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Importance Sampling — Notation

d-dimensional state space X .

Reference density f on X .

Performance function H(·; γ) : X → R.

Interested in computing

` = Ef [H(X; γ)] .
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IS Notation Continued

Denote our IS density as g.

Quantity of interest can be expressed as

` = Eg

[
H(X; γ)

f(X)

g(X)

]
.

We will estimate ` using the likelihood ratio estimator:
Given X1, . . . XN

i.i.d.
∼ g

̂̀
LR =

1

N

N∑

k=1

H(Xk; γ)
f(Xk)

g(Xk)
.

Efficient Monte Carlo: 14–18 July, 2008 – p.4/29



IS Continued

Recall the minimum variance IS density:

g∗(x) =
|H(x; γ)| f(x)

Ef [|H(X; γ)|]
.

In this talk, g∗ will be the target IS density.

Usually, g∗ is unattainable directly.

Can think of g as our best proxy for g∗.

Often, g is restricted to some manageable parametric family
(cf. Cross–Entropy method).
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Minimum Cross-Entropy

Generic minimum cross-entropy (MCE) program:

inf
g

Eg

[
ln

(
g(X)

f(X)

)]

subject to

Eg [Cj(X)] = cj, j = 1, 2, . . . ,m ,

Eg [Cj(X)] > cj , j = m + 1,m + 2, . . . ,M ,

and ∫
g(x)µ(dx) = 1 .
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MCE Solution

Solution given by

g(x) = f(x)eλ0+
PM

i=1
λiCi(x) ,

where the {λi} solve the dual program

sup
λ0,λ1,...,λM

[
λ0 +

M∑

i=1

λici − eλ0Ef

[
e

PM
j=1

λjCj(X)
]]

subject to the constraints λj > 0 for j = m + 1, . . . ,M .
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Sequential IS

For certain models f , it is natural to consider
x = (x1,x2, . . . ) as a sequence of states (eg. discrete-time
Markov processes).

In such cases, it is easy to think of g as a sequence of IS
densities, each acting on the current state and possibly
depending on the entire history.

Via the chain rule, can write

g(x) = g(x1)g(x2|x1)g(x3|x2,x1) · · · g(xn|xn−1, . . . ,x1) .

Now, we obtain this sequence of conditional IS densities
via MCE.
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Sequential MCE

The idea is to sample each state Xk sequentially; and:

To re-solve the MCE program conditional on the entire
sampling history, x1, . . . ,xk.

This in turn updates g, given the current sample path.
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Sequential MCE

Suppose that we have sampled x1,x2, . . . ,xk−1, so that the
current state to be realised is Xk.

We solve the MCE program for
g(xk, . . . ,xn |xk−1, . . . ,x1). Note that the constraints in
the MCE program now incorporate xk−1, . . . ,x1.

Via the chain rule,

g(xk, . . . ,xn |xk−1, . . . ,x1) = g(xk |xk−1, . . . ,x1)

× g(xk+1, . . . ,xn |xk, . . . ,x1) .

We sample from g(xk |xk−1, . . . ,x1), and then update the
MCE program and repeat the process.
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Example: I.I.D. Sums

Let {Xk}, k = 1, 2, . . . be a collection of i.i.d. random
variables with common pdf f .

Define Sn =
∑n

k=1 Xk for n = 1, 2, . . . , with S0 = 0.

Problem is to estimate tail probabilities of the form

` = Pf (Sn > αn) ,

for fixed α and different n.

In this case H(X;n) = I{
Pn

k=1
Xk> αn}.

Hence g∗ is the density f conditional on {Sn > αn}.
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MCE for the Example

We will impose a single inequality constraint in the MCE
program, namely

Eg [C(X)] > αn ,

where

C(X) =

n∑

k=1

Xk .

Hence, the MCE program finds g as close as possible to f

in the Kullback-Leibler CE sense, while ensuring that
Eg[Sn] > αn.
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MCE Solution for the Example

Corresponding dual program given by

sup
λ0,λ1

[
λ0 + λ1(αn − sk−1) − eλ0Ef

[
eλ1(Xk+···+Xn)

]]

subject to the constraint that λ1 > 0.

Solution to the MCE program given by

g(xk, . . . , xn |xk−1, . . . , x1) = f(xk, . . . , xn)eλ0+λ1

Pn
j=k xj .

We will sample from the (ET) conditional

g(xk |xk−1, . . . , x1) = f(xk)e
eλ0+λ1xk .
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Example: Gaussian Case

If the Xk are i.i.d. N(µ, σ2) distributed, the MGF of Xk is
given by

Ef

[
eλ1Xk

]
= e 1

2
λ1(λ1σ2+2µ) .

Hence the appropriate dual is given by

sup
λ0,λ1

[
λ0 + λ1(αn − sk−1) − eλ0

(
e 1

2
λ1(λ1σ2+2µ)

)n−k+1
]

,

subject to λ1 > 0.
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Gaussian Case Continued

The solution yields that the conditional distribution
corresponding to the next increment, Xk, is Gaussian with
mean {

αn−sk−1

n−k+1

αn−sk−1

n−k+1
> µ

µ � � ��� � � �	� �

and variance σ2.

Interpretation: change of measure places next increment’s
mean on line connecting current state to target level αn,
unless expected trajectory from the current point is already
> αn, in which case no change of measure is performed.
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Gaussian Case: Numerics

Suppose Xk under f are standard Normal increments
(µ = 0, σ = 1).

Level to be reached: α = 2
3
; so ` = Pf (Sn > 2

3
n).

Compare sequential MCE with inequality constraint to:
MCE with equality (i.i.d. ET). (Sets Eg[Xk] = α.)
sequential MCE with equality constraint (dynamic ET).
Algorithm of Blanchet & Glynn (2006) (on next slide).

Use N = 5 · 103 samples per LR estimate, ̂̀
LR.

Obtain 1,000 independent estimates. Give min, mean, and
max statistics for RE and logarithmic efficiency.
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Gaussian Case: Algorithm of B&G

Blanchet & Glynn (2006) algorithm (for Xk ∼ N(0, 1)).

Set k = 1 and sk−1 = 0.
If k < n, sample Xk from N

(
αn−sk−1

n−k
, 1 + 1

n−k

)
.

Set sk = sk−1 + xk, k = k + 1, and repeat.
Otherwise if k = n, sample directly from the
distribution of Xn given {Xn + sn−1 > αn}.

This was shown to give bounded relative error as n → ∞.

In contrast, we have not yet shown optimality, despite the
following suggestive numerics.
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Gaussian Increments RE
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Gaussian Increments Efficiency
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Two Sided Example

Let {Xk}, k = 1, 2, . . . be a collection of i.i.d. random
variables with common pdf f .

Define Sn =
∑n

k=1 Xk for n = 1, 2, . . . , with S0 = 0.

Problem is to estimate two-sided probabilities of the form

` = Pf ({Sn > αn} ∪ {Sn 6 −(1 + ε)αn}) ,

for fixed (α, ε), and varying n.
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MCE for the Example

Augment the problem with independent Y ∼ Ber(p) (under
f ).

Again, we will impose a single inequality constraint in the
MCE program:

Eg [C(X)] > 0 ,

where

C(X) = Y (Sn − αn) − (1 − Y ) (Sn + (1 + ε)αn) .

As before, conditionals g(xk |xk−1, . . . , x1, y) are ET.

However, here twisting is toward the level determined by
outcome of Y .
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Example: Gaussian Case

If p = 1/2, Xk ∼ N(0, 1), then under g, Y ∼ Ber(p̃), where

p̃ = (1 + eεz∗)−1

and z∗ solves

(z + (1 + ε)α2n)eεz + (z + α2n) = 0 .

The solution subsequently has: Xk ∼ N(µ̃k, σ
2), with

µ̃k =





αn−sk−1

n−k+1
y = 1, αn−sk−1

(n−k+1)
> µ

− (1+ε)αn+sk−1

n−k+1
y = 0, − (1+ε)αn+sk−1

n−k+1
6 µ

µ � � �� � � � � � .
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Gaussian Numerics II

Again, take Xk as standard Normal (µ = 0, σ = 1).

Levels: α = 2
3
, and ε = 0.05.

Compare sequential MCE with inequality constraint to:
MCE with equality (mixture of i.i.d. ET).
sequential MCE with equality constraint (mixture of
dynamic ET).

Use N = 5 · 103 samples per LR estimate, ̂̀
LR.

Obtain 1,000 independent estimates. Give min, mean, and
max statistics for RE and logarithmic efficiency.
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Gaussian Increments RE II
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Gaussian Increments Efficiency II
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Discussion

This MCE scheme only applies in cases where

Ef

[
eλkCk(X)

]

is defined for all constraints Ck for some corresponding λk.

In particular, with C(X) =
∑n

k=1 Xk as in the examples,
the program is only applicable when f is light-tailed, since
the above involves the MGFs of the increments under f .

To overcome this, one could modify the constraints (eg.
hazard rate twisting); or
Change the divergence measure from KL to some other.
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Discussion Continued

Solving the sequence of MCE programs gives a structured
way to obtain state- and time-dependent IS schemes.

Further, the use of inequality constraints ensures that each
constraint is only imposed when necessary.
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