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Discrete-time Markov chain (DTMC) model

Consider a simulation model represented as a DTMC {Yj , j ≥ 0}
with (large) state space Y, and a set of absorbing states ∆ ⊂ Y so
that the simulation stops when the chain hits ∆.

Transition kernel: P(B | y) = P[Yj ∈ B | Yj−1 = y).

Stopping time: τ = inf{j : Yj ∈ ∆}.
Cost c(y , y ′) for each transition y → y ′.

Total cost: X =
∑τ

j=1 c(Yj−1,Yj).

Expected cost-to-go from state y : µ(y) = E[X | Y0 = y ].

We assume that E[τ | Y0 = y ] < ∞ and µ(y) < ∞ for all y ∈ Y.

We want to estimate µ(y0) where y0 is the initial state.
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Importance sampling

We consider changing P to another transition kernel Q.

The estimator X is replaced by the IS estimator

Xis =
τ∑

j=1

c(Yj−1,Yj)

j∏
i=1

L(Yi−1,Yi ),

where L(Yi−1,Yi ) = (dP/dQ)(Yi | Yi−1).

Theorem. If we choose Q so that

dQ(y1 | y) =

 dP(y1 | y)
c(y , y1) + µ(y1)

µ(y)
if µ(y) > 0,

dP(y1 | y) if µ(y) = 0

(this density integrates to 1), then Xis has zero variance.
Proof: By induction on j .
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Simple special case: finite state space Y

The DTMC has transition probabilities
p(y1 | y) = P[Y1 = y1 | Y0 = y ], which are replaced by
q(y1 | y) = Q[Y1 = y1 | Y0 = y ].
We have L(y , y1) = p(y1 | y)/q(y1 | y). For the zero variance:

q(y1 | y) =

 p(y1 | y)
c(y , y1) + µ(y1)

µ(y)
if µ(y) > 0,

p(y1 | y) if µ(y) = 0.

We approximate the unknown function µ by some v , either fixed or
learned along the way. This gives:

q(y1 | y) =

 p(y1 | y)
c(y , y1) + v(y1)

v(y)
if v(y) > 0,

p(y1 | y) if v(y) = 0.
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Model of Highly Reliable Markovian System (HRMS)

c component types, ni components of type i .
Markov chain step: failure of repair of one component.

Yj = (Y
(1)
j , . . . ,Y

(c)
j ) = num. failed compon. of each type at step j .

{Yj , j ≥ 0} is a DTMC with trans. probabilities
p(y , y ′) = P[Yj = y ′ | Yj−1 = y ].

Suppose that failure probabilities are much smaller than repair
probabilities. This is typical of highly reliable systems.

The state space Y is partitioned in: (1) a (decreasing) set of up
states U and (2) the set of failure states F .

For any set A, let τA = first hitting time of A.
For any state y , let

µ(y) = P[τF < τ0 | Y0 = y ],

the prob. of visiting F before returning to 0.

Goal: estimate µ(0). This can be difficult when µ(0) is very small.
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Some proposed IS heuristics:

Balanced failure biasing (BFB) (Shahabuddin 1994) changes p to q
as follows, for x 6∈ B:

q(x , y) =


1

|F (x)| if y ∈ F (x) and pR(x) = 0;

ρ 1
|F (x)| if y ∈ F (x) and pR(x) > 0;

(1− ρ) p(x ,y)
pR(x) if y ∈ R(x);

0 otherwise.

Simple failure biasing (SFB) (Shahabuddin 1988): Replace 1/|F (x)|
above by p(x , y)/

∑
y∈F (x) p(x , y).

SBLR (Alexopoulos and Shultes 2001) changes the probabilities in a
way that over any cycle in the visited states during the simulation,
the cumulated likelihood ratio remains bounded

These methods do not attempt to mimic zero-variance sampling.
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Proposed approximation (ZVA)

Approximate µ by some easily computable function v , and plug into
zero-variance formula.

For any state y ∈ U , let Γ(y) be the set of all paths
π = (y = y0 → y1 → · · · → yk) where y1, . . . , yk−1 6∈ F ∪ {0},
yk ∈ F , and having positive probability

p(π) =
k∏

j=1

p(yj−1, yj) > 0.

Because these paths represent disjoint events, we have

µ(y) =
∑

π∈Γ(y)

p(π).

This last sum may contain a huge (perhaps ∞) number of terms.
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A very crude approximation is to just take the path with largest
probability, i.e., approximate

µ(y) =
∑

π∈Γ(y)

p(π)

by its lower bound
v0(y) = max

π∈Γ(y)
p(π).

Computing v0(y) amounts to computing a shortest path from y to
F , where the length of a link y ′ → y ′′ is − log p(y ′, y ′′). Easy.

This would work fine if a single path dominates the sum (this may
happen when failure transitions have very small probabilities), but
this v0 will often underestimate the bound significantly.
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Refinements

Typically, the farther we are from F , the more v0 underestimates µ.
Close to F , things are fine, but not close to 0.

First simple correction:
1. Estimate µ(0) in preliminary runs with crude IS strategy;
2. Find constant α ≤ 1 such that (v0(0))α equals this estimate;
3. Use v1(y) = (v0(y))α for all y ∈ U as approx. of µ(y).
This v1 matches µ for y ∈ F and matches its estimate at y = 0.

Second refinement: Replace α by a state-dependent exponent

α(y) = 1 + [α(0)− 1]
log v0(y)

log v0(0)
,

where α(0) = α as above. This α(y) changes progressively from 1
near F to α(0) < 1 in state 0. The correction here is milder than in
the previous case when we are close to F .
Let v2(y) = (v0(y))α(y) be the resulting approximation.
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Example: Three types of components

c = 3 and n1 = n2 = n3.
Expon. repair times with mean 1.
Failure rate λi for component type i ,
with λ1 = ε, λ2 = 1.5ε, and λ3 = 2ε2, for some small real number ε.

We will try different values of (ni , ε).

F = states where at least one component type has fewer than 2
operational units.

To define v0(y), we consider all three paths to F that result from
failures of a single component type, and sum their probabilities.

The table contains results with n = 220 runs.

Best estimate of µ(0): obtained from a large number of runs with
our best IS strategies.
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Mean
ni ε µ(0) v0(0) BFB SBLR

3 0.001 2.6× 10−3 1.3× 10−3 2.7× 10−3 2.6× 10−3

6 0.01 1.8× 10−7 3.4× 10−8 1.9× 10−7 [9.9× 10−7]
6 0.001 1.7× 10−11 3.4× 10−12 1.8× 10−11 (1.8× 10−16)

12 0.1 6.0× 10−8 3.2× 10−9 4.8× 10−8 1.3× 10−8

12 0.001 3.9× 10−28 3.5× 10−29 (1.8× 10−40) (2.9× 10−45)

Variance
ni ε BFB SBLR

3 0.001 1.8× 10−2 8.0× 10−3

6 0.01 6.3× 10−11 (4.5× 10−16)
6 0.001 8.8× 10−19 (2.0× 10−26)

12 0.1 8.1× 10−10 1.7× 10−10

12 0.001 (3.2× 10−74) (3.5× 10−84)



Mean
ni ε µ(0) ZVA(v0) ZVA(v1) ZVA(v2)

3 0.001 2.6× 10−3 2.6× 10−3 2.6× 10−3 2.6× 10−3

6 0.01 1.8× 10−7 1.8× 10−7 1.8× 10−7 1.8× 10−7

6 0.001 1.7× 10−11 1.7× 10−11 1.7× 10−11 1.7× 10−11

12 0.1 6.0× 10−8 6.0× 10−8 6.2× 10−8 6.7× 10−8

12 0.001 3.9× 10−28 3.9× 10−28 3.9× 10−28 3.9× 10−28

Variance

ni ε α ZVA(v0) ZVA(v1) ZVA(v2) RE(v2)

3 0.001 0.906 6.5× 10−4 2.7× 10−3 9.3× 10−9 0.04
6 0.01 0.903 2.0× 10−14 1.2× 10−14 7.7× 10−15 0.48
6 0.001 0.939 1.2× 10−23 1.1× 10−23 7.6× 10−24 0.16

12 0.1 0.851 1.6× 10−10 2.9× 10−10 1.5× 10−11 64.50
12 0.001 0.963 1.4× 10−55 9.3× 10−56 9.4× 10−56 0.78

We have α → 1 when ε → 0 or when ni ↗



Example 2

Taken from Shahabuddin (1994).
Was chosen to illustrate the performance of BFB.

System:
Two sets of processors, with two units per set, λi = 5× 10−5;
two sets of disk controllers, two units per set; λi = 2× 10−5

six clusters of disks, four units per cluster, λi = 2× 10−5.

Thus, c = 10 and each ni = 2 or 4.
All repair rates are 1.

System is operational if we have at least of processor of each type,
on controller of each set, and three disks from each cluster.

We have µ(0) ≈ 5.6× 10−5.

Empirical variance
α BFB SBLR ZVA(v0) ZVA(v1) ZVA(v2)

0.949 5.8× 10−8 1.3× 10−4 2.3× 10−12 1.0× 10−12 1.2× 10−12
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Asymptotic analysis

We want to characterize the asymptotic behavior when the failure
rates converge to 0 in certain ways, while the rest remains fixed.

Following Shahabuddin, Nakayama, and collaborators, suppose

λ(y , y ′) = a(y , y ′)εb(y ,y ′)

for some state-dependent parameters a(y , y ′) ≥ 0 and b(y , y ′) > 0.
Repair rates are Θ(1).
We will look at what happens when ε → 0.



Some asymptotic properties of estimators for ε → 0

(Studied by L., Blanchet, Glynn, Tuffin (2008))

Definitions. An estimator X (ε) with mean µ(ε) has bounded
relative moment of order k (BRM-k) if

lim sup
ε→0

E[X k(ε)]/µk(ε) < ∞.

Note: BRM-2 means bounded relative error.

It has logarithmic efficiency of order k (LE-k) if

lim
ε→0

ln E[X k(ε)]/k lnµ(ε) = 1.

Note: LE-2 is often called asymptotically efficient.

It has vanishing relative centered moment of order k (VRCM-k) if

lim sup
ε→0

E[X k(ε)]/µk(ε) < ∞.
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SFB and BFB

Proposition. In this HRMS framework, with SFB,
BRM-k and LE-k are equivalent.
They are also equivalent for the g th empirical moment.

Proposition. For an IS scheme such that p(x , y , ε) = Θ(εd) implies
q(x , y , ε) = Θ(ε`) for ` ≤ d , we have BRM-k of the g -th empirical
moment if and only if for all integers m such that r ≤ m < ksg and
all sample paths (x0, · · · , xn) leading to B and having probability
Θ(εm),

P∗{(X0, · · · ,Xτ ) = (x0, · · · , xn)} = Θ(ε`)

for some ` ≤ k(mg − sg )/(kg − 1), where E[Y g (ε)] = Θ(εsg )].

Proposition. With SFB or BFB, one cannot achieve VRCM-k.
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ZVA

Proposition. With our ZVA scheme, if we just take v(y) as the
probability of the most probable path to failure from y , then
v(y) = Θ(µ(y)) for all y and we have BRM-2.

Proposition. If v(y)/µ(y) → 1 for each y when ε → 0, then we
have VRCM-2. This holds if v(y) is the sum of probabilities of all
the dominant paths from y (those with the smallest power of ε).
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Conclusion

Approximating zero-variance IS via a crude approximation of the
cost-to-go (or Bellman) function is viable in this setting. It turns
out to beat all previously proposed IS strategy for the examples we
have examined.


