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The Hamiltonian Cycle Problem: An Introduction

The essence of the Hamiltonian Cycle Problem (HCP) is
contained in the following - deceptively simple - single
sentence statement:

Given a graph, find a simple cycle that contains all vertices of the
graph (Hamiltonian cycle (HC)) or prove that one does not exist.

With respect to this property -
Hamiltonicity - graphs possessing
a HC are called Hamiltonian.

The name is due to the fact that
Sir William Hamilton investigated
the existence of such cycles on the
dodecahedron graph.
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The Hamiltonian Cycle Problem: An Introduction

Henceforth, a graph of order N will mean a simple N-vertex
graph (without self-loops) that can be both:

symmetric - every edge admits two-way traffic, or
directed - digraph, with one-way traffic along each arc.

The HCP is NP-complete and has become a challenge both in
its own right and because of its close relationship to the
famous Travelling Salesman Problem (TSP).

An efficient solution of TSP would have an enormous impact
in operations research, optimization and computer science.

I claim that the underlying difficulty of the TSP is, perhaps,
hidden in the Hamiltonian Cycle Problem and focus on the
latter.
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Horton Graph

Just to demonstrate the connection of HCP with “rare events”

I claim that even some “simple” Hamiltonian Graphs, can be
tough! For example, consider the “Horton94 Graph”.
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Horton Graph

The standard, Horton graph is a 96-node cubic graph and is
non-Hamiltonian. The “Horton94” graph is a simple 94-node
modification (Ejov) which has only “a few” Hamiltonian
cycles: (exactly?) 76, 800.

This sounds like a lot, but there are 394 possible sub-graphs.
So, finding a Hamiltonian cycle “by chance”, as percentage, is

76, 800

394
× 100 = 1.08633× 10−38,

not terribly likely, is it?

Like looking for a proverbial “needle in a haystack”...
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Stochastic, Dynamic, Embedding of the HCP

We consider a moving object tracing out a directed path on
the graph Γ with its movement “controlled” by a function

f : V = V(Γ) = {1, 2 . . . , N} → A = A(Γ)

mapping the set of nodes of Γ into its set of arcs.

We think of V as the state space of a controlled Markov
chain, where for each state/node i , the action space

A(i) := {a|(i , a) ∈ A}

is in 1 : 1 correspondence with the set of arcs emanating from
that node or, equivalently, with the set of endpoints (“heads”)
of those arcs.
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Stochastic, Dynamic, Embedding of the HCP

Example (1)

Consider the complete graph Γ4 on four nodes (with no
self-loops). In a natural way, the Hamiltonian cycle

c1 : 1 → 2 → 3 → 4 → 1

corresponds to the “deterministic (stationary) control”

f1 : {1, 2, 3, 4} → {2, 3, 4, 1},
where f1(2) = 3 ⇔ to the controller choosing arc (2,3) in
state 2 with probability 1.

A Markov chain induced by f1 is given by the “ zero-one”
transition matrix

P(f1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,

an irreducible, stochastic matrix.
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Stochastic, Dynamic, Embedding of the HCP

Example (1, cont.)

However, the union of two sub-cycles:

1 → 2 → 1 and 3 → 4 → 3

corresponds to the deterministic control

f2 : {1, 2, 3, 4} → {2, 1, 4, 3}
which identifies the Markov chain transition matrix

P(f2) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

containing two distinct ergodic classes.
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Performance of a Policy

This leads to a natural embedding of the HCP in a controlled
Markov chain.

Typically, the performance of a policy f is evaluated either by

a limiting average criterion

v(f) =

[
lim

T→∞

1

1 + T

T∑
t=0

P(f)t

]
r(f) = P(f)∗r(f), or

a discounted criterion (for a “discount factor” β ∈ [0, 1))

vβ(f) =
∞∑
t=0

βtP(f)tr(f) = [I − βP(f)]−1r(f).

The immediate reward/cost vector r(f) will be set to

r(f) := (1, 0, . . . , 0)T for all f.
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Difficulties

Such a controlled Markov chain (CMC, for short) has a
multi-chain ergodic structure which complicates the analysis.

This is essential because multiple ergodic classes correspond
to sub-cycles in the original graph that are the “mother of all
difficulties” in the TSP (and hence also in the HCP).

However, from Markov chains’ perspective, there is an
opportunity to parametrically differentiate between controls
inducing the multi-chain and the uni-chain ergodic structures.

Indeed, we have at least two ways of achieving such a
differentiation.
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Method 1: Perturbation

Multiple chains are “disguised” with the help of a singular
perturbation. For instance, we can replace P(f2) with

Pε(f2) =


ε 1− 3ε ε ε

1− 3ε ε ε ε
ε ε ε 1− 3ε
ε ε 1− 3ε ε

 .

This perturbation is singular as it alters the ergodic structure
by changing the Markov chain P(f2) to one that is irreducible.
Its stationary distribution matrix is

P∗ε (f2) =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 ,

where π∗ε(f2) = (0.25, 0.25, 0.25, 0.25) is the unique invariant
measure of Pε(f2).
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Method 2: Discount

Discount factor β is used to differentiate between the multi-
and uni-chain cases.

For instance,

for Hamiltonian cycle policy f1

[vβ(f1)]1 = 1 + β4 + β8 + . . . ... =
1

1− β4
,

for the 2-cycle policy f2

[vβ(f2)]1 = 1 + β2 + β4 + . . . ... =
1

1− β2
.

Further, for a noose cycle control

f3 : {1, 2, 3, 4} → {2, 3, 4, 3},

[vβ(f3)]1 = 1 + 0 + 0 + . . . ... = 1.

Since β ∈ [0, 1)

1

1− β2
>

1

1− β4
> 1.
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Randomization

Next, consider a Markov chain induced by a (stationary)
randomized control.

The latter is an N × N matrix f with entries representing
probabilities f (i , a) of choosing a possible arc a at state i
whenever this state is visited; with f (i , a) = 0, whenever
a 6∈ A(i).

Our control space FS = {randomized controls}.

Hitherto, we considered only special paths which our moving
object can trace out in the graph Γ. These corresponded to
the subspace FD ⊂ FS of deterministic controls.

Passing from FD to FS constitutes a “continuous relaxation”
of the HCP.
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Example (1, cont.)

Consider the case where fλ is obtained from the 2-cycle
deterministic control f2 by the “controller” randomizing at
node 4 as follows. He/she chooses:

arc (4, 2) with probability f (4, 2) = λ, and
arc (4, 3) with probability f (4, 3) = (1− λ).

The resulting policy fλ induces a MC

P(fλ) =


0 1 0 0
1 0 0 0
0 0 0 1
0 λ (1− λ) 0

 .
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Note that...

The following phrases and terms are used interchangeably:
control & policy,
controlled Markov chain & Markov Decision Process (MDP).

The space of objects where we search for a solution has been
changed from

A discrete set of sub-graphs of the given graph Γ

to

A convex control/policy space of a MDP, or
A convex frequency space of such a process.
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Optimization in the Frequency Space

The discounted frequency space is the set

Xβ := {x(f)|f ∈ FS}
of vectors x(f) whose entries are defined by

xia(f) :=
∞∑

t=0
βtPr(Xt = i ,At = a|f).

The construction of x defines a map M of the policy space FS

into Rm by

M(f) := x(f).

The map M is invertible and its inverse M−1 is defined by

M−1(x)[i , a] = fx(i , a) :=
xia∑

a
xia

.
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The above discounted frequency space Xβ is actually a linear
polytope characterized by the transportation-like constraints:

N∑
i=1

N∑
a=1

(δij − βp(j |i , a))xia = δ1j , ∀j = 1, . . . ,N, (1)

xia ≥ 0, ∀ i , a. (2)

Theorem (Feinberg, 2000)

At a control f that is a Hamiltonian cycle, x = x(f) satisfies∑
a∈A(1)

x1a =
1

1− βN
. (3)

Now, let

W := {x|(1)− (3) hold} = {x|A(β)x = b; x ≥ 0}.
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Theorem (Chen & Filar, 1992; Feinberg, 2000)

Let x ∈ W be such that for all i and a:

M−1(x)[i , a] = fx(i , a) :=
xia∑

a
xia

∈ {0, 1}.

Then fx traces out a Hamiltonian cycle in Γ.

So, HCP is equivalent to feasibility problem: Find x satisfying:

N∑
i=1

N∑
a=1

(δij − βp(j |i , a))xia = δ1j , j = 1, . . . ,N, (4)

xia ≥ 0 ∀ i , a, (5)∑
a∈A(1)

x1a =
1

1− βN
, (6)

(& sadly)
xia∑

a∈A(i) xia
∈ {0, 1} ∀ i , a. (7)
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Meanwhile, in 1998, Jean Lasserre (CNRS) and I considered a
version of the original question:

Does ∃ x ∈ W such that M−1(x) = fx is a HC?

Or, equivalently, does ∃ x such that

A(β)x = b; x ≥ 0 & fx ∈ FD?

Recall,

fx ∈ FD ⇐⇒ xiaP

a
xia
∈ {0, 1} ∀i , a.

We observed that if x is an extreme point of W , then either

fx ∈ FD (and we’re done), or
∃! node i and a pair of arcs (i , a), (i , b) such that

fx(i , a) & fx(i , b) > 0 ⇔ xia & xib > 0.
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Or, equivalently, does ∃ x such that

A(β)x = b; x ≥ 0 & fx ∈ FD?

Recall,

fx ∈ FD ⇐⇒ xiaP

a
xia
∈ {0, 1} ∀i , a.

We observed that if x is an extreme point of W , then either

fx ∈ FD (and we’re done), or
∃! node i and a pair of arcs (i , a), (i , b) such that

fx(i , a) & fx(i , b) > 0 ⇔ xia & xib > 0.
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Branch & Fix Algorithm

Hence, we proposed - but did not implement - a “Branch &
Fix” algorithm with the logical structure:

Note that at each sub-node of this B& F tree we are solving
the feasibility problem for a smaller graph.
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Branch & Fix Algorithm

However, we were suspicious that the B & F tree would grow
so fast that the method would be essentially a brute force
enumeration of all subgraphs of Γ (all deterministic controls).

Only in 2006 I asked Giang Nguyen and Michael Haythorpe to
try it out.

The preliminary results were surprisingly good and we’re
beginning to understand why!

Graph Branches Time
Hamiltonian (24 N 72 A) 394 0:04

Dodecahedron (20 N 60 A) 65 0:01

Chess8 (64 N 336A) 1097 0:38

NH: Petersen (10 N 30 A) 154 0:01

NH: Coxeter (28 N 84 A) 41268 8:23

Even 41, 268 � 328 = 22, 876, 792, 454, 961; right?!
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At each sub-problem in B & F, we find an extreme point of
W = {x|A(β)x = b; x ≥ 0} for that sub-problem and check
if:

fx ∈ FD ⇐⇒ xiaP

a
xia
∈ {0, 1} ∀i , a ?

If answer YES, fx is a HC.
What if answer is NO?

Well, fx ∈ FS and x satisfies:∑
a∈A(1)

x1a =
1

1− βN
. (8)

Recall the inequality (for β ∈ [0, 1) and k < N)

1

1− βk
>

1

1− βN
> 1.

How does fx ∈ FS “fool us” and manage to satisfy (8)?
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Proposition (Nguyen, 2007)

If an extreme point x of W induces a randomized control

fx ∈ FS and
∑

a∈A(1)

x1a =
1

1− βN
holds,

then ∃ a short-cycle control f2 and a noose-cycle policy f3 and
λ ∈ (0, 1) such that

fx = λf2 + (1− λ)f3.

Also, f2 & f3 coincide except at one node.

So, perhaps, it’s not so easy for fx to “pretend” to be a
HC......Certainly, it cannot be done by mixing just any two
deterministic controls.....
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A Faster Heuristic

Here the cut frequency space is constrained further

N∑
i=1

∑
a∈A(i)

(δij − βp(j |i , a)) xia = δ1j(1− βN), ∀ j ,

∑
a∈A(1)

x1a = 1,

box-constraints βN−1 ≤
∑

a∈A(i)

xia ≤ β, ∀ i 6= 1,

xia ≥ 0, ∀ i , a.

The new xia’s are the old xia’s multiplied by (1− βN).
The box-constraints can be narrowed by increasing β ↑ 1.

We still need

xiaxib = 0 for all i , a 6= b.
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A Faster Heuristic

A recent heuristic simply searches for a feasible solution of the
above using the simplex-based OPL-CPLEX.

Preliminary results were very encouraging.

In particular, two well known “difficult” graphs, listed on the
University of Heidelberg’s web site successfully solved.

Graph Time

8x8 Knight’s Tour Problem (64 nodes, 336 arcs) 1 sec

Perturbed Horton Graph (94 nodes, 282 arcs) 2 sec

20x20 Knight’s Tour Problem (400 nodes, 2736 arcs) 11 min

1000-node Heidelberg Graph (1000 nodes, 3996 arcs) 24 min

2000-node Heidelberg Graph (2000 nodes, 7992 arcs) 46 hrs

A choice of β strongly influences the numerical performance.
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Optimization in the Policy Space

Finally, why not get rid of noose-cycle controls since they
permit randomized controls to pretend to be a HC?

This immediately leads to the observation that, perhaps,

the correct convex domain where HC’s should be sought, is the set
DS of doubly stochastic matrices induced by a given graph.

A square non-negative matrix is doubly stochastic if both its
row-sums and column-sums are equal to 1.

Theorem (Birkhoff-von Neumann)

The set of all N × N doubly stochastic matrices is the convex hull
of permutation matrices.
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Theorem (Borkar, Ejov & Filar, 2004)

Given a graph and the ε−perturbed Markov Decision Process, let
DS be the space of doubly stochastic controls. Define the r.v.

τ1 := first hitting time of the home node 1.

The Hamiltonian Cycle Problem reduces to “merely” minimizing
the variance of τ1, namely,

min
f∈DS

E1

[
(τ1 − N)2|f

]
.

This is an, interesting, optimization problem that we are
tackling, with Walter Murray’s help, by interior point methods.

Could (should?) it be also tackled by cross-entropy methods?
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Connection with Cross-Entropy Methods

In Rubinstein and Kroese 2004 a cross-entropy algorithm is
outlined to solve the TSP.

It associates transition probabilities to all arcs and updates these
probabilities on the basis of information contained in samples of
tours.
Step 1.

Choose an initial transition probability matrix P0, say with
elements uniformly distributed at each row.

Generate n tours τ1, τ2, . . . , τn from P0 with lengths
L(τ1), L(τ2), . . . , L(τn) and find:

min

γ :
1

n

n∑
j=1

exp
−L(τj )

γ ≥ ρ

 ,

for a fixed ρ. Denote the initial solution by γ∗1 .
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CE Algorithm

Step 2.

Use the same n tours τ1, τ2, . . . , τn associated with P0.

Calculate P∗1 and P1 by applying the following equations:

p∗1,ia =

∑
1≤j≤n:{ia}∈τj

e
−L(τj )

γ∗
1

∑n
j=1 e

−L(τj )

γ∗
1

,

P1 = (1− α)P0 + αP∗1 ,

where α is the smoothing parameter chosen from (0, 1).
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CE Algorithm

Step 3.

Generate n new tours τ1, τ2, . . . , τn from P1.

Repeat Step 1 and Step 2 again with P0 and P∗1 replaced with
P1 and P∗2 , respectively.

Denote the final solution by P2 and the corresponding solution
at stage t by Pt .

Step 4.

Let Lt denote the length of the shortest tour up to stage t.

If for any t > r and some r , say r = 5,

Lt = Lt−1 = . . . = Lt−r ,

then repeat Step 3 and STOP, else repeat Steps 2 - 4 again.
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CE Algorithm

Convergence: It is shown in Margolin 2005 and Costa et al
2007 that similar Cross-Entropy algorithms converge to an
optimum solution in finite number of steps with probability
one.

However, it is possible that the stopping criterion of Step 4
may require many iterations to satisfy.

Is it possible that some insights from preceding results could
be used in conjunction with this CE algorithm?
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Nexus Between HCP and CE

Since - for the HCP - not all arcs are available in a given graph,
we“fill-it-in” with artificial arcs that have sufficiently high costs
that they will be identifiable.

So, we solve a “TSP” and claim that the graph is (very likely)
non-Hamiltonian, if the minimal tour is “too long”.
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A Hybrid Simulation-Optimization Algorithm for HCP

Step 0: Initiation.

Insert artificial arcs to make the given graph a complete one
with no self-loops.

Assign a length to each arc as follow:{
lia ∼ U(0, ω), if (i , a) is an authentic arc,
lia ∼ U(µ, µ + σ), otherwise.

Here, ω, µ, and σ are arbitrary positive real numbers and the
only restriction is ω � µ.

Since all the lengths are generated from some continuous
distributions, the total length L(τ) of a typical tour τ is a
continuous random variable.
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A Hybrid Simulation-Optimization Algorithm for HCP

Hence, for two distinct tours τi and τj , we will have

Pr(L(τi ) = L(τj)) = 0.

This means that the shortest tour is unique and (if the graph
is Hamiltonian), then its length is less than Nω.

Set up the initial transition probability matrix as below:

p0,ia :=

{
1

|A(i)| −
N−1−|A(i)|

|A(i)| ε, if (i , a) is an authentic arc,

ε, otherwise.

Here, ε > 0 and is sufficiently small.

Step 1.
t := t + 1.

Ali Eshragh, Jerzy A. Filar and Michael Haythorpe Hamiltonian Cycle Problem and Cross Entropy



A Hybrid Simulation-Optimization Algorithm for HCP

Hence, for two distinct tours τi and τj , we will have

Pr(L(τi ) = L(τj)) = 0.

This means that the shortest tour is unique and (if the graph
is Hamiltonian), then its length is less than Nω.

Set up the initial transition probability matrix as below:

p0,ia :=

{
1

|A(i)| −
N−1−|A(i)|

|A(i)| ε, if (i , a) is an authentic arc,

ε, otherwise.

Here, ε > 0 and is sufficiently small.

Step 1.
t := t + 1.

Ali Eshragh, Jerzy A. Filar and Michael Haythorpe Hamiltonian Cycle Problem and Cross Entropy



A Hybrid Simulation-Optimization Algorithm for HCP

Hence, for two distinct tours τi and τj , we will have

Pr(L(τi ) = L(τj)) = 0.

This means that the shortest tour is unique and (if the graph
is Hamiltonian), then its length is less than Nω.

Set up the initial transition probability matrix as below:

p0,ia :=

{
1

|A(i)| −
N−1−|A(i)|

|A(i)| ε, if (i , a) is an authentic arc,

ε, otherwise.

Here, ε > 0 and is sufficiently small.

Step 1.
t := t + 1.

Ali Eshragh, Jerzy A. Filar and Michael Haythorpe Hamiltonian Cycle Problem and Cross Entropy



A Hybrid Simulation-Optimization Algorithm for HCP

Hence, for two distinct tours τi and τj , we will have

Pr(L(τi ) = L(τj)) = 0.

This means that the shortest tour is unique and (if the graph
is Hamiltonian), then its length is less than Nω.

Set up the initial transition probability matrix as below:

p0,ia :=

{
1

|A(i)| −
N−1−|A(i)|

|A(i)| ε, if (i , a) is an authentic arc,

ε, otherwise.

Here, ε > 0 and is sufficiently small.

Step 1.
t := t + 1.

Ali Eshragh, Jerzy A. Filar and Michael Haythorpe Hamiltonian Cycle Problem and Cross Entropy



A Hybrid Simulation-Optimization Algorithm for HCP

Step 2.

Generate the random tours τ1, τ2, . . . , τn from matrix
Pt−1 = |pt−1,ia|N×N in the following manner:

100γ % of them are generated based on the rows of Pt−1, and
100(1− γ) % of them are generated based on the its columns.

The former are called forward tours and the latter reverse
tours. If a tour with total length of less than Nω has been
generated; STOP; the graph is Hamiltonian.

Step 3.

Construct updated matrix Pt with the best m generated tours
as in Step 2 of the CE algorithm.

If t is “large enough” AND Pt is “not close enough” to being
Hamiltonian, STOP; and claim that the graph is (likely)
non-Hamiltonian.
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A Hybrid Simulation-Optimization Algorithm for HCP

Step 4. (NEW STEP)

Set λia := pt,ia for all i = 1, 2, . . . ,N and a ∈ A(i).

Solve the LP model with

max
N∑

i=1

∑
a∈A(i)

λiaxia

as the objective function subject to:

N∑
i=1

∑
a∈A(i)

(δij − βp(j |i , a)) xia = δ1j(1− βN), ∀ j ,

∑
a∈A(1)

x1a = 1,

box-constraints βN−1 ≤
∑

a∈A(i)

xia ≤ β, ∀ i 6= 1,

xia ≥ 0, ∀ i , a.
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A Hybrid Simulation-Optimization Algorithm for HCP

Consider the dominant positive entries of the optimal solution
x∗ia. These trace out a subgraph Γ∗ ∈ Γ

If Γ∗ is a tour, the original graph is Hamiltonian.

If Γ∗ is not a tour, return to Step 1 and update the transition
matrix.
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Numerical Results

Many Hamiltonian graphs in the range of 6− 324 nodes have
been tested with the above algorithm. In all cases,
Hamiltonian cycles were found.

When the size of graph was small, say less than 50 nodes,
often termination occurred in Step 2 by generating a
Hamiltonian cycle randomly.

However, for the larger graphs, in most tests, the algorithm
terminated in Step 4 by solving the proposed LP model.
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Theoretical Explanation

Suppose the Hamiltonian graph G is given and based on Step
0 of the new algorithm, the unique shortest tour is θ∗.

Define x∗ as a feasible solution of the linear program given in
Step 4 associated with a deterministic policy corresponding to
the tour θ∗.

Let Λt be a transition matrix (obtained from Pt by suitable
adjustment) comprising of values of λia at iteration t, that is,
coefficients of objective function of the linear program
proposed in the Step 4.

Consider Λ∗ as the coefficient matrix associated with a
deterministic policy that corresponds to θ∗, that is, elements
of Λ∗ which coincide with the arcs in θ∗ are equal to 1 and the
others are equal to 0.
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Theoretical Explanation

Proposition

There exists δ > 0 such that, if ‖Λt − Λ∗‖ ≤ δ, then an optimal
solution of the linear program given in Step 4 is associated with a
deterministic policy corresponding to the shortest tour θ∗.

Corollary

It can be shown that depending on the graph structure and for β
near 1 that,

O(N−1) ≤ δ ≤ 3

7
.
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Finally: Is HCP’s NP-completeness an ”anomaly”?

For 18-node cubic graphs of which 39, 635 are Hamiltonian
and 1, 666 are non-Hamiltonian (t = 20)
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