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% Applications

= Combinatorial Optimization, like TSP, Maximal Cut,
Scheduling and Production Lines.
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Machine Learning
Pattern Recognition, Clustering and Image Analysis
DNA Sequence Alignment

Simulation-based (noisy) Optimization, like Optimal Bauff
Allocation and Optimization in Finance Engineering

Multi-extremal Continuous Optimization

NP- hard Counting problems: Hamiltonian Cycles, SAW'’Ss,
calculation the Permanent, Satisfiability Problem, etc.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting T@Chn’l;O'rL, 2008 - p. 3/4



Combinatorial Optimization:
§ % Coloring Problem

How should we color so that the total number of lirdetween
the two groups is maximized? This problem is known as
Maximal Cut problem.
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% A Maze Problem

The Optimal Trajectory
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% Counting Hamiltonian Cycles

How many Hamiltonian cycles does this graph have?
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Calculating the Number of HC'’s
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ﬁ% General Procedure

We cast cast the original optimization problemitc) and
counting into an associated rare-events probability egton
problem, that estimation of

= P(S(X) > m) =K []{S(X)Zm}} :

and involves the following iterative steps:

Formulate a random mechanismdgenerate the objects
xr e X.

Give theupdating formulas (parametric or non parametric),
In order to produce a better sample in the next iteration.
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§ % Generating Tuples

In our randomized algorithms we shall generate either an
adaptive parametric seqguence of tpuples

{(mo,vo), (Mm1,v1),...,(mp,v7)}

or non-parametric one

{<m07 f(wv ’Uo)), (mb g*(ZB, mO))? SR (mTa g*(wv mT—l))}°
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A Randomized Algorithm for
g % Optimization

1 Starting: Start with the proposal pdf, like
f(x) = f(x,p). Set t:=1.
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update the parameter p, and for a non-parametric

one update the pdf ¢; = g(x,m;) and increase t by 1.
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A Randomized Algorithm for

% Optimization

1 Starting: Start with the proposal pdf, like
f(x) = f(x,p). Set t:=1.

2 Update m;: Draw X,..., Xy from parametric
f(x,p,) or non-parametric pdf g, = g(x, m;). Find the
elite sampling based on m;, which is the worst

performance of the p x 100% best performances.

3 Update p, or g, = g(x, m;:. For a parametric method
update the parameter p, and for a non-parametric

one update the pdf ¢; = g(x,m;) and increase ¢ by 1.
4 Stopping: If the stopping criterion is met, then

stop; otherwise set { :=t + 1 and reiterate from step
2.
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ming{ (glh) = flng() da:—IElngEX;}
(Po) st. [Sj(x)g(x)dx =E,S;(X)=0b;, j=1,...,k,

[ g(x)dx = 1.
(1)
Hereg andh arejoint n-dimensional pdf's on-dimensional
pmf's, S;(x), 7 =1,...,k, are known functions of an
n-dimensional vecto& andh is a known pdf, called thprior

pdf.
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§ % Single Constraint MinxEnt Program

When we have only a single constraint

the solution of the prograrnP,) is

h(x) exp{—5S(x)A}

9(®) = B oxp{—S(X)N!
and
IE,S(X)exp{—AS(X)} _
IE, exp{—AS(X)} ’
respectively.
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g % Counting via Monte Carlo

We start with the following basic

Example.

Assume we want to calculate an area of same “irregular" regio
X*. The Monte-Carlo method suggests inserting the "irredular
regionX’* into a nice “regular" onet’ as per figure below

2 . Set of objects (paths in a graph,
colorings of a graph, etc.)

2 * . Subset ofspecialobjects (cy-
cles in a graph, colorings of a cer-

& tain type, etc).
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§ % Counting via Monte Carlo

To calculatd X*| we apply the following sampling procedure:
() Generate a random sampke,, ..., Xy, uniformly
distributed over the “regular” regiof’.

(ii) Estimate the desired are&’™| as

where

It x, cx+y denotes the indicator of the evejX, ¢ A*} and

{X} is a sample frony(x) over X', wheref(x) = EiE

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting T@ChniOTL, 2008 - p. 14/4



g % The Approach

Each problem will be casted into the problem of estimation of
the rare event probability of the type

((m) = Ey [Iis(x)>m}] -

HereS(X) is the sample performancX ~ f(x) andm is
fixed, called, thécvel chosen such thd{m) is very small.
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g % Approach

To estimate(m) = E; | I{s(x)>m}| We define a fixed grid
{m,, t=0,1,...,T} satisfying

—00 < mg < my < ...mr =m and then use fof(m) the well
known chain (nested events) rule

T
{(m) = Er|I1s(x)>mo}) HEf Lisx)zmo | Lis(x)>me1}] = COHCt7

t=1 t=1
or as

T T
E( ) Ef ]{S X)>mg} HEgt . >mt} CQHCt,
t=1

et = Efllisx)zma s zme 3] = Bgr | Uisx)2m -
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¥ % Approach

Here f denotes the proposal pdf= f(x) = f(x,vy); and
gi 1 =g (@,my 1) =L, f(2)[5)>m, ,1,denotes the zero
variance importance sampling (IS) pdf at iteratton 1, where
Uiy = L(my—1) = Ef [Iis(x)>m, ,}] is the normalization
constant.

Note that the sequenegin the product formula fof will be
used only for counting.
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§ % Approach

The estimator of (m) is

T N
AN A A~ 1
Z(m) — Hct’ Ct = N E :I{S(Xi)zmtb

whereX,; ~ g/ ;.

It is readily seen that if the proposal densftyx) is uniformly
distributed on the original se¥ = {x : S(x) > m_,}, thang; ,
IS uniformly distributed on the set, ; = {x : S(x) > m;_1}.
The main trick of this work is to show how to sample from

the IS pdf g*(x, m;_1) without knowing the normalization
constant {;_1 = £(my_1).
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¥ % Approach

For such an estimator to be useful, the levelsshould be
chosen such that each quantity| Iy s x)>m | L{s(x)>m, 11] IS
not too small, say approximately equallt®=. In our approach
we shall estimate eacmf [[{S(X)th}‘[{S(X)th_l}] =P by
using the Gibbs sampler.

As mentioned, we shall generate hereagiaptive sequence of

tuples

{(m07 f(wa vO))a <m17 g*<w7 mO))a ) (mT7 g*(wa mT—l))}
Instead of the sequence

{(mo,vo), (Mm1,v1),...,(mp,v7)}.
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§ % Quick Glance

Consider

((m) =Es [Iisr | xiomy] s
where allX;'s are iid Be(p = 1/2) random variables. Assume
that we want to count the number of outcomes on the set

X' ={z: En:Xi > m}.
i=1

Letn = m = 3. Although it is obvious thatt™*| = 1, we
demonstrate the sampling mechanism in the product formula

T

T
((m) = Es[Isx)2mop] | [ o, Uisxozmal = o ] [ e

t=1 t=1
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g % Quick Glance: Flipping 3 Coins

Possible dynamic of the evolution of the sequence of levels
and cardinalitiesX;|, that is tuples

{(m—h ‘X—l‘)a (mOa ‘XO‘)o SR (m7 ‘Xm‘)}

m,=0 [X],=8

me=2 |[X|[,=4

m=2 |X];=4

m=3 [X,=1 Q
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§ % Quick Glance

According to Figure we obtaim, = 2 after the first iteration,
which means that while flipping 3 symmetric coins

S22 X; = mg = 2, (2 coins resulted to 1 and one coin resulted
to 0). As soon as we obtain, = 2 we reduce the original
sample spac&’_; containing 8 points to the on¥, containing 4
points. This is done by eliminating 4 outcomes correspamtin
events{>) X, =0}and{> ) , X; = 1} from the space

X_1 ={X:37  X;>0}. Inother words, as soon as we
obtain an outcome, such that’_, X; = 2 we truncate the
sample spac&’_; by excluding from it all points corresponding
to the evenf{ >’ X, < 1}, etc.
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§ % General Case: Multiple Constraints

Consider a set containing both equality and inequality
constraints of an integer program, that is

n .
Zkzl Qi L — bz‘, 1 — 1, sy

Zzz1ajk$k ij, j:ml—l—l,...,m1+m2,

x >0, x,integer Ve =1,...,n.
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g % General Case: Multiple Constraints

It can be shown that in order to count the number of points
(feasible solutions) of the above set one can consider the
following associated rare-event probability problem

l(m) = E, [[{2211 Ci(X)zm}} :
where the firsin, termsC;(X)’s are
Ci(X) = Ity anxp=b}, ¢ =1,...,my,
while the remainingn, ones are

CZ<X> — [{22:1 ain Xp>bi b = mq + 1, N5 -+ Mo.
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g % General Case: Multiple Constraints

Thus, in order to count the the number of feasible solutiothen
above set we shall consider an associated rare event pligbabi
estimation problem involving aum of dependent Bernoulli
random variables. Such representation is crucial for a large set
of counting problems.
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Polytop
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§ % The Gibbs Sampler

Our goal is sample from the IS pdf () or any other pdf(x).

It Is assumed that generating from the conditional pdfs
g(Xi| X1, ..., X1, Xiqq,..., X)), i =1,...,nis simple.

In Gibbs sampler for any glven vectaf = (Xl, LX) EeX

one generates @ew vector X = (X1,...,X,)as:

Algorithm: The Gibbs Sampler

1. DrawX; from the conditional pdf/(X;|X,. .., X,).

2. DrawX; from the conditional pdf
(X ’Xlw" Xz 17Xz_|_17... )(n)7 2227...,TL—1.

~

3. DrawX, from the conditional pdf/(X,|X:, ..., X, 1).
After many burn-in periodsX is distributedg(x).
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g % The Gibbs Sampler: Example

Consider estimation

lm) =E¢ Iz, xizmy] -
The Gibbs sampler for generating variableés 1 =1,... . N Is
g (i, mle_;) = Ci(m)fv:(%)]{xiZm—Zj#i Tj}s

where|x_; denotes conditioning on all random variables but

excluding the remaining ones angl(m) is the normalization
constant. Sampling a random varialle can be performed as

follows. Generat&” ~ Ber (1/2). If ]{?zm_zj# .1 then set

~

X; =Y, oterwise set sef(} —1-Y.
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g % Cloning Algorithm for Counting

Givenp, sayp = 0.1, the sample sizé&/, the burn in period, say
3 < b < 10 execute the following steps:

1. Acceptance-Rejection

Set a countet = 1. Generate a samplkfl, ..., Xy from the
proposal density (z). Let X, = { X1, .. XNO} be the largest
subset of the populatiofiX 4, .. XN} calledthe elite samples
for which S(X;) > my. Note thatXl, .. XNO ~ g*(x, myp)
and that

n A NO
o) =0= 5 Y liscxizon = 3

IS anunbiased estimator off(my).
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§ % The Cloning M echanism

The goal of the cloning parameteis to reproduce) times the
N,;_, elites at iteratiort — 1. After that we apply the burn-in
period of length the totaly/V;_; samples, such that

bnNt—l — N, that is
N
b,_1 = :
o |777Nt1—‘

The goal of the cloning mechanism is to find a good balance in
the Gibbs sampler in terms of bias-variance us\gV;_1, n, b.

As an example, letv = 1,000, N;_; = 20, n = 5. We obtain

b = 10. Our numerical studies show that it is quite reasonable to
choose3 < n < 5.
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% No Cloning (n = 1) for P(X; + X3 > m)
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g % Cloning (n = 2) for P(X; + Xy > m)
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g % Cloning Algorithm for Counting

Givenp, sayp = 0.1, the sample sizé&/, the burn in period, say
3 < b < 10 execute the following steps:

1. Acceptance-Rejection

Set a countet = 1. Generate a samplkfl, ..., Xy from the
proposal density (z). Let X, = { X1, .. XNO} be the largest
subset of the populatiofiX 4, .. XN} calledthe elite samples
for which S(X;) > my. Note thatXl, .. XNO ~ g*(x, myp)
and that

n A NO
o) =0= 5 Y liscxizon = 3

IS anunbiased estimator off(my).
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g % The Cloning Algorithm for Counting

2. Cloning Given b and the number of e_iteNt_l find the
cloning parameter;_, according toy,_; = bN]j_ll — 1.

~

Reproduce);_; times each vecto]’fk = (Xlk, ..., Xn) Of the
elite sample{ffb . ,th_l}. Denote the entire new
population byX,; = {(X1,..., X1),....(Xn 1,.... Xn,_ ).
To each of the cloned vectors of the populatign apply the
Gibbs sampler fob;_; burn-in periods. Denote theecw entire
population by{ X, ..., X 5 }. Observe that each component of
{X,..., Xy} is distributed approximately* (x, m;_1).
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§ % The Cloning Algorithm for Counting

3. Estimating Ct — Ef[I{S(X)th}‘]{S(X)th_l}]- et
X, ={X4,..., X n,} be the subset of the population
{X1,..., Xy} forwhich S(X;) > m,. Take

N
1 N,
Cp = — § I N, l = —
Ct N — {S(X’L)Z t} N
IS an estimator of,. Note thaf)fh . ,th IS distributed only

approximately g*(ax, my).
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§ % The Cloning Algorithm for Counting

4.Stopping Rule If t = T go to step 5, otherwise set=t¢ + 1
and repeat from step 2.
5. Estimating /(m). Deliver

as an estimator of(m).

The Direct Estimator
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3-SAT with Matrix A = (75 x 325),
N = 10,000 and p = 0.1

| 2| Empirical
t Mean Max Min Mean Max Min me
1 5.4e+020 5.6e+020 5.1e+020 0.0 0.0 0.0 292
4 | 1.2e+018 1.3e+018 1.1e+018 0.0 0.0 0.0 | 304
7 | 6.1e+015 6.8e+015 5.7e+015 0.0 0.0 0.0 | 310
10 | 5.0e+012 5.7e+012 4.4e+012 0.0 0.0 0.0 | 315
13 | 2.5e+010 2.8e+010 2.1e+010 0.0 0.0 0.0 | 318
16 | 3.5e+008 4.7e+008 4.2e+007 0.0 0.0 0.0 321
20 2341.2 2924.0 1749.9| 22035 2224.0 2181.0 325
21 2341.2 2924.0 1749.9| 2225.0 2247.0 2197.0 325
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Dynamicsfor 3-SAT with Matrix

£ 8 A — (75 x 325)

t | 2] Empirical | Ny Nt(se mi | mst | pt

1 | 5.4e+020 0.0 1020 | 1020 | 305 | 292 | 0.11
4 | 1.2e+018 0.0 1462 | 1462 | 310 | 304 | 0.12
/7 | 6.1e+015 0.0 1501 | 1501 | 316 | 310 | 0.12
10 | 5.0e+012 0.0 2213 | 2213 | 320 | 315 | 0.23
13 | 2.5e+010 0.0 1962 | 1962 | 321 | 318 | 0.17
16 | 3.5e+008 0.0 1437 | 1437 | 324 | 321 | 0.12
20 2341 2203 196 187 | 325 | 325 | 0.01
21 2341 2225 10472 | 2199 | 325 | 325 | 1.00
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Complexity of the (/N = 1)-policy
g % Algorithm

According to the (V = 1)-policy algorithm, at each fixed level
m;_1 We use the acceptance-rejection (single trial) methodl, unt
for the first time we hit a higher leveh; > m;_;.

Theorem. Under some mild conditions, the average number of
iterations and the associated variance to hit the desivedlte
while estimating

((m) = By [Ism | cy(x)>m})

by using the [V = 1)-policy algorithm is at most

1

O(nb In ) and O(nQb),

n+1—m

wherel < b = b(p) < 2.
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Further Research
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