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Problem Setting

Problem – Compute Ef [h(σ)], where h is a non-negative
function and σ ∼ f , a distribution on the set of
permutations Sn.
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Problem – Compute Ef [h(σ)], where h is a non-negative
function and σ ∼ f , a distribution on the set of
permutations Sn.

In our applications, f is usually the uniform distribution
and h is the likelihood function Lφ(σ|D) for a Network
Growth Model φ with dataset D.

Ef [h(σ)] may be ’dominated’ by a subset of states with
exponentially small measure in f (’rare events’). Crude
Monte Carlo estimator based on samples from f does
not work well.

Idea – Use Importance Sampling to build lower variance
estimator.
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In This Talk

Use of Adaptive Importance Sampling (AdIS) for Network
Growth Models (NGM).
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In This Talk

Use of Adaptive Importance Sampling (AdIS) for Network
Growth Models (NGM).

Introduce Plackett-Luce (PL) model as family of proposal
distributions.

Addressing degeneracy of AdIS with Minimum
Description Length (MDL).

Analysis of Mus Musculus Protein-Protein Interaction
(PPI) network.
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Motivation

Applications:
Statistical inference for network data.
Likelihood computation, Model selection

How well does the network model fit the data?
Estimation of normalizing constants/partition functions
for distributions on permutations.
Approximate counting.
Rare event simulation.
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Models of Network Growth

Defined by two rules:
Networks are grown one vertex at a time.
New edges are attached from new vertex to (possibly
empty) set of pre-existing vertices.
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Models of Network Growth

Defined by two rules:
Networks are grown one vertex at a time.
New edges are attached from new vertex to (possibly
empty) set of pre-existing vertices.

Commonly used to model phenomena from biology,
computer science, and sociology.

L(G|σ) usually easy to compute.
G: network data.
σ: vertex labeling/permutation.

Examples:
Preferential Attachment (PA).
Duplication/Divergence (DD) (Vertex Copying).
Kronecker Delta Product Graphs.
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Network Growth

We assume networks to be undirected, simple, without
self-loops
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Network Growth

We assume networks to be undirected, simple, without
self-loops

Order in which vertices appear important – NGM are
inherently models for labeled graphs

Many network datasets are unlabeled – age of vertices
unknown or uncertain.

To model with NGM we must sum over all possible
labelings.
Infeasible – factorial number of permutations.

Use Adaptive Importance Sampling.
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Adaptive Importance Sampling

Uses IS identity: Ef [h(σ)] = Eg

[

h(σ)f(σ)
g(σ)

]
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Adaptive Importance Sampling

Uses IS identity: Ef [h(σ)] = Eg

[

h(σ)f(σ)
g(σ)

]

Want to find g ’close’ to the optimal min variance
importance distribution:

g∗(x) ∝ h(σ)f(σ)

Need a family of proposal distributions F such that:
Likelihood (with normalizing constant) is easily
computed.
MLE easy to find.
∃g ∈ F that is ’close’ to g∗.
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Adaptive Importance Sampling (cont)

Generic AdIS step:
Draw samples from current IS dist gi.
Choose gi+1 to be ’best’ g ∈ F according to previous
samples and repeat.
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Adaptive Importance Sampling (cont)

Generic AdIS step:
Draw samples from current IS dist gi.
Choose gi+1 to be ’best’ g ∈ F according to previous
samples and repeat.

Commonly used frameworks for AdIS:
Cross-Entropy method
Variance Minimization
Population Monte Carlo
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Cross-Entropy Method

Use KL-divergence as “closeness” measure
corresponds to MLE estimator where each sample
appears w(σ)h(σ) times.
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Cross-Entropy Method

Use KL-divergence as “closeness” measure
corresponds to MLE estimator where each sample
appears w(σ)h(σ) times.

Basic CE iteration:
Draw [σi]1...n ∼ gi

Take gi+1 = argmingKL(g, [w(σi)gi(σi)]1...n)

Unfortunately, MLE may produce a ’degenerate’
importance distribution gi+1 if there aren’t enough
samples.

Few samples dominate.
’Entropy’ of distribution greatly decreases.
Importance weights blow up.
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Overcoming Degeneracy

Common strategies to avoid degeneracy in CE-method:
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take previous proposal distribution w/prob α, adjust
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These techniques work well for some problems, but don’t
seem to work well for our applications with high
dimensional parameter spaces.

Samples expensive (score function is O(n2)).
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Overcoming Degeneracy

Common strategies to avoid degeneracy in CE-method:
’elite’ samples – take top ρ-percentile samples and
weigh equally (min KL becomes MLE of elite sample).
take previous proposal distribution w/prob α, adjust
sample sizes, other ’tuning’ parameters.

These techniques work well for some problems, but don’t
seem to work well for our applications with high
dimensional parameter spaces.

Samples expensive (score function is O(n2)).

MLE → degeneracy as ’overfitting’. Can use:
Cross-validation
AIC, BIC.
Bayesian priors.
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Minimum Description Length

Minimum Description Length (MDL) – robust, information
theoretic approach to model selection.
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Minimum Description Length

Minimum Description Length (MDL) – robust, information
theoretic approach to model selection.

MDL principle – generalization of ’Occam’s Razor’
Description length – tradeoff between fit and simplicity

L(v, σ) = L(v) − log (P(σ|V )) + const

# bits needed to describe model
# bits needed to describe data under model

We compute first term as negative model “entropy”,
other interpretations possible.
“Small sample” correction – second term dominates for
N large and become same as MLE
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AdIS with MDL

Sample size correction enables one to take fewer
samples per iteration without encountering degeneracy.

More frequent,dynamic updating of proposal.
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AdIS with MDL

Sample size correction enables one to take fewer
samples per iteration without encountering degeneracy.

More frequent,dynamic updating of proposal.

Other modifications to AdIS:
Reuse old samples, increasing elite sample size as
needed.

CE-MDL algorithm:
Draw N samples from [σj ]1...N ∼ gi.
Compute [h(σj)gi(σj)]1...N ; take ρ-elite sample.
Compute gi+1 as best MDL for elite sample.
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Models of Rank

Stochastic Edge Network (SEN) Markov model
[Rubinstein, Kroese]
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Models of Rank

Stochastic Edge Network (SEN) Markov model
[Rubinstein, Kroese]

Picks a random Hamiltonian path in network with n + 1
vertices with according to stochastic matrix.
Quite general, but MLE estimator doesn’t generalize
for ranking data as only pairwise transitions are
considered.
O(n2) parameters

Mallow’s model – exponential family

Thurstonian Models – orderings of multivariate normal

Need Monte Carlo to compute likelihoods for both
models
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Proposal Family: Plackett-Luce

Plackett-Luce Model
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Proposal Family: Plackett-Luce

Plackett-Luce Model
’Urn’ model.
Each item has weight θi.
Draw items without replacement with prob. prop. to θ.

Log-Likelihood easily computed as:

L(σ|θ) =
n

∑

i=1

log(θi) −
n

∑

i=1

log





n
∑

j=i

θσj




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Proposal Family: Plackett-Luce

Plackett-Luce Model
’Urn’ model.
Each item has weight θi.
Draw items without replacement with prob. prop. to θ.

Log-Likelihood easily computed as:

L(σ|θ) =
n

∑

i=1

log(θi) −
n

∑

i=1

log





n
∑

j=i

θσj





MLE efficiently found via deterministic
majorization-minimization algorithm.
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MDL and Plackett-Luce

Computing MDL for PL model:
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MDL and Plackett-Luce

Computing MDL for PL model:
MDL is convex – exponential sum [Boyd and
Vandenberghe 2004]
Entropy of model is estimated efficiently thorugh Crude
Monte Carlo.
Heuristic univariate minimization works well in practice.

Potential problems with MDL interpretation:
Not sampling from g∗, so not true model selection.
How much to weigh model complexity vs. fit not
obvious. This is a tuning parameter.
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Application: Preferential Attachment

One of the best studied models to produce ’power-law’
degree distributions.
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usage
Combination of ’Polya’s Urn’ processes.
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Application: Preferential Attachment

One of the best studied models to produce ’power-law’
degree distributions.

Yule-Simon model
Originally used to explain power-law frequency of word
usage
Combination of ’Polya’s Urn’ processes.

Barabási-Albert Model – Linear Preferential Attachment:
Rediscovered model in 1999 to explain internet graph.
Attach edges with probability (linearly) proportional to
degree.
Add a fixed number of edges m at each step.
Showed that converges to a ’power-law’ degree
distribution with exponent 3.

Adaptive Importance Sampling for Network Growth Models. Adam Guetz, Susan Holmes, Stanford University. Efficient Monte Carlo 2008. – p.17/28



Modeling Networks with PA

For statistical applications, need PA model that
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compute.

Our PA model:

At step j add Bin
(

θ
(

j
2

)

)

edges.
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Modeling Networks with PA

For statistical applications, need PA model that
is non-degenerate (with p(G) bounded from 0 for
G ∈ Gn).
the likelihood given vertex ordering is easily to
compute.

Our PA model:

At step j add Bin
(

θ
(

j
2

)

)

edges.

Edges added independently at random from new
vertex v to old vertex w with probability proportional to

deg(i)
∑

deg(l)
(1 − α) + α
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Modeling Networks with PA (cont.)

Parameters α, θ ∈ [0, 1] correspond to
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Modeling Networks with PA (cont.)

Parameters α, θ ∈ [0, 1] correspond to
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Modeling Networks with PA (cont.)

Parameters α, θ ∈ [0, 1] correspond to
α – ’smoothing’ parameter

α = 0 is ’pure’ preferential attachment
α = 1 is uniform attachment (Erdös-Rényi G(n, p)
model)
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Modeling Networks with PA (cont.)

Parameters α, θ ∈ [0, 1] correspond to
α – ’smoothing’ parameter

α = 0 is ’pure’ preferential attachment
α = 1 is uniform attachment (Erdös-Rényi G(n, p)
model)

θ – expected edge density, θ = E[|edges(G)|]/
(

n
2

)

.
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Modeling Networks with PA (cont.)

Parameters α, θ ∈ [0, 1] correspond to
α – ’smoothing’ parameter

α = 0 is ’pure’ preferential attachment
α = 1 is uniform attachment (Erdös-Rényi G(n, p)
model)

θ – expected edge density, θ = E[|edges(G)|]/
(

n
2

)

.

Similar to “Poisson Growth” model of Sheridan, Yagahara
and Shimodaira [2008]. They show power-law degree
distribution.
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Annealed Importance Sampling

Annealed Importance Sampling [Neal 2001] :
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∏
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Compute at level t the ratio Wt(σi) = ft+1(σi)

ft(σi)

Product
∞
∏

i=1

Wi forms unbiased estimator of Zg

Zf

Essentially ’Umbrella Sampling’ MCMC modified to
produce an unbiased estimator.
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Annealed Importance Sampling

Annealed Importance Sampling [Neal 2001] :
Start a ’particle’ in known distibution.
Move particle by sequence of Markov kernels fi ending
at distribution of interest.
Compute at level t the ratio Wt(σi) = ft+1(σi)

ft(σi)

Product
∞
∏

i=1

Wi forms unbiased estimator of Zg

Zf

Essentially ’Umbrella Sampling’ MCMC modified to
produce an unbiased estimator.

Popular for applications in Physics, Chemistry, Biology.
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Example: Mouse PPI Network

Protein-Protein
Interaction dataset
for Mus Musculus
(common mouse)
from BioGRID
(www.thebiogrid.org).

Connected sub-
network w/ 314
nodes and 503
interactions.
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Example: Mouse PPI network

For AnIS, I ran 20 particles, with 1000 cooling levels, with
6 Markov steps at each level.

For AdIS, I ran 20 simulation runs, with N = 20 at each
iteration, elite sample sizes adjusted dynamically.

Simulation results:

Model log-lik sample var. log lik
Erdös-Réni −3.070e3 -
PA CE-MDL IS −2.280e3 3.41e2

PA AnIS −2.276e3 6.80e2
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Example: Mouse PPI network
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Red lines are Annealed IS simulations. Blue lines are MDL-CE Adaptive IS runs.
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Example: MDL vs no MDL

Simulation run of CE-MDL AdIS on the left, CE AdIS with no MDL on the right. Blue

points correspond to score function values, black points correspond to importance

weights. Note the wide separation of black and blue points in AdIS without MDL.
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Comparison of AnIS and AdIS

Advantages of CE-MDL AdIS:
Results are interpretable; gives distribution on
labelings that can be used as Bayesian prior or mixture
distribution.
Recasts integration problem as an optimization
problem.
Efficient for at least some classes of networks and
NGMs.

Disadvantages of CE-MDL AdIS
Best possible AdIS dist. ĝ∗ for proposal familty may not
be close to optimal IS dist, potentially leading to poor
performance and misleading results.
Convergence may be slow.
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Comparison of AnIS and AdIS (cont.)

Advantages of AnIS:
Non-parametric, easy to implement
Efficient in practice for many applications

Disadvantages of AnIS:
Need to formulate ’cooling schedule’.
Works as well or poorly as simulated annealing.
Results not as interpretable.

Running times comparable for our example.

Both methods produce unbiased estimators → can run
both and reliably combine results.
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Future Work

Implement for other copying models, e.g. vertex copying
and Kronecker delta.

Use distributions on phylogenies?

Try other models of rank as proposal distributions –
Thurstonian model seems particularly promising.

Analysis of convergence rate for simplified model.
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Previous Work/References

Network model selection
Kronecker delta model maximum likelihood –
[Faloustous et al.]
Gibbs-type algorithm – [Bezakova et al.]
Sequential IS for growth models [Wiuf et al.]

Adaptive Importance Sampling – [Rubinstein and
Kroese, 2004], [Asmussen and Glynn, 2007]

Models of rank – [Marden 1995], [Diaconis 1988]
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