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Bounded Relative Error

Importance Sampling and Rare
Event simulation




! Importance sampling !IS)

* Estimate an expected value of a function
h(x) with respect to p.d.f. f{x) (hard to

simulate).

e Simulate under an alternative probability
density function g(x). Then (x)

[ 1) f () = [ () -

g(x) 9

* Estimate the right hand side using

1 N
— > h(X, , for X, ~ g X
N s\4,

The IS weights




* Basic problem (queueing, networks, risk
management): simulate events of very small
probabilitye.g. P(S >t)=p

» S_partial sum of (i.i.d.) random variables, p is very
small, for example 107°

® Crude: Simulate N values of S, and then estimate p
using: _ Number of S, > ¢

P

N
: /p(l—p)
° Relative Error: yva») _V N
p

E(p)

Relative error (RE) acceptable, say 1%, if we do N=101°
simulations



~Use Importance S;mpling (1S)

* Generate S (drop subscript n) from an
exponential family of densities (for some

T(s)): 1 R. Rubinstein &
( )) Sols) = —eeT(S)f(S) D. Kroese
- m(@) S. Asmussen &
P. Glynn

where m(6) = [e”f(s)ds
f(s) is the probability density function of S
* Estimate p with

1(S)
average{f s I(S > 1)}

0

= m(0) average fe’ " I(S > t)}
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Questions.

* What is a “good” choice of IS distribution.

* When does the exponential tilt T(s)=s deliver
bounded relative error (as opposed to logarithmic
efficiency) for estimating very small probabilities?

* Do we need to use cross-entropy to select optimal
parameter values? What choice of entropy measure?

¢ Is there connection between Extreme Value Theory
and efficient simulation of rare events?



PRetative Erroro
Sampling estimator

e RE of IS distribution is

N2 Jexp{D,(h; f,)} -1

where /i(s) = %f(s)](s > t)

is the "target” density function, D, is Rényi
generalized divergence.



Renyl generatized-aiver
extends cross-entropy

Eh hl_ h(x) _ a =1
. o
a\s /o 1 lnEh (h(X)j CZ?’-'LC(>O
a—1 Jo(S)

is Rényi generalized divergence of order o for pdfs h and

fo



Minimizing D (% f,)

* Choose 0 to minimize the cross entropy or the
variance of the IS estimator.

* To minimize D,(%; f,) where h(s) = _ f(s)l(s > t)

for a=1,2 solve respectively: -

Ef (T(S) — T)](S > t)] =0 Rubinstein’s minXent when a=1.

E T[S > 1)]

AT(S)~E, D O1(S > D] =0

E [T(S)] under f,
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- Minimum Divergence Principle

To estimate an integral [A(x)dx where & >0 (v
necessarily a pdf) usIng IS, choose an IS distribution f,
which minimizes the Rényi generalized
divergence D (ch; f,) between the family f, and
the target ch. (c is normalizing constant)

o=1: MInimum Cross-entropy

o=2: mMinimum variance
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' Bounded Relative Error

* [ wish to use a common exponential family as
importance distribution for estimating rare event
probabilities p, =P[S>t], t large.

Suppose G is a class of integrable functions g.

Definition: We will say the family f, has bounded RE for
the class G if the orbit of the exponential family passes
close enough to every function in G that its RE is
bounded, thatisif sup . infy D>(c|g|, fp) <



I| When is RE bounded?

* Estimate the probability p=P(S>t), p isvery small, S ~
f(x) and G the class of functions

g(s)=f(s)l(s>1t), tlarge

® Consider an IS distribution obtained from standard

exponential tilt. T
Jo(s) = o /(s)
Bounded relative error as t — oo?

I

Normal NO
Exponential NO
Pareto NA

Uniform YES



Why not use the “perfect” IS distribution?

* Try the family £,(s) = - 1> 7 f(s)I(s>0)
S

* This family does have RE error for rare event
probabilities: (there 1s a member of this family which
provides IS estimator with variance 0)

* f, 1s neither exponential family nor easy to simulate from.

* Example: let S~ f(x) be N(0,1). Suppose we sample N
times from the distribution for S|S>t.



N(O,1) example

* let S~ f(x) is N(0,1). Sample N from the distribution of
S|S>t.

» Relative error for the estimation of rare event scenarios
such as P(S>t+s|S>t) for s fixed is, in the limitas t —

OO’

N—1/2 est+sz 12 - 1

This grows rapidly in t and s. If t=6 and s=3 we need
about 60 trillion simulations for a RE of 1%.



p
y S|S>t) 1

[P
w P(S>t+s|S>t) ]

0.0

A We do have pills fo  combat
: | GREED.
i 15 t 2 15 i g 15 TMq - $14.9 »
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A Less Greedy Alternative

* Try being less greedy about estimating a particular value
of p,=P(5>1).

* Always (theoretically) possible to achieve bounded RE
error for family of probabilities p=P(5>¢) as t—o0.

* For example transform X=&(§), where @ 1s the standard
normal c.d.f., converts problem to uniform[0,]1] random
variables X.

* Find a strategy that works for uniform.
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U[0,1] Example.

* When S 1s U/0,1], the IS distribution obtained from
an exponential tilt;

fﬁ(x): 80—1

1.5936

P
(this value of 6 minimizes the limiting RE)

* Provides bounded RE with limit (p —0) around
0.738N-17.

Estimate p from preliminary simulation and use IS with
0=1.5936/p.

e” for0< x<1

O ~




Uniform Example:

N2x asymptotic relative efficiency (as p—o) is given

for p=0.01,0.001, and 0.0001. For a=2 and 6=1.5936/p,
RE is about 0.738 N"/2. N=5500 provides RE less than

about 1% for all small P ( need p to estimate p?)

Value of a used for minimizing divergence

83
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Figure 1: N'/2xRelative error= ,/exp{Ds(cfg, fo. )} — 1 as a function of a

for p=0.01,0.001,0.00017



e EX
® Suppose S has an exponential(1) distribution. Use the
standard exponential tilt with 7(S)=S to estimate

on

p=P[S>-In p]. Tilted density is again an exponential
distribution.

* Solve for optimal parameter 6 and put in expression for

RE:
RE ~ |—(—1n
JZN( p)

Not bounded as p —0. Normal, same story.......

e However if we use a Gumbel IS distribution
1.5936

4
for exponential, RE is bounded with limit around 0.738N-/2

fo(x)=0exp{—-6Ge " —x}, 0=




I _ Proposition

|deal Tilt uses T which is tail equivalent to survivor function

* Suppose we wish to estimate p, =P(X>t) using an
importance sampling p.d.f. of the form

1

fe(5)=m

Suppose T(x) is non-decreasing in x and for some real
number a, T(x)-a = F(x)-1 as x—Xxp

e £(s) where m(0) = j e £ (s)ds

Then this family of distributions provides IS estimators
with asymptotically bounded relative error as p, —o.

a, = b, iflimsup a,/b, <~ and liminfa,/b, >0 as x—x,
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Proposition (Frechet MDA)

® Suppose that 1 1s regularly varying at co with index p-1,
with p = -1/ < 0. Consider T(x)=(1+x)" forO<¢c<2/¢&
® Define the IS probability density function

£.(s)=ce " T'(5)],0<s <o wherec(@)=1/[e 7 | T'(s)|ds
7

Suppose 0= 6, is chosen so that 6, = 1/ T(¢) ast — oo

Then the sequence of distributions f, provides importance
sample estimators with bounded relative error as p, — 0.

It's OK to be out in the tail index by up to a factor of 2.



Proposition (Weibull MDA)

® Suppose that 1 1s regularly varying at 0<xp < oo 1index p-/,
Wlthp = -1/5 < (). Consider T(x) — (xF —x)g for 0 < G < 2p
* Define the IS probability density function

£.(s)=ce " T'(5)],0<s <o wherec(@)=1/[e 7 | T'(s)|ds
7

Suppose 0= 0, 1s chosen so that §, = 1/ T(¢) ast— X

Then the sequence of distributions f, provides importance
sample estimators with bounded relative error as p, — 0.

again OK to be out in index of RV by up to a factor of 2.
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- Example: Tukey’s g&h distribution

* Used to model extreme events (e.g. Windspeed:Field &
Genton, Insurance:Embrechts et al.)
gz ] :
€ o712
. g
where I, o are location and scale, g,h skewness and
elongation parameters.

* Definition X=u+o

* Suppose (X,,X,) are 1.1.d. g&h (g=0.1,h=0.2, =1, p=0) random
variables. We want to estimate P(X,+X,>t) (if =50,
answer about 4 X1 0'6) In(X1,X5)

and the distribution of 7X,>t,.

Relative error of crude estimator, N=10°, is about %, IS estimator 1073



mportance distribution for g&h tail

* For such wide-tailed (sub-exponential) distributions,

the probability 1n the tails i1s driven by the largest value
Xy P[X;+X>t] ~P[ X,>t] ast—oo.

o Tilted on the distribution of the maximum by altering
the beta distribution applied to uniform inputs U,

where -
X, generatedas Z,, =0 (U,)

CXp {gZ(z)} =
g
then generate mput for X ;;, U, as U[0,U,]

U+0o expihZ '}



g&h order statistics

Joint scatter diagram of X1 X2 given loss=t
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Figure 7: Simulated distribution of (X ). X (9)) given X; 4+ X2 > 50 for the
gézh distribution.




onditional survivor function

Conditional Survivor given loss=>50
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107 | | | | | | T

|thpr0bab|||ty <10-10

0 100 200 300 400 500 600 700
loss

Figure 8: P[X1 + X2 > x| X1 + X9 > 50] for g&h distributed random variables

800



Applications:

* Further Example: Skewed Normal
* IS Permits bounded relative error estimation of
tail probabilities when tails are:

e Sums or linear combinations of independent random
variables with regularly varying tails

e Sums of random variables where one tail dominates

e Scale mixtures of regularly varying random variables

* We can determine the optimal parameter value
without minimizing divergence if we know the
asymptotic tail behaviour.
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~ Conclusions

1. Simulating rare event probabilities with
bounded relative error is possible using
importance sampling.

>. Thanks.
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