## Bounded Relative Error Importance Sampling and Rare Event simulation

Don McLeish University of Waterloo (Visiting ETH, Zurich)

#### Importance sampling (IS)

X

• Estimate an expected value of a function h(x) with respect to p.d.f. f(x) (hard to simulate).

• Simulate under an alternative probability density function g(x). Then

$$\int h(x)f(x)dx = \int h(x)\frac{f(x)}{g(x)}g(x)dx$$

Estimate the right hand side using

$$\frac{1}{N} \sum_{i=1}^{N} h(X_i) \underbrace{\frac{f(X_i)}{g(X_i)}}, \text{ for } X_i \sim g$$
The IS weights

#### SIMULATION OF RARE EVENTS

- Basic problem (queueing, networks, risk management): simulate events of very small probability e.g.  $P(S_n>t)=p$
- $S_n$  partial sum of (i.i.d.) random variables, p is very small, for example  $10^{-6}$
- Crude: Simulate N values of  $S_n$  and then estimate p using:  $\hat{p} = \frac{\text{Number of } S_n > t}{N}$
- Relative Error:  $\frac{\sqrt{\operatorname{var}(p)}}{E(p)} = \frac{\sqrt{\frac{p(1-p)}{N}}}{p}$

Relative error (RE) acceptable, say 1%, if we do  $N=10^{10}$  simulations

#### Use Importance Sampling (IS)

 Generate S (drop subscript n) from an exponential family of densities (for some

$$T(s)$$
: 
$$f_{\theta}(s) = \frac{1}{m(\theta)} e^{\theta T(s)} f(s)$$

R. Rubinstein &

D. Kroese

S. Asmussen &

P. Glynn

where 
$$m(\theta) = \int e^{\theta T(s)} f(s) ds$$
  
  $f(s)$  is the probability density function of  $S$ 

• Estimate *p* with

average 
$$\{\frac{f(S)}{f_{\theta}(S)} I(S > t)\}$$
  
=  $m(\theta)$  average  $\{e^{-\theta T(S)} I(S > t)\}$ 

#### Questions.

- What is a "good" choice of IS distribution.
- When does the exponential tilt T(s)=s deliver bounded relative error (as opposed to logarithmic efficiency) for estimating very small probabilities?
- Do we need to use cross-entropy to select optimal parameter values? What choice of entropy measure?
- Is there connection between Extreme Value Theory and efficient simulation of rare events?

## Relative Error of Importance Sampling estimator

RE of IS distribution is

$$N^{-1/2}\sqrt{\exp\{D_2(h;f_{\theta})\}-1}$$

where 
$$h(s) = \frac{1}{p} f(s)I(s > t)$$

is the "target" density function,  $D_2$  is Rényi generalized divergence.

## Rényi generalized divergence: extends cross-entropy

$$D_{\alpha}(h; f_{\theta}) = \begin{cases} E_{h} \ln \left[ \frac{h(x)}{f_{\theta}(S)} \right] & \alpha = 1 \\ \frac{1}{\alpha - 1} \ln E_{h} \left[ \left( \frac{h(x)}{f_{\theta}(S)} \right)^{\alpha - 1} \right] & \alpha \neq 1, \alpha > 0 \end{cases}$$

is Rényi generalized divergence of order  $\alpha$  for pdfs h and  $f_{\theta}$ .

#### Minimizing $D_{\alpha}(h; f_{\theta})$

- Choose  $\theta$  to minimize the cross entropy or the variance of the IS estimator.
- To minimize  $D_{\alpha}(h; f_{\theta})$  where  $h(s) = \frac{1}{p} f(s)I(s > t)$  for  $\alpha = 1,2$  solve respectively:

$$\begin{split} E_f [(T(S) - E_\theta T) I(S > t)] &= 0 \end{split} \text{Rubinstein's minXent when } \alpha = 1. \\ E_f [(T(S) - E_\theta T) e^{-\theta T(S)} I(S > t)] &= 0 \end{split}$$

 $^-$ E [T(S)] under  $f_{ heta}$ 

#### Minimum Divergence Principle

To estimate an integral  $\int h(x)dx$  where  $h \geq 0$  (not necessarily a pdf) using IS, choose an IS distribution  $f_{\theta}$  which minimizes the Rényi generalized divergence  $D_{\alpha}(ch; f_{\theta})$  between the family  $f_{\theta}$  and the target ch. (c is normalizing constant)

α=1: minimum cross-entropy

 $\alpha=2$ : minimum variance

#### **Bounded Relative Error**

• I wish to use a **common exponential family** as importance distribution for estimating rare event probabilities  $p_t = P[S>t]$ , t large.

Suppose *G* is a class of integrable functions *g*.

**Definition:** We will say the family  $f_{\theta}$  has bounded RE for the class G if the orbit of the exponential family passes close enough to every function in G that its RE is bounded, that is if  $\sup_{g \in G} \inf_{\theta} D_2(c|g|, f_{\theta}) < \infty$ 

#### When is RE bounded?

• Estimate the probability p=P(S>t), p is very small,  $S \sim f(x)$  and G the class of functions

$$g(s) = f(s)I(s > t)$$
, t large

• Consider an IS distribution obtained from *standard* exponential tilt.  $f_{\theta}(s) = \frac{1}{m(\theta)} e^{\theta s} f(s)$ 

Bounded relative error as  $t \to \infty$ ?

| f(s)        | Bounded RE? |
|-------------|-------------|
| Normal      | NO          |
| Exponential | NO          |
| Pareto      | NA          |
| Uniform     | YES         |

#### Why not use the "perfect" IS distribution?

- Try the family  $f_{\theta}(s) = \frac{1}{P(s > \theta)} f(s) I(s > \theta)$
- This family does have RE error for rare event probabilities: (there is a member of this family which provides IS estimator with variance 0)
- $f_{\theta}$  is neither exponential family nor easy to simulate from.
- **Example:** let  $S \sim f(x)$  be N(0,1). Suppose we sample N times from the distribution for S|S>t.

#### N(0,1) example

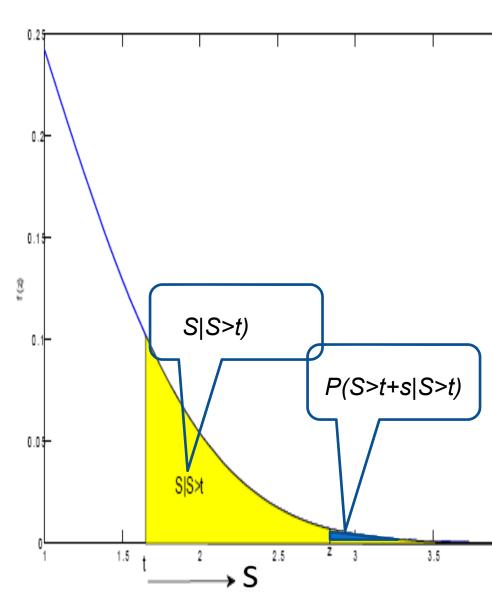
- let  $S \sim f(x)$  is N(0,1). Sample N from the distribution of S|S>t.
- Relative error for the estimation of rare event scenarios such as P(S>t+s|S>t) for s fixed is, in the limit as  $t \rightarrow \infty$ ,

$$N^{-1/2}\sqrt{e^{st+s^2/2}-1}$$

This grows rapidly in t and s. If t=6 and s=3 we need about 60 trillion simulations for a RE of 1%.

Why so poor??????

#### GREED!





We do have pills to combat GREED.
They cost \$149 each.

#### A Less Greedy Alternative

- Try being less greedy about estimating a particular value of  $p_t = P(S > t)$ .
- Always (theoretically) possible to achieve bounded RE error for family of probabilities p=P(S>t) as  $t\to\infty$ .
- For example transform  $X = \Phi(S)$ , where  $\Phi$  is the standard normal c.d.f., converts problem to uniform[0,1] random variables X.
- Find a strategy that works for uniform.

#### U[0,1] Example.

• When S is U[0,1], the IS distribution obtained from an exponential tilt:

$$f_{\theta}(x) = \frac{\theta}{e^{\theta} - 1} e^{\theta x}, \text{ for } 0 < x < 1$$
$$\theta \approx \frac{1.5936}{p}$$

(this value of  $\theta$  minimizes the limiting RE)

• Provides bounded RE with limit  $(p \rightarrow 0)$  around  $0.738N^{-1/2}$ .

Estimate p from preliminary simulation and use IS with  $\theta=1.5936/p$ .

#### Uniform Example:

 $N^{1/2}\times$  asymptotic relative efficiency (as  $p\to o$ ) is given for p=0.01,0.001, and 0.0001. For  $\alpha=2$  and  $\theta=1.5936/p$ , RE is about 0.738  $N^{-1/2}$ . N=5500 provides RE less than about 1% for **all small** p (need p to estimate p?)

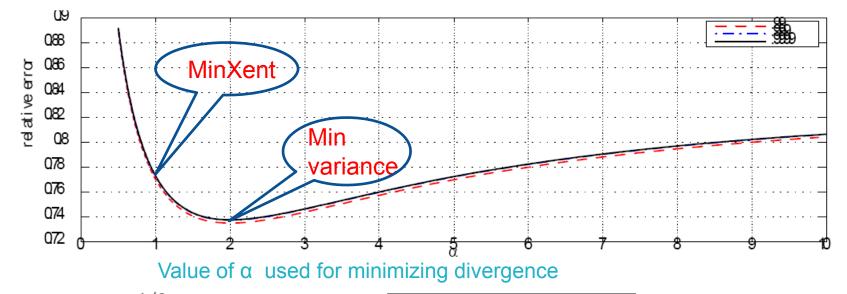


Figure 1:  $N^{1/2} \times \text{Relative error} = \sqrt{\exp\{D_2(cfg, f_{\theta_{\alpha\gamma}})\}} - 1$  as a function of  $\alpha$  for p=0.01, 0.001, 0.0001

#### Example: Exponential Distribution

- Suppose S has an exponential (1) distribution. Use the standard exponential tilt with T(S)=S to estimate
- p=P[S>-ln p]. Tilted density is again an exponential distribution.
- Solve for optimal parameter  $\theta$  and put in expression for RE:

$$RE \sim \sqrt{\frac{e}{2N}}(-\ln p)$$

**Not bounded as**  $p \rightarrow 0$ . **Normal**, same story......

• However if we use a Gumbel IS distribution

$$f_{\theta}(x) = \theta \exp\{-\theta e^{-x} - x\}, \quad \theta = \frac{1.5936}{p}$$

for exponential, RE is bounded with limit around  $0.738N^{-1/2}$ 

#### Proposition

Ideal Tilt uses T which is tail equivalent to survivor function

• Suppose we wish to estimate  $p_t = P(X>t)$  using an importance sampling p.d.f. of the form

$$f_{\theta}(s) = \frac{1}{m(\theta)} e^{\theta T(s)} f(s)$$
 where  $m(\theta) = \int e^{\theta T(s)} f(s) ds$ 

Suppose T(x) is non-decreasing in x and for some real number a, T(x)-a = F(x)-1 as  $x \rightarrow x_F$ .

Then this family of distributions provides IS estimators with asymptotically bounded relative error as  $p_t \rightarrow 0$ .

 $a_x = b_x$  if  $\limsup a_x/b_x < \infty$  and  $\liminf a_x/b_x > 0$  as  $x \rightarrow x_F$ 

#### Proposition (Fréchet MDA)

- Suppose that f is regularly varying at  $\infty$  with index  $\rho$ -1, with  $\rho = -1/\xi < 0$ . Consider  $\overline{T}(x) = (1+x)^{-\varsigma}$  for  $0 < \varsigma < 2/\xi$
- Define the IS probability density function

$$f_{\theta}(s) = ce^{-\theta \overline{T}(s)} |\overline{T}'(s)|, 0 < s < \infty \text{ where } c(\theta) = 1/\int e^{-\theta \overline{T}(s)} |\overline{T}'(s)| ds$$

Suppose  $\theta = \theta_t$  is chosen so that  $\theta_t = 1/\overline{T}(t)$  as  $t \to \infty$ 

Then the sequence of distributions  $f_{\theta}$  provides importance sample estimators with bounded relative error as  $p_t \to 0$ .

It's OK to be out in the tail index by up to a factor of 2.

#### Proposition (Weibull MDA)

- Suppose that f is regularly varying at  $0 < x_F < \infty$  index  $\rho 1$ , with  $\rho = -1/\xi < 0$ . Consider  $\overline{T}(x) = (x_F x)^{\varsigma}$  for  $0 < \varsigma < 2\rho$
- Define the IS probability density function

$$f_{\theta}(s) = ce^{-\theta \overline{T}(s)} |\overline{T}'(s)|, 0 < s < \infty \text{ where } c(\theta) = 1/\int e^{-\theta \overline{T}(s)} |\overline{T}'(s)| ds$$

Suppose  $\theta = \theta_t$  is chosen so that  $\theta_t = 1/\overline{T}(t)$  as  $t \to x_F$ .

Then the sequence of distributions  $f_{\theta}$  provides importance sample estimators with bounded relative error as  $p_t \to 0$ .

again OK to be out in index of RV by up to a factor of 2.

#### Example: Tukey's g&h distribution

- Used to model extreme events (e.g. Windspeed:Field & Genton, Insurance:Embrechts et al.)
- Definition

$$X = \mu + \sigma \frac{e^{gZ} - 1}{\sigma} e^{hZ^2/2}$$

where  $\mu$ ,  $\sigma$  are location and scale, g, h skewness and elongation parameters.

• Suppose  $(X_1, X_2)$  are i.i.d. g&h  $(g=0.1,h=0.2, \sigma=1, \mu=0)$  random variables. We want to estimate  $P(X_1+X_2>t)$  (if t=50, answer about  $4 \times 10^{-6}$ )

and the distribution of  $X_{(1)} | X_1 + X_2 > t$ ,.

Relative error of crude estimator,  $N=10^6$ , is about  $\frac{1}{2}$ , IS estimator  $10^{-3}$ 

#### Importance distribution for g&h tail

- For such wide-tailed (sub-exponential) distributions, the probability in the tails is driven by the largest value  $X_{(2)}$ :  $P[X_1+X_2>t] \sim P[X_{(2)}>t]$  as  $t\to\infty$ .
- Tilted on the distribution of the maximum by altering the beta distribution applied to uniform inputs  $U_2$  where

$$X_{(2)}$$
 generated as  $Z_{(2)} = \Phi^{-1}(U_2)$ 

$$\mu + \sigma \frac{\exp\{gZ_{(2)}\} - 1}{g} \exp\{hZ_{(2)}^2\}$$

then generate input for  $X_{(1)}$ ,  $U_1$  as  $U[0, U_2]$ 

#### Joint conditional distribution of

#### g&h order statistics

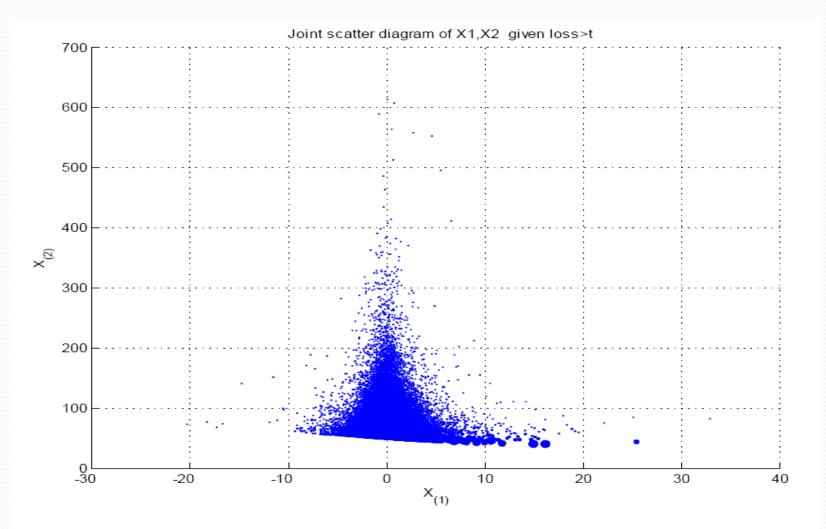


Figure 7: Simulated distribution of  $(X_{(1)}, X_{(2)})$  given  $X_1 + X_2 > 50$  for the g&h distribution.

#### Conditional survivor function

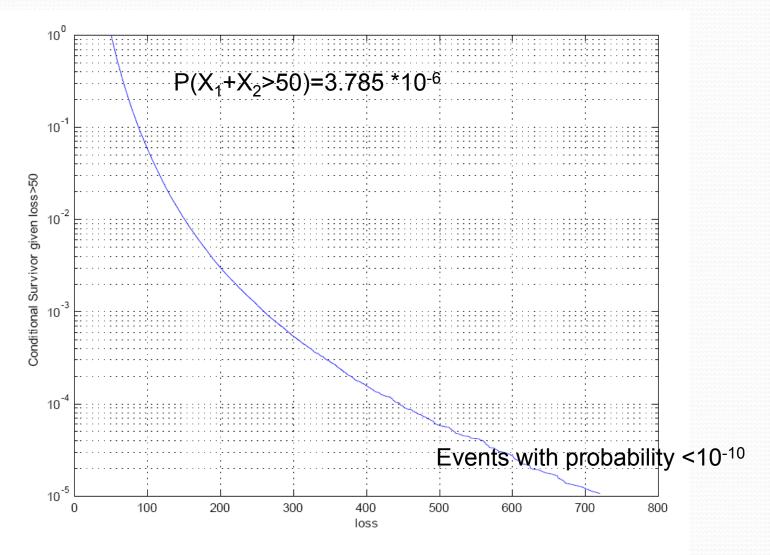


Figure 8:  $P[X_1 + X_2 > x | X_1 + X_2 > 50]$  for g&h distributed random variables

#### **Applications:**

- Further Example: Skewed Normal
- IS Permits bounded relative error estimation of tail probabilities when tails are:
  - Sums or linear combinations of independent random variables with regularly varying tails
  - Sums of random variables where one tail dominates
  - Scale mixtures of regularly varying random variables
- We can determine the optimal parameter value without minimizing divergence if we know the asymptotic tail behaviour.

#### Conclusions

- 1. Simulating rare event probabilities with bounded relative error **is** possible using importance sampling.
- 2. Thanks.

# Happy 70th Birthday Reuven and many ideas & productive years ahead!

