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CE for Estimation and Optimization

The CE method can be used to solve the following types of
problems:
1. Estimation:

Estimateℓ = E[H(X)],

whereX is a random vector/process taking values in some set
X andH is function onX .
In particular, the estimation ofrare event probabilities:
ℓ = P(S(X) ≥ γ), whereS is another function onX .

2. Optimisation:
Determinemaxx∈X S(x),

whereS is function onX .
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General Procedure

Generate of a sample of random data (trajectories, vectors,
etc.) according to a specified random mechanism.

Update the parameters of the random mechanism, on the
basis of the data, in order to produce a “better” sample in
the next iteration.
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SOME APPLICATIONS OF CE
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Stochastic Shortest Path

In this graph the random weightsX1, . . . , X5 are independent
and exponentially distributed with means0.25, 0.4, 0.1, 0.3, 0.2.

BA

X1X2 X3 X4X5
1

Estimate the probability that the length of the shortest path from

A to B is greater than or equal to2
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Network Reliability

In this network all links have a probability of 0.01 of failing
(independently).

Estimate the probability that theterminal nodesare not connected.
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Ising Model

This is an example of a configurationx in the Ising model.

Energy of configuration:

H(x) =
∑

i<j

ψij I{xi=xj}

for some known{ψij}.

The probability ofx occurring is

f(x) = eH(x)/Z .

What is the normalisation constant (partition function)Z?
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Max-cut Problem

We wish to colour the nodes white and black.

How should we colour the nodes so that the total number of links

betweenthe two groups is maximized?
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Traveling Salesman Problem

What is the shortest cycle through all the points?
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A Multi-extremal function

This is the trigonometric function.
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What is its global maximum, and where is it attained?
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Continuous Optimization (continued)
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Sequence Alignment

A sequence alignmentis an arrangement of two sequences
1, . . . , n1 and1, . . . , n2 into two stacked rows, possibly including
“spaces” (two opposite spaces not allowed).

{
1 2 - 3 4 5 6 7 8 9 10

1 - 2 3 4 - - 5 6 - -

The two sequences of numbers could be associated with the
positions of characters in a DNA or protein sequence, e.g.,

AGTGCAGATA 1 2 3 4 5 6 7 8 9 10

ACTG--GA-- 1 2 3 4 - - 5 6 - -

What is the “best” alignment?
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Alignment graph

Each alignment can be characterised as a path through a directed
graph.
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Find the path with the smallest score.
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GC Content

The GC content of a portion of DNA is the proportion of GC
pairs that it contains.

Sharpchangesin GC content can be observed
in the human and other genomes.

1 25 50

tgagatttatatagttgataaagcta ctccctacccatccccgcctcatctag

01010000000001001000001100 10111001110011111110100100

This can be viewed as a Bayesianmultiple change point
problem. The objective is to maximize the posterior pdf.
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CE Solution
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Counting Representations

LetA = {1, 2, 3, 4, 5}, A1 = {1, 2, 5}, A2 = {1, 3, 4},
A3 = {2, 3, 5}, A4 = {1, 2, 3, 4} andA5 = {1, 3, 5}.

Corresponding matrix:




1 1 0 0 1

1 0 0 1 0

0 1 1 0 1

1 1 1 1 0

1 0 1 0 1




.

A distinct representativeis a vector(x1, . . . , xn) such that
xi ∈ Ai for all i, and all are distinct. For example,(2, 4, 5, 3, 1).

How many distinct representatives are there?
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THEORETICAL DEVELOPMENT
OF CE
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Importance Sampling

Consider the estimation of

ℓ = Ef [H(X)] =

∫
H(x) f(x) dx .

An important example ofH(X) is theindicator function

H(X) = I{S(X)≥γ} =

{
1 if S(X) ≥ γ

0 otherwise .

Thelikelihood ratioor importance samplingestimator ofℓ is

ℓ̂ =
1

N

N∑

i=1

H(Xi)
f(Xi)

g(Xi)
,

whereX1, . . . ,XN ∼ g.
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Parametric VM Method

The best importance sampling densityg (for H ≥ 0) is

g∗(x) :=
H(x) f(x)

ℓ
.

If instead we chooseg(x) = f(x;v) in thesame parametric
family asf(x) = f(x;u), then the optimal parameter follows
from the parametricvariance minimizationprogram:

min
v

Ew

[
H2(X)W (X;u,v)W (X;u,w)

]
,

which can be estimated via thestochastic counterpartapproach.
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Cross-Entropy (CE) Method

In the Cross-Entropy method wechooseg = f(·;v) such that the
Kullback-Leibler or cross-entropy distance betweeng∗ and
f(·;v) is minimal.

This is equivalent to solving

max
v

Ew [H(X)W (X,w,u) ln f(X;v)] .

We mayestimate the optimal solutionv∗ by solving the

following stochastic counterpart:

max
v

1

N

N∑

i=1

H(Xi)W (Xi;u,w) ln f(Xi;v) ,

whereX1, . . . ,XN is a random sample fromf(·;w).
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Further Insights

For rare-eventestimation problems, where
H(X) = I{S(X)≥γ}, the original CE and VM programs do
not work (most indicators will be zero:̂v = 0/0).

Instead use atwo-stage algorithm:

1. Findγ1 such thatPu(S(X) ≥ γ1) ≥ ρ, for rarity
parameterρ, which is typically chosen0.1 ≤ ρ ≤ 0.01.

2. Determine the optimalv1 corresponding toγ1.

3. Iterate untilγT > γ.

By not specifyingγ this procedure can also be used to
maximiseS(x).
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Challenges & Possible Remedies

Degeneracy of the likelihood ratio, leads to poor estimates
of v∗ for high-dimensional problems. Remedies:

Screening, Parameter-free methods.

For estimation problems the “shrinking” to a degenerate
distribution is too rapid. Remedies:

Smoothing, injection.

For counting problems the sampling distribution must be
close tog∗. Parameterization does not always work.
Remedies:

MCE, GCE, Parameter-free methods.
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TWO RECENT APPLICATIONS
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Network Planning

Problem Description:
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Network Planning

Problem Description:

We wish to purchase links∈ {1, 2, . . .}

to design a network, subject to a fixed

budget.

A B
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Network Planning

Problem Description:

We wish to purchase links∈ {1, 2, . . .}

to design a network, subject to a fixed

budget.

Each linki has acost ci andreliability

pi.
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Network Planning

Problem Description:

We wish to purchase links∈ {1, 2, . . .}

to design a network, subject to a fixed

budget.

Each linki has acost ci andreliability
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Certain nodes calledterminal nodes in

the graph (i.e. in this case, nodes A and
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Network Planning

Problem Description:

We wish to purchase links∈ {1, 2, . . .}

to design a network, subject to a fixed

budget.

Each linki has acost ci andreliability

pi.

Certain nodes calledterminal nodes in

the graph (i.e. in this case, nodes A and

B) must be connected.

0.95
394

0.89
168

0.92
138

0.99
149

0.85
233

A B

Objective: Determine which links to purchase in order to maximize

the system reliability, i.e., the probability that the terminal nodes are

connected.
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Mathematical Program

Let xi = 1 if link i is purchased, and letxi = 0 otherwise. Let
x = (x1, . . . , xn) be thepurchase vector, and letr(x) be the
reliability of the network. Definēr(x) = 1 − r(x) as the
unreliability.
The objective is to Determine

max
x

r(x) or min
x

r(x)

subject to
n∑

i=1

xici ≤ Cmax ,

whereCmax is the total budget.
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Difficulties

For large networks the exact calculation of the system
(un)reliability is very difficult, and henceestimationof the
network reliability via simulation becomes a viable option.

However, forsmall link unreliabilities(typical) CMC
becomes infeasible.

We usepermutation Monte Carloto estimate the (small)
unreliabilities instead.

The network planning problem becomes asimulation-based
(or noisy) optimisation problem.
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Permutation Monte Carlo

Observe adynamic network – each linki has an exponential
repair time with rateλi = − ln(1 − pi).

Assume that all links are failed att = 0 and that all repair
times are independent of each other.

Let Y(t) be the state of links at timet. Then,(Y(t)) is a
Markov process with state space{0, 1}n.

DefineΠ as theorder in which the links become
operational.
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Reliability Estimation: PMC

At t = 1, the probability that linke is operational ispe. Therefore

r = E[ϕ(Y(1))]

whereϕ is the structure function.
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Reliability Estimation: PMC

At t = 1, the probability that linke is operational ispe.

By conditioning onΠ,

r = E[E[ϕ(Y(1)) |Π]]
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Reliability Estimation: PMC

At t = 1, the probability that linke is operational ispe.

By conditioning onΠ,
r = E[E[ϕ(Y(1)) |Π]︸ ︷︷ ︸

G(Π)

]
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Reliability Estimation: PMC

At t = 1, the probability that linke is operational ispe.

By conditioning onΠ,
r = E[E[ϕ(Y(1)) |Π]︸ ︷︷ ︸

G(Π)

]

The network reliability can be rewritten as

r = E[G(Π)].
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Reliability Estimation: PMC

At t = 1, the probability that linke is operational ispe.

By conditioning onΠ,
r = E[E[ϕ(Y(1)) |Π]︸ ︷︷ ︸

G(Π)

]

The network reliability can be rewritten as

r = E[G(Π)].

It is computed using the convolution.

indirect approach - transform technique.

direct approach - matrix exponentiation.
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Reliability Estimation: PMC

At t = 1, the probability that linke is operational ispe.

By conditioning onΠ,
r = E[E[ϕ(Y(1)) |Π]︸ ︷︷ ︸

G(Π)

]

The network reliability can be rewritten as

r = E[G(Π)].

An unbiased estimator̂r of r is computed via

r̂ =
1

N

N∑

i=1

G(Π(i))

whereΠ(1), . . . , Π(N) are independent identically distributed random

permutations.
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CE Approach

The CE method consists of two steps which are iterated:

generate random purchase vectorsX1, . . . ,XN according
to the following mechanism, parameterized by a vectora:

1. Generate a uniform random permutation(e1, . . . , en).
Setk = 1.

2. CalculateC = cek
+

∑k−1
i=1 Xei

cei
.

3. If C ≤ Cmax, drawXek
∼ Ber(aek

). Otherwise set
Xek

= 0.

4. If
∑k

i=1Xei
cei

> Cmax then stop; otherwise set
k = k + 1 and reiterate from step 2.

update thea as the mean of the elite samples.
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Main CE Algorithm

1 Initialise â0. Sett = 1 (iteration counter).

2 Generatea random sampleX1, . . . ,XN usinga = ât−1.

Let r̂(1), . . . , r̂(N) be the order statistics of the estimates

r̂(X1), . . . , r̂(XN). Let γ̂t = r̂(⌈(1−ρ)N⌉) be the worst

reliability of the elite samples.

3 Updateât as the mean of the elite samples.

4 Stop if

max(min(ât, 1 − ât)) ≤ β

for some small fixedβ; otherwise sett = t+ 1 and reiterate

from step 2.

Recent Developments in theCross-Entropy Method – p.31/46



Numerical Example

Suppose that any link in this network can be purchased.
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We wish to purchase the links that yield the smallest network
unreliability, using the CE method.
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Numerical Example

CE Parameters:

N ρ β

300 0.1 0.02

LetCmax = 1. Link costs and reliabilities:

i ci pi i ci pi i ci pi

1 0.2416 0.8081 6 0.2301 0.8611 11 0.2894 0.8527

2 0.2822 0.7956 7 0.1546 0.8063 12 0.2712 0.8294

3 0.1531 0.8036 8 0.1984 0.8304 13 0.1632 0.7376

4 0.1586 0.8835 9 0.2221 0.7203 14 0.2461 0.8677

5 2.3000 0.7665 10 0.1835 0.7693 15 0.2424 0.8698
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Evolution
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Optimal Network

CE find the optimal network, even with noisy estimates.
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The exact optimal network unreliability is 0.006584.

• Kroese, D.P., Nariai, S, Hui, K-P (2007). Network Reliability Op-

timization via the Cross-Entropy Method.IEEE Trans. Rel. 56 (2),

275–287.
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Optimal Control for Epidemic
Models

In theSusceptible-Infective modelthe proportion of infectives in
a constant population follows the DE (µ is the death rate):

i′(t) = β(u(t)) i(t) (1 − i(t)) − µ i(t), i(0) = i0, (⋆)

We assume that theinfection rateβ is a function of the rateu(t)
at which budget is spent, e.g.,β(u) = βmax

1+u
.

Objective :minimise the new infective cases over[0, T ]

min
u
J(u) = min

u

∫ T

0

β(u) i(t) (1 − i(t)) dt,

subject to
∫ T

0
u(t)dt = K, u(t) ≥ 0, and the evolution (⋆).
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Solving OC via CE

Suppose we want to findγ∗, assuming it exists.

γ∗ = J(u∗) = minu∈U J(u),

whereu =
{
u(r)(t), r = 1, . . . , R, t ∈ [0, T ]

}
whereR is the

number of control functions.
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Solving OC via CE

Suppose we want to findγ∗, assuming it exists.

γ∗ = J(u∗) = minu∈U J(u),

whereu =
{
u(r)(t), r = 1, . . . , R, t ∈ [0, T ]

}
whereR is the

number of control functions.

Instead of solving thisfunctionaloptimization program directly,

we consider a relatedparametricoptimization program, namely,

γc∗ = J(uc∗) = minc∈C J(uc)

uc = {u
(r)
c , r = 1, . . . , R} , c = {c

(r)
i , r = 1, . . . , R; i = 0, . . . , n}.
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Interpolation via FEM

The control functionu(j)
c could be obtained by interpolating the

set of points{(ti, c
(j)
i ), i = 0, . . . , n} using theFinite Element

Method.

t
t0 t1 . . . . . .

1

u(t)
(t0, c0)

(tn, cn)

tn

vi(t)

(ti, ci)

ti+1ti−1 ti

If the collection{uc, c ∈ C} is chosen large enough, then
γ∗ ≈ γc∗ andu∗ ≈ uc∗.
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CE Algorithm for Optimal Control

1. Initialize: Chooseµ0 = {µ
(r)
0i , r = 1, . . . , R; i = 0, . . . , n}

andσ0 = {σ
(r)
0i , r = 1, . . . , R; i = 0, . . . , n}. Setk := 1.

2. Draw: Generate a random sample
C1, . . . ,CN ∼ N(µ

k−1
,σ2

k−1
) with

Cm = {C
(r)
mi , r = 1, . . . , R; i = 0, 1, . . . , n}.

3. Evaluate: For each control vectorCm evaluate the objective
functionJ(uCm

), e.g., by solving the ODE system using RK
techniques.

4. Select:Find theN elite best performing (=elite) samples, based
on the values{J(uCm

)}. Let I be the corresponding set of
indices.
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CE Algorithm for Optimal Control

5. Update: for all r = 1, . . . , R; i = 0, 1, . . . , n, let

µ̃
(r)
ik :=

1

N elite

∑

m∈I

C
(r)
im and σ̃

(r) 2
ik :=

1

N elite

∑

m∈I

(
C

(r)
im − µ

(r)
ik

)2

.

6. Smooth: For a fixed smoothing parameter0 < α ≤ 1, let

µ̂k := αµ̃k + (1 − α)µ̂k−1, σ̂k := ασ̃k + (1 − α)σ̂k−1

7. Stop: Repeat 2–6 untilmaxi,r σ
(r)
ik < ε. Let L be the final

iteration number. ReturnµL as an estimate of the optimal control

parameterc∗.
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CE Solution for the SI Problem

0 5 10 15 20 25
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t (time)

u
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)
J(u) ≈ 1.167
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Application: HIV Control

Objective Function

minu J(u) = minu

∫ T

0

∑R

r=1

∑R

j=1 βjr

[
i
(j)
M

n
(j)
M

s
(r)
F +

i
(j)
F

n
(j)
F

s
(r)
M

]
dt,
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Application: HIV Control

Objective Function

minu J(u) = minu

∫ T

0

∑R

r=1

∑R

j=1 βjr

[
i
(j)
M

n
(j)
M

s
(r)
F +

i
(j)
F

n
(j)
F

s
(r)
M

]
dt,

�
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�
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�
�

the rate at which new infectives are generated.
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Application: HIV Control

subject to:

(1). integral constraints
R T

0 u(r) dt = K(r), 0 ≤ u(r), r = 1, . . . , R.

(2). state (dynamic) constraints
ds

(r)
F

dt
= BF −

PR
j=1 βjr

i
(j)
M

n
(j)
M

s
(r)
F

− µ s
(r)
F

,

di
(r)
F

dt
=

PR
j=1 βjr

i
(j)
M

n
(j)
M

s
(r)
F

− (µ + γ) i
(r)
F

,

ds
(r)
M

dt
= BM −

PR
j=1 βjr

i
(j)
F

n
(j)
F

s
(r)
M

− µ s
(r)
M

,

di
(r)
M

dt
=

PR
j=1 βjr

i
(j)
F

n
(j)
F

s
(r)
M

− (µ + γ) i
(r)
M

,

Recent Developments in theCross-Entropy Method – p.40/46



Application: HIV Control

subject to:

(1). integral constraints
R T

0 u(r) dt = K(r), 0 ≤ u(r), r = 1, . . . , R.

(2). state (dynamic) constraints
ds

(r)
F

dt
= BF −

PR
j=1 βjr

i
(j)
M

n
(j)
M

s
(r)
F

− µ s
(r)
F

,

di
(r)
F

dt
=

PR
j=1 βjr

i
(j)
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n
(j)
M

s
(r)
F

− (µ + γ) i
(r)
F

,

ds
(r)
M

dt
= BM −

PR
j=1 βjr

i
(j)
F

n
(j)
F

s
(r)
M

− µ s
(r)
M

,

di
(r)
M

dt
=

PR
j=1 βjr

i
(j)
F

n
(j)
F

s
(r)
M

− (µ + γ) i
(r)
M

,
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the rate at which budget is spent at timet in patchr.

Recent Developments in theCross-Entropy Method – p.40/46



Application: HIV Control

subject to:

(1). integral constraints
R T

0 u(r) dt = K(r), 0 ≤ u(r), r = 1, . . . , R.

(2). state (dynamic) constraints
ds

(r)
F

dt
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j=1 βjr

i
(j)
M

n
(j)
M

s
(r)
F

− µ s
(r)
F

,

di
(r)
F

dt
=

PR
j=1 βjr

i
(j)
M

n
(j)
M

s
(r)
F

− (µ + γ) i
(r)
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the total budget available in patchr.
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Application: HIV Control

subject to:

(1). integral constraints
R T

0 u(r) dt = K(r), 0 ≤ u(r), r = 1, . . . , R.

(2). state (dynamic) constraints
ds

(r)
F

dt
= BF −

PR
j=1 βjr

i
(j)
M

n
(j)
M

s
(r)
F

− µ s
(r)
F

,

di
(r)
F

dt
=

PR
j=1 βjr

i
(j)
M

n
(j)
M

s
(r)
F

− (µ + γ) i
(r)
F

,

ds
(r)
M

dt
= BM −

PR
j=1 βjr

i
(j)
F

n
(j)
F

s
(r)
M

− µ s
(r)
M

,

di
(r)
M

dt
=

PR
j=1 βjr

i
(j)
F

n
(j)
F

s
(r)
M

− (µ + γ) i
(r)
M

,

the evolution of susceptibles and infectives.
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�
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Numerical Experiments

The optimal trajectoryu∗ for T = 5, T = 15, T = 50 years.
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Numerical Experiments

Optimal trajectoryu∗ for K(r) → 1
2
K(r), 5K(r), 10K(r)
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• Sani, A., Kroese, D.P. (2008). Controling the number of HIV infec-

tives in a mobile population.Mathematical Biosciences. Accepted for

publication.
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Future Research

Parallel CE (works!)

Overcoming likelihood ratio degeneracy

Parameter-free methods

Applications (lots)
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Thanks

Reuven Rubinstein

Kin-Ping Hui, Sho Nariai, Asrul Sani, Thomas Taimre,
Gareth Evans, Zdravko Botev.
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THANK YOU
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See also ...

Books:R.Y. Rubinstein and D.P. Kroese.

• The Cross-Entropy Method,

Springer-Verlag, 2004.

• Simulation and the Monte Carlo Method,

2nd Edition, Wiley & Sons, 2007.

The CEhome page: http://www.cemethod.org

Special Issue:Annals of Operations Research, 2009. Monte
Carlo Methods for Simulation, Optimization and Counting.
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