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The aim of the talk is to expoud results on
Isotropic Statistical Solution from

S.Dostoglou, A.V.Fursikov, J.D.Kahl: Ho-
mogeneous and Isotropic Statistical Solutions
of the Navier-Stokes Equations.- Math. Physics
Electronic Journal,
http://www.ma.utexas.edu/mpej/ volume 12,
paper No. 2, 2006

These results are founded on results on Ho-
mogeneous Statistical Solutions published in

Vishik, V.I. and A.V. Fursikov: Mathemat-
ical problems of statistical hydromechanics.
Kluwer, 1988.



Initial definitions

Let H be a Hilbert space of vector fields

u(z) :u= (uy,us,uz), * = (x1,r2,23) € R3.

Ty, : H — H, h € R3 is translation operator if:
Thu(z) = u(x + h).

O(3) denotes the group of all orthogonal
3 x 3-matrices w (with detw = +1)

R, : H— H, we O(3) is called rotation op-
erator if

(Rou)(z) = wu(w tz)

In fact R, can be also reflection operator for
some w



Homogeneous and isotropic measures

B(H) is the o-algebra of Borel sets of H.
Let Hy, H> be Hilbert spaces. For a measure
uw(A),A € B(H1), push forward of p under
the map VvV : H{ — H, is the measure

W*u(B) = w(W™1B) V Be B(H>).
where
W IiB :={me Hy: V(m) € B} € B(H;).

A measure u defined on B(H) is called ho-
mogeneous if it is translation invariant:

Tru(A) = u(A), VAeB(H),heR3 (1)

A homogeneous measure u defined on B(H)
is called isotropic if

Riu(A) = p(A), VA€ B(H),weO0(3) (2)



Why isotropic measures are usefull?

Correlation tensor for general (nonisotropic)
measure is defined as follows:

K j(1,22) = [u(e1) @ u(wo)u(du),
where i,5 =1,...3, 1,25 € R3.

If u is isotropic measure, its correlation tensor
has the form:

K j(z1,22) = k(|z1 — z2[)d;

where k(M\), A € Ry is a scalar function, and
d;,7 is Kroneker symbol.

In Kolmogorov turbulence theory isotropic mea-
sures are essentially used.



Navier-Stokes Equations

ou(t,z)—Au+(u, Vu)+Vp(t,z) = 0, divu = 0O,

u(t, z)|t=0 = uo(x)
where t € (0,7),z € R3.

Energy inequality

T :
utt, VP4 | I9u(r)IRdr < Jluol?, ¢ € (0,7),

-1 =1- ||L2(R3)) is the basic property to
prove existence of generalized solution.

Energy inequality can be used to prove exis-
tence of statistical solution that is, roughly
speaking, the measure P supported on the
set of generalized solution and satisfying the
following analog of energy estimate:

[t P+ [ 19t 31Par) Pldu) < [ fluoll2p(dus

where p is a given measure on the set of
initial conditions.
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Properties of homogeneous measures

1)Unique homogeneous measure supported
on L>(R3) is §-measure, i.e. §(A) = 1 for
AeB(Ly(R3))ifoecAand 6(A) =0if0gA

2)Each homogeneous measure u is supported
on bounded functions defined on R3. More-
over, if homogeneous measure u #= 6 (and
does not contain component ad,a € (0,1)),
then u(Lo(R3)) = 0.

That is why the Hilbert space H on which
there is reason to consider homogeneous (and
isotropic) measures is as follows:

HO(r) = {u(x),x € R3: divu = 0,

[ulZ0(y = [+ 12127 u(@) Pz < o)
where r < —3/2.

Since |lull;, @3y = oo for typical u € HO(r),
there is no hope to use energy estimate to
prove existence of homogeneous statistical
solution for Navier-Stokes equation.



Density of energy for homogeneous
measures

For a homogeneous measure u the pointwise
averages

[1uP@) paw), [ 1Vul(@) pldw)  (3)

can be defined by the equalities

[ [1u@Po@) do pldu) = [ lu@)? u(du) [ ¢(@) deo
[ [19u(@)Pé(@) dv p(du)

= [IVu@)? p(dw) [ ¢(2) dv v ¢ € L1 (R®)

The first expression in (3) is the energy den-
sity and the second one is the density of the
energy dissipation. In terms of these quali-
ties we will get analog of energy estimate for
statistical solution.



Some definitions

The set of all generalized solutions of the
Navier-Stokes system:

Gns = {u € L0, T; HO(r)) : L(u, )

> <z5
—/ (u2+uA¢ Z 2>dt=0,

for all ¢ € CS° ((O,T) x R3)ﬂ0((O,T); HO<T))},

where (u,v)o = [pzu(z) - v(zx) dx.

A measure P(A), A € B(L2(0,T;HO(r))) is
called homogeneous in z if TP = P
Vh € R3

The space H1(r) is defined as follows:

H () = {u(z) € HO(r) : [Jullp gy = [Vull(r) < oo}



Definition of homogeneous statistical
solution

Given homogeneous probability measure pu on
B(HO(r)) possessing finite energy density, a
homogeneous statistical solution of the
Navier-Stokes equations with initial con-
dition p is a probability measure P on
B(L?(0,T:;HO(r))) such that:

1. P is homogeneous in x.

2. P(W) =1, where W = L2(0,T;H(r))Nn
BV=*NGyng, s> 5.

3. P51 A) = u(4), VA € B(HO(r))
where ’yo_lA ={ueW: yuc A}l

4. [ (luCt )2+ [§1Vul?(r,2) dr) P(du)
< C [ |u(z)]? pldu),
for each t € [0,T].
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Definition of isotropic statistical solution

A homogeneous measure P(A), A € B(L?(0,T; HO(r)
is called isotropic in z if R ,P = P,YVw € O(3)

Let u be an isotropic measure on B(HO(r))
possessing finite energy density.

An isotropic statistical solution of the Navier-
Stokes equations with initial condition pu

IS @ homogeneous statistical solution P that

IS isotropic in x

T he main results

Theorem 1 Given p homogeneous measure
on HO(r) with finite energy density, there ex-
iIsts homogeneous statistical solution of the
Navier-Stokes equations P with initial condi-
tion pu.

Theorem 2 Given p isotropic measure on
HO(r) with finite energy density, there exists
isotropic statistical solution of the Navier-
Stokes equations P with initial condition .
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Draft of Theorem’s 1 proof

Step 1.Introduce the finite-dimensional space
of trigonometric polynomials of degree [ and
period 2I:

M; = { Z akeik'x rapk =0, ap =a_p V k’},
kG?ZZ)’,\MSl

Forallle N M; C HO(r).

Lemma 1. For a given initial homogeneous
measure p on HO(r) with finite energy den-
Sity there exists a sequence of homogeneous
measures j; as | — oo defined on B(HO(r))
and supported on M; such that

[ exp (ius @)pu(du) — [ exp (iCu, @) u(du)

as | — oo, and

[ 1@ pldw) < [ uP@) p(d)
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Step 2. Galerkin’s approximations

u(t,xr) — Au ~+ 7 (u, V)u = 0, divu = 0,

u(t,x) € C(0,T; M), wulg=0 =1ug € M;

where m; is the projection on M;. Let S;:
M; — C(0,T; M;) be operator mapping ini-
tial conditions to solutions of this problem
(i.e. Galerkin’'s resolving operator).

Galerkin’'s approximations of homogeneous sta-
tistical solution for Navier-Stokes equations
are the measures P, that are defined with
help of approximation p; from Lemma 1 of
initial measure u by the formula:

P(A) = (S, tA) VA e B(C(O,T; M)

Step 3. Passage to limit

P— P weakly as [ — o0

on L»(0,T:HO(r)) where P is homogeneous
statistical solution of Navier-Stokes equations.
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Isotropic statistical solution

Examples of isotropic measures: for homo-
geneous measure u define
B(A) = [ Rou(A) dw VA € BOHO())
O(3)
where dw = H is the standard Haar mea-
sure on O(3) normalized. Then [ is isotropic
measure.

Draft of Theorem’s 2 proof

Let P be a homogeneous statistical solution
constructed in Theorem 1. Then
P(A) = / RP(A) do VA € B(HO(r))
O(3)
is isotropic statistical solution of Navier-Stokes
egautions.

14



Approximations of isotropic statistical
solution

Spaces for isotropic approximations:
-/\//Tl — U R,M (1)
we0(3)
where, recall,
M; = { Z akeik'x rapk =0, ap =a_p V k},
keTZ3,|k|<I

Let S} : M; — C(0,T; M;) be Galerkin's re-
solving operator. Given v in /\//Tl there are
w in O(3) and u in M; such that v = Ryu.
Extend S; from M; to /\//Tl as

S\lv = R, Su.

Lemma 2 This extension is well-defined.
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Let u be initial measure, u; be its periodic
approximation,

il(A) = /0(3) R m(A)

be isotropic averaging of u;. We set
—~ =1
P(A) = (S, A), Ae B(L?(0,T,H°(r)))

Lemma 3 The measure ?l IS homogeneous
and isotropic. Moreover

P(A) = (P, x H)(a™ 1 A)

where a(w,u) = Ryu and H is the Haar mea-
sure on O(3), normalized.

Theorem 3 P, — P weakly on L,(0,T; H°(r))
as | — oo, where P is the isotropic statistical
solution, constructed in Theorem 2.
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