov process with generator

$$Tg(u,0) - g(u,0) = \mathbf{E}(g(Z_{\tau_1}, X_1)|Z_0 = u, X_0 = 0) - g(u,0)$$

Let A denote the infinitesimal generator of Z, eg

$$A = (c + au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}$$

in the case of investments (of premium and capital) into a risky asset modeled by a geometric Brownian motion.

Denote by $\mathcal{L}^*(\frac{d}{dt})$ the formal adjoint of \mathcal{L} i.e.

$$\mathcal{L}^*(\frac{d}{dt}) = \sum_{j=0}^n (-1)^j \alpha_j \frac{d^j}{dt^j}$$

Theorem: For h sufficiently smooth (eg $h \in \mathcal{C}_0^{\infty} \cap \mathcal{D}_{A^n}$) set g(u,x) = h(u-x). Then

$$\mathcal{L}^*(A)Th(u) = \alpha_0 \ \mathsf{E}g(u, X_1) = \alpha_0 \int_0^\infty h(u - x) dF_X(x).$$

Theorem: For h sufficiently smooth (eg $h \in \mathcal{C}_0^{\infty} \cap \mathcal{D}_{A^n}$) set g(u, x) = h(u - x). Then

$$\mathcal{L}^*(A)Th(u) = \alpha_0 \ \mathsf{E}g(u, X_1) = \alpha_0 \int_0^\infty h(u - x) dF_X(x).$$

Pf: Take n = 2 so

$$\mathcal{L}(\frac{d}{dt}) = \frac{d^2}{dt^2} + \alpha_1 \frac{d}{dt} + \alpha_0$$

Recall $\alpha_0 = f'(0)$. Then

Theorem: For h sufficiently smooth (eg $h \in \mathcal{C}_0^{\infty} \cap \mathcal{D}_{A^n}$) set g(u,x) = h(u-x). Then

$$\mathcal{L}^*(A)Th(u) = \alpha_0 \ \mathsf{E}g(u, X_1) = \alpha_0 \int_0^\infty h(u - x) dF_X(x).$$

Pf: Take n = 2 so

$$\mathcal{L}(\frac{d}{dt}) = \frac{d^2}{dt^2} + \alpha_1 \frac{d}{dt} + \alpha_0$$

Recall $\alpha_0 = f'(0)$. Then

$$\alpha_0 Tg(u,0) = \int_0^\infty \int_0^\infty \mathbf{E}(g(Z_t, x)|Z_0 = u)\alpha_0 f_\tau(t)dF_X(x)dt$$
$$= -\sum_{j=1}^2 \alpha_j \int_0^\infty \int_0^\infty \frac{d^j f_\tau}{dt^j} \mathbf{E}(g(Z_t, x)|Z_0 = u)dF_X(x)dt$$

Theorem: For h sufficiently smooth (eg $h \in \mathcal{C}_0^{\infty} \cap \mathcal{D}_{A^n}$) set g(u,x) = h(u-x). Then

$$\mathcal{L}^*(A)Th(u) = \alpha_0 \ \mathsf{E}g(u, X_1) = \alpha_0 \int_0^\infty h(u - x) dF_X(x).$$

Pf: Take n = 2 so

$$\mathcal{L}(\frac{d}{dt}) = \frac{d^2}{dt^2} + \alpha_1 \frac{d}{dt} + \alpha_0$$

Recall $\alpha_0 = f'(0)$. Then

$$\alpha_0 Tg(u,0) = \int_0^\infty \int_0^\infty \mathbf{E}(g(Z_t,x)|Z_0 = u)\alpha_0 f_\tau(t)dF_X(x)dt$$

$$= -\sum_{j=1}^2 \alpha_j \int_0^\infty \int_0^\infty \frac{d^j f_\tau}{dt^j} \mathbf{E}(g(Z_t,x)|Z_0 = u)dF_X(x)dt$$

$$= \int_0^\infty g(u,x)f_\tau'(0)dF_X(x)$$

$$-\int_0^\infty \int_0^\infty \sum_{j=1}^2 (-1)^j \alpha_j \frac{d^j}{dt^j} \mathbf{E}(g(Z_t,x)|Z_0 = u)f_\tau(t)dF_X(x)dt$$

Let $T_t^{\sharp}g(u,x) = \mathbf{E}(g(Z_t,x)|Z_0=u)$. Note that for t>0, and $h\in\mathcal{D}_{A^n}$, $T_t^{\sharp}(Ag)=A(T_t^{\sharp}g)$ and

$$\frac{d}{dt}T_t^{\sharp}g = A(T_t^{\sharp}g), \quad \frac{d^2}{dt^2}T_t^{\sharp}g = A(A(T_t^{\sharp}g))$$

Let $T_t^{\sharp}g(u,x) = \mathbf{E}(g(Z_t,x)|Z_0=u)$. Note that for t>0, and $h\in\mathcal{D}_{A^n}$, $T_t^{\sharp}(Ag)=A(T_t^{\sharp}g)$ and

$$\frac{d}{dt}T_t^{\sharp}g = A(T_t^{\sharp}g), \quad \frac{d^2}{dt^2}T_t^{\sharp}g = A(A(T_t^{\sharp}g))$$

Now use the regularity of h to justify that

$$\int_0^\infty \int_0^\infty A(A(\mathbf{E}(g(Z_t, x)|Z_0 = u))) f_\tau(t) dF_X(x) dt$$

$$= A^2 \left[\int_0^\infty \int_0^\infty \mathbf{E}(g(Z_t, x)|Z_0 = u) f_\tau(t) dF_X(x) dt \right]$$

$$= A^2 (Tg)(u, 0)$$

Let $T_t^{\sharp}g(u,x) = \mathbf{E}(g(Z_t,x)|Z_0=u)$. Note that for t>0, and $h\in\mathcal{D}_{A^n}$, $T_t^{\sharp}(Ag)=A(T_t^{\sharp}g)$ and

$$\frac{d}{dt}T_t^{\sharp}g = A(T_t^{\sharp}g), \quad \frac{d^2}{dt^2}T_t^{\sharp}g = A(A(T_t^{\sharp}g))$$

Now use the regularity of h to justify that

$$\int_0^\infty \int_0^\infty A(A(\mathbf{E}(g(Z_t, x)|Z_0 = u))) f_\tau(t) dF_X(x) dt$$

$$= A^2 \left[\int_0^\infty \int_0^\infty \mathbf{E}(g(Z_t, x)|Z_0 = u) f_\tau(t) dF_X(x) dt \right]$$

$$= A^2 (Tg)(u, 0)$$

In particular, if h is T harmonic, i.e. (T-I)h(u)=0, then

$$\mathcal{L}^*(A)(h) = \alpha_0 \int_0^\infty h(u - x) dF_X(x). \quad (IDE)$$

Examples:

Exponential holding times

$$\mathcal{L}(\frac{d}{dt}) = \frac{d}{dt} + \lambda, \quad \mathcal{L}^*(\frac{d}{dt}) = -\frac{d}{dt} + \lambda$$

Examples:

Exponential holding times

$$\mathcal{L}(\frac{d}{dt}) = \frac{d}{dt} + \lambda, \quad \mathcal{L}^*(\frac{d}{dt}) = -\frac{d}{dt} + \lambda$$

$$dZ = (c+aZ)dt + \sigma ZdW, \quad A = (c+au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}.$$

Examples:

Exponential holding times

$$\mathcal{L}(\frac{d}{dt}) = \frac{d}{dt} + \lambda, \quad \mathcal{L}^*(\frac{d}{dt}) = -\frac{d}{dt} + \lambda$$

$$dZ = (c + aZ)dt + \sigma Z dW, \quad A = (c + au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}.$$

$$-(c + au)\frac{d\Phi}{du} - \frac{1}{2}\sigma^2 u^2 \frac{d^2\Phi}{du^2} + \lambda \Phi = \lambda \int_0^\infty \Phi(u - x) dF_X(x).$$

Examples:

Exponential holding times

$$\mathcal{L}(\frac{d}{dt}) = \frac{d}{dt} + \lambda, \quad \mathcal{L}^*(\frac{d}{dt}) = -\frac{d}{dt} + \lambda$$

$$dZ = (c + aZ)dt + \sigma Z dW, \quad A = (c + au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}.$$

$$-(c + au)\frac{d\Phi}{du} - \frac{1}{2}\sigma^2 u^2 \frac{d^2\Phi}{du^2} + \lambda \Phi = \lambda \int_0^\infty \Phi(u - x) dF_X(x).$$

Now, use $\Phi = 1 - \psi$, to get equation for ψ .

$$-(c+au)\frac{d\psi}{du} - \frac{1}{2}\sigma^2 u^2 \frac{d^2\psi}{du^2} + \lambda\psi = \lambda \int_0^\infty \psi(u-x)dF_X(x).$$

Gamma $(2, \lambda)$ holding times, no investments

$$\mathcal{L}(\frac{d}{dt}) = \left(\frac{d}{dt} + \lambda\right)^2, \quad \mathcal{L}^*(\frac{d}{dt}) = \left(-\frac{d}{dt} + \lambda\right)^2$$

$$dZ = c \ dt \quad A = c \frac{d}{du}$$

Then, equation for ruin probability

$$\left(-c\frac{d}{du} + \lambda\right)^2 \psi = \lambda^2 \int_0^\infty \psi(u - x) dF_X(x).$$

Gamma $(2, \lambda)$ holding times, investments

$$\mathcal{L}(\frac{d}{dt}) = \left(\frac{d}{dt} + \lambda\right)^2, \quad \mathcal{L}^*(\frac{d}{dt}) = \left(-\frac{d}{dt} + \lambda\right)^2$$

$$dZ = (c + aZ)dt + \sigma ZdW, \quad A = (c + au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}.$$

Gamma $(2, \lambda)$ holding times, investments

$$\mathcal{L}(\frac{d}{dt}) = \left(\frac{d}{dt} + \lambda\right)^2, \quad \mathcal{L}^*(\frac{d}{dt}) = \left(-\frac{d}{dt} + \lambda\right)^2$$

$$dZ = (c + aZ)dt + \sigma ZdW, \quad A = (c + au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}.$$

Equation for ψ

$$\left(-(c+au)\frac{d}{du} - \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2} + \lambda\right)^2 \psi = \lambda^2 \int_0^\infty \psi(u-x) dF_X(x).$$

Gamma $(2, \lambda)$ holding times, investments

$$\mathcal{L}(\frac{d}{dt}) = \left(\frac{d}{dt} + \lambda\right)^2, \quad \mathcal{L}^*(\frac{d}{dt}) = \left(-\frac{d}{dt} + \lambda\right)^2$$

$$dZ = (c + aZ)dt + \sigma ZdW, \quad A = (c + au)\frac{d}{du} + \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2}.$$

Equation for ψ

$$\left(-(c+au)\frac{d}{du} - \frac{1}{2}\sigma^2 u^2 \frac{d^2}{du^2} + \lambda\right)^2 \psi = \lambda^2 \int_0^\infty \psi(u-x) dF_X(x).$$

Asymptotic behavior of the ruin probability. $\rho = 2a/\sigma^2$.

$$\psi(u) \sim \begin{cases} u^{1-\rho} & 1 < \rho < 2 \\ u^{-2\sqrt{\lambda/\sigma^2}} & \rho = 1 \\ u^{-\alpha} & \rho < 1 \end{cases} \quad \alpha = \sqrt{\left(\frac{1}{2}(1-\rho)\right)^2 + \frac{4\lambda}{\rho}} - \frac{1}{2}(1-\rho)$$

