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Estimation of rare event probabilities

Rare Event Simulation Algorithm
Let {Ax} be an indexed set of events such that

lim
x→x0

P(Ax )→ 0.

An algorithm for estimating P(Ax ) is a set of r.v. variables {Zx}

E Zx = P(Ax ) ∀ x .

Efficient algorithms

lim sup
x→x0

Var Zx

P2−ε(Ax )
<∞.

Either for ε = 0 (Bounded Relative Error) or for all ε > 0
(Logarithmic Efficient).
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Rare event simulation involving sums of r.v.’s.

Rare event probabilities of the type

P(X1 + . . .+ XN > u) u →∞.

N possibly random.

Light tails
Most established tool is Importance Sampling.

Heavy Tails
Asmussen, Binswanger and Højgaard (1998) Severe difficulties.
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Rare event simulation involving i.i.d. r.v.

State Independent

I Asmussen and Binswanger (1997) Logarithmic Efficiency
I Asmussen and Kroese (2006) Bounded Relative Error
I Juneja (2007) Zero Relative Error.

State-Dependent

I Dupuis et. al. (2007) IS for Regularly Varying.



Simulation with Heavy Tailed Random Variables

Subexponential Distributions
In the independent case

P(X1 + . . .+ Xn > u) ∼
n∑

i=1

P(Xi > u)

Intuitive Idea
Sn becomes large as a consequence of single large jump.

Dependent Case
Ideas from the Independent Case might not work.
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Lognormal marginals with Gaussian Copula

Definition
Let (Y1, . . . ,Yn) be a multivariate Gaussian random vector.
Take Xk = eYk . The vector (X1, . . . ,Xn) is a lognormal random
vector with gaussian copula.

Lognormal Random Variables as Heavy Tailed

I Light among Subexponential Distributions.
I All moments exist, however it does not have mgf.
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Objective
Construct algorithms to estimate

P(X1 + . . .+ Xn > u)

where (X1, . . . ,Xn) ∼ LN(µ,Σ).



Main Contributions

Algorithm A
X Importance Sampling.
X Logarithmic efficient.

Algorithm B
X Conditional Monte Carlo.
X Logarithmic efficient.

Algorithm C
X Algorithm A or B plus IS.
X Bounded Relative Error.
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Algorithm A

IS for Estimating the Probability of an Event A
Increases the probability of the event A while resembling the
original distribution.

How to Build a Proposal
Remember that if X̃ ∼ LN(µ, θ2σ2) then

E (X ) = eµ+θ2σ2/2 Var (Xi) = e2µ+2θ2σ2 − e2µ+θ2σ2

Hence, it seems reasonable to propose as IS distribution

LNn(µ, θ2(u)Σ)
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Algorithm A

Intuitive Idea
Let θ(u) grow moderately to as u →∞.

Formal Statement
Algorithm A is logarithmic efficient if and only if

log θ(u) = o
(

log2 u
)

How to choose it?
A convenient way to choose θ(u) is as the solution of

eµ1+θ
2σ2/2 + . . .+ eµn+θ2σ2/2 = u.
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Algorithm B

Conditional Monte Carlo
Use all known information. Simulate less.

Key Ideas
Let Z1, . . . ,Zn i.i.d. N(0,1) r.v.’s and define

Z̃i :=
Zi√

Z 2
1 + . . .+ Z 2

n

We know Z 2
1 + . . .+ Z 2

n ∼ χ2
n and how to simulate Ẑi ’s.
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Algorithm B

Key Ideas
Take R2 ∼ χ2

n and a decomposition Σ = CC∗ such that C is
square.

(Y1, . . . ,Yn) := R C (Z̃1, . . . , Z̃n)t + µ ∼ N(µ,Σ)

CMC Algorithm

P(Sn > u) = P(eY1 + . . .+ eYn > u)

= E
[
P
(

eR(C11Z̃1+...+C1nZ̃n)+µ1 + . . .

+ eR(Cn1Z̃1+...+CnnZ̃n)+µn > u|Z̃1, . . . , Z̃n

)]



Algorithm B

Key Ideas
Take R2 ∼ χ2

n and a decomposition Σ = CC∗ such that C is
square.

(Y1, . . . ,Yn) := R C (Z̃1, . . . , Z̃n)t + µ ∼ N(µ,Σ)

CMC Algorithm

P(Sn > u) = P(eY1 + . . .+ eYn > u)

= E
[
P
(

eR(C11Z̃1+...+C1nZ̃n)+µ1 + . . .

+ eR(Cn1Z̃1+...+CnnZ̃n)+µn > u|Z̃1, . . . , Z̃n

)]



Algorithm B

CMC Algorithm
Simulate Z̃ = (Z̃1, . . . , Z̃n) and return

P
(
R < Ψ1(u, Z̃)

)
+ P

(
R > Ψ2(u, Z̃)

)
Efficiency
The algorithm B has logarithmic efficiency.
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Preliminaries of Algorithm C

Asymptotic Result
A consequence of Asmussen and Rojas-Nandayapa (2008)

P(Sn > u) ∼ P(max{Xi : i = 1, . . . ,n} > u) ∼
n∑

i=1

P(Xi > u)

in the Dependent Case.

Intuitive Ideas
I Asymptotically P(Mn > u) accounts for most of the total

probability P(Sn > u).
I In the event {Mn > u} the random variables X1, . . . ,Xn

behave as independent random variables.
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Preliminaries of Algorithm C

Key Idea
First proposed in Juneja (2008)

P(Sn > u) = P(Sn > u,Mn < u) + P(Mn > u)

Estimation of P(Sn > u, Mn < u)

The same as in Algorithms A and B. Smaller variance.

Estimation of P(Mn > u)

Design a new method for the Gaussian Copula (IS).
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Estimation of P(Mn > u)

Importance Sampling Distribution
Take K supported over {1, . . . ,n}. Consider the distribution of

(X1, . . . ,Xn|XK > u)

Main Features
X We know how to simulate it.
X We know its density.
X It is supported exactly over {Mn > u}.

Distribution of K
Our proposal

P(K = k) =
P(Xk > u)∑n
`=1 P(X` > u)

.
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Algorithm C

Efficiency
The following algorithms has Bounded Relative Error

I The IS algorithm for P(Mn > u).
I Algorithm C for P(Sn > u) based on Algorithm A.
I Algorithm C for P(Sn > u) based on Algorithm B.
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Example 1

Example
10 lognormal r.v. with
Gaussian Copula

I µi = i − 10
I σ2

i = i
I σij = 0.4σiσj

I R = 10000
(Estimator)

I R = 1000000



Example 1
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