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g % CE for Estimation and Optimization

The CE method can be used to solve the following types of

problems:
1. Estimation:

Estimate/ = E|H (X)],
whereX is a random vector/process taking values in some set
2 andH is function onZ".
In particular, the estimation ofire event probabilities:
¢ =P(S(X) > ~v), whereS is another function oriz".

2. Optimisation:
Determinemaxy,c o S(x),

wheresS Is function on%Z".
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§ % General Procedure

Generate of a sample of random data (trajectories, vectors,
etc.) according to a specified random mechanism.

Update the parameters of the random mechanism, on the
basis of the data, in order to produce a “better” sample in
the next iteration.
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B

SOME APPLICATIONS OF CE



§ % Stochastic Shortest Path

In this graph the random weigh?s,, . . ., X5 are independent
and exponentially distributed with meain5, 0.4, 0.1,0.3,0.2.

Estimate the probability that the length of the shortesh fiatm

A to B is greater than or equal
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§ % Network Reliability

In this network all links have a probability of 0.01 of faign
(independently).

Estimate the probability that therminal nodeare not connected.
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g % Ising Model

This is an example of a configuratianin the Ising model.

Energy of configuration:

H(X) — Z wij ]{a:i:a:j}

i<j

for some known{);, }.

The probabillity ofx occurring is

flx) =€)z

What is the normalisation constant (partition functiofy)
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§ % Max-cut Problem

We wish to colour the nodes white and black.

How should we colour the nodes so that the total number o$link

betweerthe two groups is maximized?
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§ % Traveling Salesman Problem

10

0 | | ! ! | ! ! ! |
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What is the shortest cycle through all the points?
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§ % A Multl-extremal function

This is the trigonometric function.
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What is its global maximum, and where is it attained?
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Continuous Optimization (continued)

Iteration 1
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g % Sequence Alignment

A sequence alignmerd an arrangement of two sequences
1,...,n;andl,..., ny into two stacked rows, possibly including
“spaces” (two opposite spaces not allowed).

{12-345678910
1 - 234 - -56 - -

The two sequences of numbers could be associated with the
positions of characters in a DNA or protein sequence, e.g.,

AGTGCAGATA 1234567389 10
ACTG--GA-- 1234--56--

What is the “best” alignment?
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g % Alignment graph

Each alignment can be characterised as a path through #edirec

graph.
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Find the path with the smallest score.
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% GC Content

The GC content of a portion of DNA is the proportion of GC
pairs that it contains.

Sharpchangesn GC content can be observed
In the human and other genomes.

1 25 50

tgagatttatatagttgataaagcta ctccctacccatccccgectcatctag

01010000000001001000001100 10111001110011111110100100

This can be viewed as a Bayesiauiltiple change point
problem The objective is to maximize the posterior pdf.
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CE Solution

Average GC content for Cross—Entropy and MCMC algorithms
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g % Counting Representations

LetA {1,2,3,4,5%, A; = {1,2,5}, A, = {1, 3,4},
={2,3,5}, A, ={1,2,3,4} andA; = {1, 3, 5}.

(1

1)

1, 0 0
I 0 0 |1 O
Correspondingmatrixy 0 1 1 0 |1
I 1 |1, 1 O
\1 0O 1 0 1)
A distinct representativis a vectorn(xy, . . ., x,) such that

x; € A; for all 4, and all are distinct. For example, 4,5,3,1).

How many distinct representatives are there?
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B

THEORETICAL DEVELOPMENT
OF CE



§ % Importance Sampling

Consider the estimation of

(=E[HX)) = [ Hix) S

An important example off (X) is theindicator function

1 if S(X) >~

H(X) = I{sx)>7} =
)=7] {O otherwise .

Thelikelihood ratioor importance samplingstimator of/ is

s 1 - f(X5)
=N Z H(X) 9(X;)’

whereX,, ..., Xy ~ g.
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§ % Parametric VM Method

The best importance sampling densjt{for 4 > 0) Is

) o= OIS

If instead we choosg(x) = f(x;v) in thesame parametric
family asf(x) = f(x;u), then the optimal parameter follows

from the parametrigariance minimizatiomprogram:

min By, [H*(X)W (X;u, v)W(X;u, w)] |

Vv

which can be estimated via tlséochastic counterpaapproach.
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g % Cross-Entropy (CE) Method

In the Cross-Entropy method vedoosey = f(+; v) such that the
Kullback-Leibler or cross-entropy distance betwee® and
f(+;v) is minimal

This Is equivalent to solving

max Ey, [H(X)W(X,w,u) In f(X;Vv)].

Vv

We mayestimate the optimal solution/* by solving the
following stochastic counterpart:

N
1
Hax ;H(Xz) W(X;u,w) In f(Xi5v)

whereX, ..., Xy is a random sample frori(-; w).
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g % Further Insights

Forrare-evenestimation problems, where
H(X) = Itsx)>~}, the original CE and VM programs do
not work (most indicators will be zera: = 0/0).

Instead use avo-stage algorithm

1. Find~; such thatP,,(S(X) > ~1) > p, for rarity
parametep, which is typically chosen.1 < p < 0.01.

2. Determine the optimal; corresponding to;.
3. lterate untihyy > ~.

By not specifyingy this procedure can also be used to
maximiseS(x).
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g % Challenges & Possible Remedies

Degeneracy of the likelihood ratio, leads to poor estimates
of v* for high-dimensional problems. Remedies:

®m Screening, Parameter-free methods.
For estimation problems the “shrinking” to a degenerate
distribution is too rapid. Remedies:

® Smoothing, injection.
For counting problems the sampling distribution must be

close tog*. Parameterization does not always work.
Remedies:

m MCE, GCE, Parameter-free methods.
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TWO RECENT APPLICATIONS



Problem Description:
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§ % Network Planning

Problem Description:

We wish to purchase links {1,2,...}
to design a network, subject to a fixed
budget.

A@ @B
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% Network Planning

Problem Description:

We wish to purchase links {1,2,...}
to design a network, subject to a fixed

budget. 301 7 110
Each linki has acost ¢; andreliability A@ V.2 ()
Di- 0.89 0.85

168 O 233
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% Network Planning

Problem Description:

We wish to purchase links {1,2,...}

to design a network, subject to a fixed
budget.

Each link: has acost ¢; andreliability
Pi-

Certain nodes calleterminal nodes In

the graph (i.e. in this case, nodes A and
B) must be connected.
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% Network Planning

Problem Description:

We wish to purchase links {1,2,...}

to design a network, subject to a fixed
budget.

Each link: has acost ¢; andreliability
Pi-

Certain nodes calleterminal nodes In

the graph (i.e. in this case, nodes A and
B) must be connected.

Objective: Determine which links to purchase in order to maximize

the system reliabllity, I.e., the probability that the temal nodes are
connected.
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g % Mathematical Program

Letx; = 1iflink ¢ Is purchased, and let = 0 otherwise. Let

x = (z1,...,2,) be thepurchase vectoand letr(x) be the
reliability of the network. Defing(x) = 1 — r(x) as the
unreliability.

The objective is to Determine

maxr(x) Of min7(x)
X X

subject to

n
§ X;C; S Cmax 9
1=1

where(',.« IS the total budget.
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§ % Difficulties

For large networks the exact calculation of the system
(un)reliability is very difficult, and hencestimationof the
network reliability via simulation becomes a viable option

However, forsmall link unreliabilities(typical) CMC
becomes infeasible.

We usepermutation Monte Carlto estimate the (small)
unreliabilities instead.

The network planning problem becomes aulation-based
(or noisy) optimisation problem.

Recent Developments in theCross-Entropy Method — p.27/46



§ % Permutation Monte Carlo

Observe alynamic network — each link has an exponential
repair time with rate\; = —In(1 — p;).

Assume that all links are failed at= 0 and that all repair
times are independent of each other.

Let Y (¢) be the state of links at time Then,(Y (¢)) is a
Markov process with state spa¢e 1}".

Definell as theorder in which the links become
operational.
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% Reliability Estimation: PMC

At t = 1, the probability that linke is operational i$.. Therefore

r=E[p(Y (1))

whereyp is the structure function.
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g % Reliability Estimation: PMC

At t = 1, the probability that linke is operational i%..

By conditioning onllI,
r=E[E[p(Y (1)) [1I]]
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g % Reliability Estimation: PMC

At t = 1, the probability that linke is operational i%..

By conditioning onllI,
r=E[E[p(Y(1))11]]

\ - 7
~"

G ()
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§ % Reliability Estimation: PMC

At t = 1, the probability that linke is operational i%..

By conditioning onllI,
r = E[E[p(Y(1))]I1]]

7

~"

G(II)

The network reliability can be rewritten as
r = E|G(IT)].
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% Reliability Estimation: PMC

At t = 1, the probability that linke is operational i%..

By conditioning onllI,
r = E[E[p(Y(1))]I1]]

7

~"

G(II)
The netwg ability ca rewritten as
r = E|G(IT)].

It'is computed using the convolution.
Indirect approach - transform technique.

direct approach - matrix exponentiation.
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% Reliability Estimation: PMC

At t = 1, the probability that linke is operational i%..

By conditioning onllI,
r = E[E[p(Y(1))]I1]]

7

~"

G(II)
The network reliability can be rewritten as
r = E|G(IT)].
An unbiased estimator of r is computed via

1 N

1=1
wherell(yy, ..., 11 y) are independent identically distributed random

permutations.
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g % CE Approach

The CE method consists of two steps which are iterated:

generate random purchase vectlrs. .., Xy according
to the following mechanism, parameterized by a veator

1. Generate a uniform random permutatien . .., e,).
Setk = 1.

2. Calculatel = ¢, + 7 X..c

3. If C' < Chiax, draw X,, ~ Ber(aek). Otherwise set
X., =0.

4. 1f 32 | X, c., > Chax then stop; otherwise set
k = k + 1 and reiterate from step 2.

update thea as the mean of the elite samples.
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g % Main CE Algorithm

1 Initialise ay. Sett = 1 (iteration counter).

2 Generatea random samplX, ..., X usinga = a,_;.
Letry,...,7 ) be the order statistics of the estimates

72()(1), ce ,f(XN). Letﬁt = f(((l_p)j\q) be the worst
reliability of the elite samples.

3 Updatea; as the mean of the elite samples.

4 Stopif

max(min(a;, 1 —a;)) < 0

for some small fixed; otherwise set = ¢ + 1 and reiterate
from step 2.
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g % Numerical Example

Suppose that any link in this network can be purchased.

13 14

12
15

11

We wish to purchase the links that yield the smallest network
unreliability, using the CE method.
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% Numerical Example

CE Parameters:

0

L

300

0.1

0.02

Let C,,.« = 1. Link costs and reliabilities:

1 Cj Di 1 Ci Di { Ci Di

1 | 0.2416 | 0.8081 6 0.2301 | 0.8611 | 11 | 0.2894 | 0.8527
2 | 0.2822| 0.7956 7 0.1546 | 0.8063 || 12 | 0.2712| 0.8294
3| 0.1531| 0.8036 | 8 | 0.1984| 0.8304 || 13 | 0.1632| 0.7376
4 | 0.1586 | 0.8835 9 0.2221 | 0.7203 || 14 | 0.2461 | 0.8677
5| 23000 | 0.7665 || 10 | 0.1835| 0.7693 || 15 | 0.2424 | 0.8698
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% Evolution
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g % Optimal Network

CE find the optimal network, even with noisy estimates.

The exact optimal network unreliability is 0.006584.

e Kroese, D.P., Narial, S, Hui, K-P (2007). Network RelialilOp-
timization via the Cross-Entropy MethodEEE Trans. Rel. 56 (2),
275-287.
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Optimal Control for Epidemic
§ % Models

In the Susceptible-Infective mod#éhe proportion of infectives in
a constant population follows the Dk (s the death rate):

/(1) = Blu(®))i(t) (1 — i(t) — pi(t), i(0) =io, ()

We assume that thafection rates is a function of the rate(t)

at which budget is spent, e.gi(u) = S22

Objective :minimise the new infective cases overT|

mmJ mm/ B(u)i(t) (1 —i(t)) dt,

subject tOfOTu(t)dt = K, u(t) > 0, and the evolutionx).
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g % Solving OC via CE

Suppose we want to fing', assuming it exists.

*

v* = J(u*) = mingey J(u),

whereu = {u(”(t),r =1,....R,te [O,T]} whereR is the
number of control functions.
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g % Solving OC via CE

Suppose we want to fing', assuming it exists.

* = J(u*) = mingey J(u),

whereu = {u(”(t),r =1,....R,te [O,T]} whereR is the
number of control functions.

Instead of solving thisunctionaloptimization program directly,
we consider a relatgohrametricoptimization program, namely,

Yer = J(Uer) = mineee J(ue)
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g % Interpolation via FEM

The control function:.Y could be obtained by interpolating the
set of points{(¢;, cz(”)),z' = 0,...,n} using theFinite Element
Method

If the collection{u,, c € C} is chosen large enough, then
VR Yer aNdUF & U
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g % CE Algorithm for Optimal Control

1. Initialize: Chooseu, = {ug';),r =1,...,R;1=0,...,n}
andaoz{aé?,rz l,...,R;1=0,...,n}. Setk := 1.

2. Draw: Generate a random sample
Cl, Ceey Cy ~ N(/"’k—l? O'ﬁ_l) with
Cm:{C’(T) r=1,....,R;i=0,1,...,n}.

3. Evaluate: For each control vectdr,,, evaluate the objective

functionJ(uc, ), €.9., by solving the ODE system using RK
techniques.

4. Select: Find the N°''** best performing (=elite) samples, based
on the valueg J(uc, )}. LetZ be the corresponding set of
Indices.
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g % CE Algorithm for Optimal Control

5.Update: forallr=1,...,R; +=0,1,....,n,let

~(r) (1) 2 1 )
’qu = ehte Z C and O = W Z (Ozm B ’qu) )

mel mel

6. Smooth: For a fixed smoothing paramefek o < 1, let

By = ap,+ (1 —a)py,_y, op=ac,+ (1 —a)oy
/. Stop: Repeat 2—6 untihax; , O,E,:) < ¢. Let L be the final

iteration number. Returp; as an estimate of the optimal control

parameter*.
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§ % CE Solution for the SI Problem

1.5

J(u) = 1.167

0 5 10 15 20 25
t (time)
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g % Application: HIV Control

Objective Function

(7)

. . T <R R " i (r
min J(w) = minu fo 370, S50 B |y s + 2o sl | dt

F
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% Application: HIV Control

Objective Function

-(7) (T) (7) (T)

: . . 3y (3
min, J(u) = miny | mekds + G S

F

the rate at which new infectives are generated.
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% Application: HIV Control

subject to:
(1). integral constraints
TR e

(2). state (dynamic) constraints

(r) (J)
e e R DYSNCY (r)
dl;; _BF_ij;[ﬁjr n](\?) Sp’ —MKSp’,
M
,(r) (5)
di R v r (r
4 :ijl Bir X5 s%) — (u+7) Z%),
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\ % Application: HIV Control

subject to:

the rate at which budget is spent at tima patchr.
(1). integral constra%‘ts

T

(2). state (dynamic) constraints

(r) (J)
e e R DYSNCY (r)
dl;; _BF_ij;[ﬁjr n](\?) Sp’ —MKSp’,
M
;(7) (7)
di R v (r) (r
4 223:1[33'7“ U5 sp —(u+v)z}~),
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\ % Application: HIV Control

subject to:

the total budget available in patch
(1). integral constraints /

IR

(2). state (dynamic) constraints

(r) (J)
e e R DYSNCY (r)
dl;; _BF_ij;[ﬁjr n](\?) Sp’ —MKSp’,
M
;(7) (7)
di R v (r) (r
4 223:1[33'7“ U5 sp —(u+v)z}~),
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% Application: HIV Control

subject to:

the evolution of susceptibles and infectives.
(1). integral constraints /3

(7)
— ZR L () '

M
S .
SR i & i) — (u+ )i,
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% Numerical Experiments

The optimal trajectory* for I' = 5,7 = 15,T = 50 years.

J(u) = 0.0048165920 u® J(u) = 1.5157877792 —u®
3 -u@
—u®
= . U(4)
52 5)
- u(
_______ 1
1r AR N l”
- L
--------- S~ I
b= 74
0= o1 .')'/
0 5 10 15
t (years)
25
= i
> b
7
I
hE
1
E
R
7
e
20 30 40 50

t (years)
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% Numerical Experiments

Optimal trajectoryu* for K — LK 5K 10K ")

‘ ‘ ‘ ‘ 8 ‘ ‘ : ‘ 14 : : : :
J(u) = 2.6169128489 — @ J(u) = 1.8008762848 —u® 1 J(u) = 1.1676497778 —O
1 1 (2) [ |
g 6 iy ,
0.8} —u @
u® u L
= = 5)
506 ---u®) =4 u 7
1
0.4§ & . N |
] 2F 74
I 1
K4 LA
0 : ’ 0 : : e At/ o"\' : : : ‘
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
t (years) t (years) t (years)

e Sani, A., Kroese, D.P. (2008). Controling the number of HiVec-
tives in a mobile populationMathematical Biosciences. Accepted for

publication.
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§ % Future Research

Parallel CE (works!)
Overcoming likelihood ratio degeneracy

Parameter-free methods

Applications (lots)
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% See also ...

PWILEY

Books:R.Y. Rubinstein and D.P. Kroese.

e The Cross-Entropy Method,
Springer-Verlag, 2004.

e Smulation and the Monte Carlo Method,
2nd Edition, Wiley & Sons, 2007.

The Cross-Entropy

~ Simulation

j and the
B Monte Carlo
Method

The CEhome page: http://www.cemethod.org

Special IssueAnnals of Operations Research, 2009. Monte
Carlo Methods for Simulation, Optimization and Counting.
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