Rough paths methods 4: Application to fBm

Samy Tindel

Purdue University

University of Aarhus 2016

Outline

- Main result
- 2 Construction of the Levy area: heuristics
- 3 Preliminaries on Malliavin calculus
- Levy area by Malliavin calculus methods
- 5 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

Outline

- Main result
- Construction of the Levy area: heuristics
- Preliminaries on Malliavin calculus
- 4 Levy area by Malliavin calculus methods
- 5 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

Objective

Summary: We have obtained the following picture

Remaining question:

How to define $\int \int dx dx$ when x is a fBm with $H \ge 1/2$?

Levy area of fBm

Proposition 1.

Let B be a d-dimensional fBm, with H > 1/3, and $1/3 < \gamma < H$. Almost surely, the paths of B:

- lacksquare Belong to \mathcal{C}_1^{γ}
- ② Admit a Levy area $\mathbf{B^2} \in \mathcal{C}_2^{2\gamma}$ such that

$$\delta \mathbf{B^2} = \delta B \otimes \delta B$$
, i.e. $\mathbf{B}_{sut}^{2,ij} = \delta B_{su}^i \, \delta B_{ut}^j$

Conclusion:

The abstract rough paths theory applies to fBm with H>1/3

Proof of item 1: Already seen (Kolmogorov criterion)

Geometric and weakly geometric Levy area

Remark:

- The stack B² as defined in Proposition 1 is called a weakly geometric second order rough path above X
 → allows a reasonable differential calculus
- ullet When there exists a family $B^{arepsilon}$ such that
 - \triangleright B^{ε} is smooth
 - ▶ $\mathbf{B}^{2,\varepsilon}$ is the iterated Riemann integral of B^{ε}
 - ▶ $\mathbf{B^2} = \lim_{\varepsilon \to 0} \mathbf{B^{2,\varepsilon}}$

then one has a so-called geometric rough path above $B \hookrightarrow B$ easier physical interpretation

Levy area construction for fBm: history

Situation 1: H > 1/4

 \hookrightarrow 3 possible geometric rough paths constructions for B.

- Malliavin calculus tools (Ferreiro-Utzet)
- Regularization or linearization of the fBm path (Coutin-Qian)
- Regularization and covariance computations (Friz et al)

Situation 2: d = 1

$$\hookrightarrow$$
 Then one can take ${f B}_{st}^2=rac{(B_t-B_s)^2}{2}$

Situation 3:
$$H \le 1/4$$
, $d > 1$

The constructions by approximation diverge

Existence result by dyadic approximation (Lyons-Victoir)

Recent advances (Unterberger, Nualart-T)

for weakly geometric Levy area construction

Samy T. (Purdue)

Outline

- Main result
- 2 Construction of the Levy area: heuristics
- Preliminaries on Malliavin calculus
- 4 Levy area by Malliavin calculus methods
- 5 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

fBm kernel

Recall: B is a d-dimensional fBm, with

$$B_t^i = \int_{\mathbb{R}} K_t(u) dW_u^i, \qquad t \geq 0,$$

where W is a d-dimensional Wiener process and

$$K_t(u) \approx (t-u)^{H-\frac{1}{2}} \mathbf{1}_{\{0 < u < t\}}$$

 $\partial_t K_t(u) \approx (t-u)^{H-\frac{3}{2}} \mathbf{1}_{\{0 < u < t\}}.$

Heuristics: fBm differential

Formal differential:

we have $B_{
m v}^j=\int_0^{
m v} K_{
m v}(u)\,dW_u^j$ and thus formally for H>1/2

$$\dot{B}_{v}^{j} = \int_{0}^{v} \partial_{v} K_{v}(u) \, dW_{u}^{j}$$

Formal definition of the area:

Consider B^i . Then formally

$$\int_0^1 B_v^i dB_v^j = \int_0^1 B_v^i \left(\int_0^v \partial_v K_v(u) dW_u^j \right) dv$$
$$= \int_0^1 \left(\int_u^1 \partial_v K_v(u) B_v^i dv \right) dW_u^j$$

This works for H > 1/2 since H - 3/2 > -1.

Heuristics: fBm differential for H < 1/2

Formal definition of the area for H < 1/2: Use the regularity of B^i and write

$$\int_0^1 B_v^i dB_v^j = \int_0^1 \left(\int_u^1 \partial_v K_v(u) B_v^i dv \right) dW_u^j$$

$$= \int_0^1 \left(\int_u^1 \partial_v K_v(u) \delta B_{uv}^i dv \right) dW_u^j$$

$$+ \int_0^1 K_1(u) B_u^i dW_u^j.$$

Control of singularity: $\partial_{\nu} K_{\nu}(u) \delta B^{i}_{u\nu} \approx (\nu - u)^{H-3/2+H}$ \hookrightarrow Definition works for 2H - 3/2 > -1, i.e. H > 1/4!

Hypothesis: $\int_0^1 B_v^i dB_v^j$ well defined as stochastic integral

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□P

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 11 / 67

Outline

- Main result
- Construction of the Levy area: heuristics
- 3 Preliminaries on Malliavin calculus
- 4 Levy area by Malliavin calculus methods
- 5 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

Space ${\cal H}$

Notation: Let

- ullet be the set of step-functions $f:\mathbb{R} o \mathbb{R}$
- B be a 1-d fBm

Recall:

$$R_H(s,t) = \mathbf{E}[B_t B_s] = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t-s|^{2H})$$

Space \mathcal{H} : Closure of \mathcal{E} with respect to the inner product

$$\left\langle \mathbf{1}_{[s_{1},s_{2}]}, \mathbf{1}_{[t_{1},t_{2}]} \right\rangle_{\mathcal{H}} = \mathbf{E} \left[\delta B_{s_{1}s_{2}} \, \delta B_{t_{1}t_{2}} \right]
= R_{H}(s_{2}, t_{2}) - R_{H}(s_{1}, t_{2}) - R_{H}(s_{2}, t_{1}) + R_{H}(s_{1}, t_{1})
\equiv \Delta_{[s_{1},s_{2}] \times [t_{1},t_{2}]} R_{H}$$
(1)

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 Q @

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 13 / 67

Isonormal process

First chaos of B: We set

• $H_1(B) \equiv$ closure in $L^2(\Omega)$ of linear combinations of δB_{st}

Fundamental isometry: The mapping

$$\mathbf{1}_{[t,t']} \mapsto B_{t'} - B_t$$

can be extended to an isometry between \mathcal{H} and $H_1(B)$ \hookrightarrow We denote this isometry by $\varphi \mapsto B(\varphi)$.

Isonormal process: B can be interpreted as

- A centered Gaussian family $\{B(\varphi); \varphi \in \mathcal{H}\}$
- Covariance function given by $\mathbf{E}[B(\varphi_1)B(\varphi_2)] = \langle \varphi_1, \varphi_2 \rangle_{\mathcal{H}}$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

14 / 67

Underlying Wiener process on compact intervals Volterra type representation for *B*:

$$B_t = \int_{\mathbb{R}} K_t(u) dW_u, \qquad t \geq 0$$

with

- W Wiener process
- $K_t(u)$ defined by

$$K_{t}(u) = c_{H} \left[\left(\frac{u}{t} \right)^{\frac{1}{2} - H} (t - u)^{H - \frac{1}{2}} + \left(\frac{1}{2} - H \right) u^{\frac{1}{2} - H} \int_{u}^{t} v^{H - \frac{3}{2}} (v - u)^{H - \frac{1}{2}} dv \right] \mathbf{1}_{\{0 < u < t\}}$$

Bounds on K: If H < 1/2

$$|\mathcal{K}_t(u)| \lesssim (t-u)^{H-\frac{1}{2}} + u^{H-\frac{1}{2}}, \quad \text{and} \quad |\partial_t \mathcal{K}_t(u)| \lesssim (t-u)^{H-\frac{3}{2}}.$$

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 15 / 67

Underlying Wiener process on $\mathbb R$

Mandelbrot's representation for B:

$$B_t = \int_{\mathbb{R}} K_t(u) dW_u, \qquad t \geq 0$$

with

- W two-sided Wiener process
- $K_t(u)$ defined by

$$K_t(u) = c_H \left[(t-u)_+^{H-1/2} - (-u)_+^{H-1/2} \right] \mathbf{1}_{\{-\infty < u < t\}}$$

Bounds on K: If H < 1/2 and 0 < u < t

$$|\mathcal{K}_t(u)| \lesssim (t-u)^{H-\frac{1}{2}}, \quad \text{and} \quad |\partial_t \mathcal{K}_t(u)| \lesssim (t-u)^{H-\frac{3}{2}}.$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Samy T. (Purdue) Rough Paths 4

16 / 67

Fractional derivatives

Definition: For $\alpha \in (0,1)$, $u \in \mathbb{R}$ and f smooth enough,

$$\mathcal{D}_{-}^{\alpha} f_{u} = \frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \frac{f_{r} - f_{u+r}}{r^{1+\alpha}} dr$$
$$\mathcal{I}_{-}^{\alpha} f_{u} = \frac{1}{\Gamma(\alpha)} \int_{u}^{\infty} \frac{f_{r}}{(r-u)^{1-\alpha}} dr$$

Inversion property:

$$\mathcal{I}_{-}^{\alpha}\left(\mathcal{D}_{-}^{\alpha}f\right)=\mathcal{D}_{-}^{\alpha}\left(\mathcal{I}_{-}^{\alpha}f\right)=f$$

Fractional derivatives on intervals

Notation: For $f:[a,b]\to\mathbb{R}$, extend f by setting $f^\star=f\,\mathbf{1}_{[a,b]}$

Definition:

$$\mathcal{D}_{-}^{\alpha}f_{u}^{\star} = \mathcal{D}_{b-}^{\alpha}f_{u} = \frac{f_{u}}{\Gamma(1-\alpha)(b-u)^{\alpha}} + \frac{\alpha}{\Gamma(1-\alpha)}\int_{u}^{b} \frac{f_{u}-f_{r}}{(r-u)^{1+\alpha}}dr$$

$$\mathcal{I}_{-}^{\alpha}f_{u}^{\star} = \mathcal{I}_{b-}^{\alpha}f_{u} = \frac{1}{\Gamma(\alpha)}\int_{u}^{b} \frac{f_{r}}{(r-u)^{1-\alpha}}dr$$

A related operator: For H < 1/2,

$$\mathcal{K}f = \mathcal{D}_{-}^{1/2-H}f$$

Samy T. (Purdue)

Wiener space and fractional derivatives

Proposition 2.

For H < 1/2 we have

- ullet K isometry between ${\mathcal H}$ and a closed subspace of $L^2({\mathbb R})$
- For $\phi, \psi \in \mathcal{H}$,

$$\mathbf{E}\left[B(\phi)B(\psi)\right] = \langle \phi, \psi \rangle_{\mathcal{H}} = \langle \mathcal{K}\phi, \mathcal{K}\psi \rangle_{L^{2}(\mathbb{R})},$$

• In particular, for $\phi \in \mathcal{H}$,

$$\mathbf{E}\left[|B(\phi)|^2\right] = \|\varphi\|_{\mathcal{H}} = \|\mathcal{K}\varphi\|_{L^2(\mathbb{R})}$$

Notation:

 $B(\phi)$ is called Wiener integral of ϕ w.r.t B

→ □ → → □ → → □ → ○○○

19 / 67

Samy T. (Purdue) Rough Paths 4 Aarhus 2016

Cylindrical random variables

Definition 3.

- $f \in C_b^{\infty}(\mathbb{R}^k; \mathbb{R})$ $\varphi_i \in \mathcal{H}$, for $i \in \{1, \dots, k\}$
- F a random variable defined by

$$F = f(B(\varphi_1), \ldots, B(\varphi_k))$$

We say that F is a smooth cylindrical random variable

Notation:

 $S \equiv Set$ of smooth cylindrical random variables

Malliavin's derivative operator

Definition for cylindrical random variables:

If $F \in \mathcal{S}$, $DF \in \mathcal{H}$ defined by

$$DF = \sum_{i=1}^{k} \frac{\partial f}{\partial x_i} (B(\varphi_1), \dots, B(\varphi_k)) \varphi_i.$$

Proposition 4.

D is closable from $L^p(\Omega)$ into $L^p(\Omega; \mathcal{H})$.

Notation: $\mathbb{D}^{1,2} \equiv \text{closure of } \mathcal{S} \text{ with respect to the norm}$

$$\|F\|_{1,2}^2 = \textbf{E}\left[|F|^2\right] + \textbf{E}\left[\|DF\|_{\mathcal{H}}^2\right].$$

Divergence operator

Definition 5.

Domain of definition:

$$\mathrm{Dom}(\delta^{\diamond}) = \left\{ \phi \in L^{2}(\Omega; \mathcal{H}); \; \mathbf{E}\left[\langle DF, \phi \rangle_{\mathcal{H}} \right] \leq c_{\phi} \|F\|_{L^{2}(\Omega)} \right\}$$

Definition by duality: For $\phi \in \text{Dom}(I)$ and $F \in \mathbb{D}^{1,2}$

$$\mathbf{E}\left[F\,\delta^{\diamond}(\phi)\right] = \mathbf{E}\left[\langle DF, \phi \rangle_{\mathcal{H}}\right] \tag{2}$$

Samy T. (Purdue)

Divergence and integrals

Case of a simple process: Consider

- $n \geq 1$
- $0 \le t_1 < \cdots < t_n$
- $a_i \in \mathbb{R}$ constants

Then

$$\delta^{\diamond}\left(\sum_{i=0}^{n-1}a_{i}\mathbf{1}_{[t_{i},t_{i+1})}\right)=\sum_{i=0}^{n-1}a_{i}\,\delta B_{t_{i}t_{i+1}}$$

Case of a deterministic process: if $\phi \in \mathcal{H}$ is deterministic,

$$\delta^{\diamond}(\phi) = B(\phi),$$

hence divergence is an extension of Wiener's integral

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か 9 で

23 / 67

Divergence and integrals (2)

Proposition 6.

Let

- B a fBm with Hurst parameter $1/4 < H \le 1/2$
- f a C^3 function with exponential growth
- $\{\Pi^n_{st}; \ n \geq 1\} \equiv \text{set of dyadic partitions of } [s,t]$

Define

$$\tilde{S}^{n,\diamond} = \sum_{k=0}^{2^n-1} f(B_{t_k}) \diamond \delta B_{t_k t_{k+1}}.$$

Then $\tilde{S}^{n,\diamond}$ converges in $L^2(\Omega)$ to $\delta^{\diamond}(f(B))$

Remark: In the Brownian case $\hookrightarrow \delta^{\diamond}$ coincides with Itô's integral

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 24 / 67

Criterion for the definition of divergence

Proposition 7.

Let

- ullet a < b, and $\mathcal{E}^{[a,b]} \equiv$ step functions in [a,b]
- ullet $\mathcal{H}_0([a,b]) \equiv$ closure of $\mathcal{E}^{[a,b]}$ with respect to

$$\begin{split} \|\varphi\|_{\mathcal{H}_0([a,b])}^2 \\ &= \int_a^b \frac{\varphi_u^2}{(b-u)^{1-2H}} du + \int_a^b \left(\int_u^b \frac{|\varphi_r - \varphi_u|}{(r-u)^{3/2-H}} dr \right)^2 du. \end{split}$$

Then

- $\mathcal{H}_0([a,b])$ is continuously included in \mathcal{H}
- If $\phi \in \mathbb{D}^{1,2}(\mathcal{H}_0([a,b]))$, then $\phi \in \mathrm{Dom}(\delta^{\diamond})$

◆□▶◆□▶◆壹▶◆壹▶ 壹 めQ

Bound on the divergence

Corollary 8.

Under the assumptions of Proposition 7,

$$\mathbf{E}\left[\left|\delta^{\diamond}(\phi)\right|^{2}\right]\lesssim\mathbf{E}\left[\|\phi\|_{\mathbb{D}^{1,2}(\mathcal{H}_{0}([a,b]))}^{2}\right]$$

Multidimensional extensions

Aim:

Define a Malliavin calculus for (B^1, \ldots, B^d)

First point of view: Rely on

- ullet Partial derivatives D^{B^i} with respect to each component
- \bullet Divergences δ^{\diamond,B^i} , defined by duality
 - \hookrightarrow Related to integrals with respect to each B^i

Second point of view:

Change the underlying Hilbert space and consider

$$\hat{\mathcal{H}} = \mathcal{H} \times \{1, \dots, d\}$$

Russo-Vallois' symmetric integral

Definition 9.

ullet ϕ be a random path

$$\int_{a}^{b}\phi_{w}\,d^{\circ}B_{w}^{i}=L^{2}-\lim_{\varepsilon\rightarrow0}\frac{1}{2\varepsilon}\int_{a}^{b}\phi_{w}\left(B_{w+\varepsilon}^{i}-B_{w-\varepsilon}^{i}\right)\!dw,$$
 provided the limit exists.

Extension of classical integrals: Russo-Vallois' integral coincides with

- Young's integral if H > 1/2 and $\phi \in \mathcal{C}^{1-H+\varepsilon}$
- Stratonovich's integral in the Brownian case

Russo-Vallois and Malliavin

Proposition 10.

Let ϕ be a stochastic process such that

The following is an almost surely finite random variable:

$$\operatorname{Tr}_{[a,b]} D\phi := L^2 - \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_a^b \langle D\phi_u, \mathbf{1}_{[u-\varepsilon, u+\varepsilon]} \rangle_{\mathcal{H}} du$$

Then $\int_a^b \phi_u d^{\circ} B_u^i$ exists, and verifies

$$\int_{a}^{b} \phi_{u} d^{\circ} B_{u}^{i} = \delta^{\circ} (\phi \mathbf{1}_{[a,b]}) + \operatorname{Tr}_{[a,b]} D\phi.$$

◆ロト ◆団ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久(*)

Outline

- Main result
- Construction of the Levy area: heuristics
- Preliminaries on Malliavin calculus
- 4 Levy area by Malliavin calculus methods
- 6 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

Levy area: definition of the divergence

Lemma 11.

Let

- $H > \frac{1}{4}$
- B a d-dimensional fBm(H)
- $0 \le s < t < \infty$

Then for any $i, j \in \{1, \dots, d\}$ (either i = j or $i \neq j$) we have

- $\bullet \phi_u^j \equiv \delta B_{su}^j \mathbf{1}_{[s,t]}(u) \text{ lies in } \mathsf{Dom}(\delta^{\diamond,B^i})$
- The following estimate holds true:

$$\mathbf{E}\left[\left(\delta^{\diamond,B^{i}}\left(\phi^{j}\right)\right)^{2}\right]\leq c_{H}|t-s|^{4H}$$

Proof

Case i = j, strategy:

- We invoke Corollary 8
- We have to prove $\phi^i \mathbf{1}_{[s,t]} \in \mathbb{D}^{1,2,B^i}(\mathcal{H}_0([s,t]))$
- ullet Abbreviation: we write $\mathbb{D}^{1,2,B^i}(\mathcal{H}_0([s,t]))=\mathbb{D}^{1,2}(\mathcal{H}_0)$

Norm of ϕ^i in \mathcal{H}_0 : We have

$$\begin{split} \mathbf{E} \left[\| \phi^i \|_{\mathcal{H}_0}^2 \right] &= A_{st}^1 + A_{st}^2 \\ A_{st}^1 &= \int_s^t \frac{\mathbf{E} \left[|\delta B_{su}^i|^2 \right]}{(t-u)^{1-2H}} du \\ A_{st}^2 &= \mathbf{E} \left\{ \int_s^t \left(\int_u^t \frac{|\delta B_{ur}^i|}{(r-u)^{3/2-H}} dr \right)^2 du \right\} \end{split}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Proof (2)

Analysis of A_{st}^1 :

$$A_{st}^{1} = \int_{s}^{t} \frac{|u-s|^{2H}}{(t-u)^{1-2H}} du \stackrel{u:=s+(t-s)v}{=} (t-s)^{4H} \int_{0}^{1} \frac{v^{2H}}{(1-v)^{1-2H}} dv$$
$$= c_{H}(t-s)^{4H}$$

Analysis of A_{st}^2 :

$$A_{st}^{2} = \int_{s}^{t} du \int_{[u,t]^{2}} dr_{1} dr_{2} \frac{\mathbf{E} \left[\delta B_{ur_{1}}^{i} \delta B_{ur_{2}}^{i} \right]}{(r_{1} - u)^{3/2 - H} (r_{2} - u)^{3/2 - H}}$$

$$\leq \int_{s}^{t} du \left(\int_{u}^{t} \frac{dr}{(r - u)^{3/2 - 2H}} \right)^{2}$$

$$\leq c_{H} \int_{s}^{t} (t - u)^{4H - 1} du = c_{H} (t - s)^{4H}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・釣♀@

Aarhus 2016

33 / 67

Samy T. (Purdue) Rough Paths 4

Proof (3)

Conclusion for $\|\phi^i\|_{\mathcal{H}_0}$: We have found

$$\mathbf{E}\left[\|\phi^i\|_{\mathcal{H}_0}^2\right] \leq c_H (t-s)^{4H}$$

Derivative term, strategy: setting $D = D^{B^i}$ we have

- We have $D_{\nu}\phi_{u}^{i}=\mathbf{1}_{[s,u]}(\nu)$
- We have to evaluate $D\phi^i \in \mathcal{H}^u_0 \otimes \mathcal{H}^v$

Computation of the \mathcal{H} -norm: According to (1),

$$||D\phi^{i}||_{\mathcal{H}}^{2} = \mathbf{E}\left[|\delta B_{su}^{2}|^{2}\right] = |u - s|^{2H}$$

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

Proof (4)

Computation for $D\phi^i$: We get

$$\begin{split} \mathbf{E} \left[\| D\phi^i \|_{\mathcal{H}_0 \otimes \mathcal{H}}^2 \right] &= B_{st}^1 + B_{st}^2 \\ B_{st}^1 &= \int_s^t \frac{\mathbf{E} \left[(u-s)^{2H} \right]}{(t-u)^{1-2H}} du \\ B_{st}^2 &= \mathbf{E} \left\{ \int_s^t \left(\int_u^t \frac{|r-s|^H - |u-s|^H}{(r-u)^{3/2-H}} dr \right)^2 du \right\} \end{split}$$

Moreover:

$$0 \le |r - s|^H - |u - s|^H \le |r - u|^H$$

Hence, as for the terms A_{st}^1 , A_{st}^2 , we get

$$\mathbf{E}\left[\|D\phi^i\|_{\mathcal{H}_0\otimes\mathcal{H}}^2\right]\leq c_H(t-s)^{4H}$$

35 / 67

Samy T. (Purdue) Rough Paths 4 Aarhus 2016

Proof (5)

Summary: We have found

$$\mathbf{E}\left[\|\phi^i\|_{\mathcal{H}_0}^2\right] + \mathbf{E}\left[\|D\phi^i\|_{\mathcal{H}_0\otimes\mathcal{H}}^2\right] \leq c_H(t-s)^{4H}$$

Conclusion for Bⁱ: According to Proposition 7 and Corollary 8

- $\delta B_{s}^{i} \mathbf{1}_{[s,t]} \in \mathsf{Dom}(\delta^{\diamond,B^{i}})$
- We have

$$\mathbf{E}\left[\left(\delta^{\diamond,B^{i}}\left(\delta B_{s}^{i}.\mathbf{1}_{[s,t]}\right)\right)^{2}\right] \leq c_{H}|t-s|^{4H}$$

Samy T. (Purdue)

Proof (6)

Case $i \neq j$, strategy: Conditioned on \mathcal{F}^{B^j}

- B^{j} and $\phi^{j} = \delta B^{j}_{s}$ are deterministic
- $\delta^{\diamond,B^i}(\phi^j)$ is a Wiener integral

Computation: For $i \neq j$ we have

$$\mathbf{E}\left[\left(\delta^{\diamond,B^{i}}\left(\phi^{j}\right)\right)^{2}\right] = \mathbf{E}\left\{\mathbf{E}\left[\left(\delta^{\diamond,B^{i}}\left(\phi^{j}\right)\right)^{2}\middle|\mathcal{F}^{B^{j}}\right]\right\}$$

$$= \mathbf{E}\left[\left\|\phi^{j}\right\|_{\mathcal{H}}^{2}\right]$$

$$\leq c_{H}\mathbf{E}\left[\left\|\phi^{j}\right\|_{\mathcal{H}_{0}}^{2}\right]$$

$$\leq c_{H}|t-s|^{4H},$$
(3)

where computations for the last step are the same as for i = j.

4 D > 4 B > 4 E > E = 4) Q (4)

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 37 / 67

Definition of the Levy area

Proposition 12.

Let

- $H > \frac{1}{4}$
- B a d-dimensional fBm(H)
- $0 \le s < t < \infty$

Then for any $i, j \in \{1, ..., d\}$ (either i = j or $i \neq j$) we have

- **1** $\mathbf{B}_{st}^{2,ji} \equiv \int_{s}^{t} \delta B_{su}^{j} d^{\circ} B_{u}^{i}$ defined in the Russo-Vallois sense
- The following estimate holds true:

$$\mathsf{E}\left[\left|\mathsf{B}_{st}^{2,ji}\right|^{2}\right] \leq c_{H}|t-s|^{4H}$$

Proof

Strategy:

- We apply Proposition 10, and check the assumptions
- Proposition 10, item 1: proved in Lemma 11
- Proposition 10, item 2: need to compute trace term

Trace term, case i = j: We have

$$D_{\mathsf{v}}^{\mathsf{B}^{\mathsf{i}}}\phi_{\mathsf{u}}^{\mathsf{i}}=\mathbf{1}_{[\mathsf{s},\mathsf{u}]}(\mathsf{v})$$

Hence

$$\langle D\phi_u^i, \mathbf{1}_{[u-\varepsilon,u+\varepsilon]} \rangle_{\mathcal{H}} = \Delta_{[s,u] \times [u-\varepsilon,u+\varepsilon]} R_H$$

Proof (2)

Samy T. (Purdue)

Computation of the rectangular increment: We have

$$\begin{split} & \Delta_{[s,u] \times [u-\varepsilon,u+\varepsilon]} R_H \\ &= R_H(u,u+\varepsilon) - R_H(s,u+\varepsilon) - R_H(u,u-\varepsilon) + R_H(s,u-\varepsilon) \\ &= \frac{1}{2} \left[-\varepsilon^{2H} + (u-s+\varepsilon)^{2H} + \varepsilon^{2H} - (u-s-\varepsilon)^{2H} \right] \\ &= \frac{1}{2} \left[(u-s+\varepsilon)^{2H} - (u-s-\varepsilon)^{2H} \right] \end{split}$$

Computation of the integral: Thanks to an elementary integration,

$$\begin{split} & \int_{s}^{t} \Delta_{[s,u] \times [u-\varepsilon,u+\varepsilon]} R_{H} \, du \\ & = \frac{1}{2(2H+1)} \left[(t-s+\varepsilon)^{2H+1} - \varepsilon^{2H+1} - (t-s-\varepsilon)^{2H+1} \right] \end{split}$$

Aarhus 2016 40 / 67

Proof (3)

Computation of the trace term: Differentiating we get

$$\begin{aligned} &\operatorname{Tr}_{[s,t]} D\phi^{i} \\ &= \frac{1}{2(2H+1)} \lim_{\varepsilon \to 0} \frac{(t-s+\varepsilon)^{2H+1} - \varepsilon^{2H+1} - (t-s-\varepsilon)^{2H+1}}{2\varepsilon} \\ &= \frac{(t-s)^{2H}}{2} \end{aligned}$$

Expression for the Stratonovich integral: According to Proposition 10

$$\mathbf{B}_{st}^{2,ii} = \int_{s}^{t} \delta_{su}^{i} d^{\circ} B_{u}^{i} = \delta^{\diamond,B^{i}} (\phi^{i} \mathbf{1}_{[s,t]}) + \frac{(t-s)^{2H}}{2}$$
 (4)

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Samy T. (Purdue) Rough Paths 4

41 / 67

Proof (4)

Moment estimate: Thanks to relation (4) we have

$$\mathsf{E}\left[\left|\mathsf{B}_{st}^{2,ii}\right|^{2}\right] \leq c_{H}|t-s|^{4H}$$

Case $i \neq j$: We have

- Trace term is 0
- $\bullet \ \mathbf{B}_{st}^{2,ji} = \delta^{\diamond,B^i}(\phi^j \mathbf{1}_{[s,t]})$
- Moment estimate follows from Lemma 11

Remark

Another expression for \mathbf{B}^{ii} :

Rules of Stratonovich calculus for B show that

$$\mathbf{B}_{st}^{ii} = \frac{\left(\delta B_{st}^i\right)^2}{2}$$

Much simpler expression!

Samy T. (Purdue)

Outline

- Main result
- Construction of the Levy area: heuristics
- Preliminaries on Malliavin calculus
- 4 Levy area by Malliavin calculus methods
- 5 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

Levy area construction

Summary: for $0 \le s < t \le \tau$, we have defined the stochastic integral

$$\mathbf{B}^2_{st} = \int_s^t \int_s^u d^\circ B_v \otimes d^\circ B_u, \quad \text{i. e.} \quad \mathbf{B}^{2,ij}_{st} = \int_s^t \int_s^u d^\circ B_v^i \, d^\circ B_u^j,$$

If i = j:

•
$$\mathbf{B}_{st}^2(i,i) = \frac{1}{2}(B_t - B_s)^2$$

If $i \neq j$:

- Bⁱ considered as deterministic path
- $\mathbf{B}_{st}^{2,ij}$ is a Wiener integral w.r.t B^{j}

Algebraic relation

Proposition 13.

Let

- ullet $(s,u,t)\in\mathcal{S}_{3, au}$
- ullet ${f B^2}$ as constructed in Proposition 12

Then we have

$$\delta \mathbf{B}_{sut}^{2,ij} = \delta B_{su}^i \, \delta B_{ut}^j$$

Proof

Levy area as a limit: from definition of R-V integral we have

$$\mathbf{B}_{st}^{2,ij} = \lim_{\varepsilon \to 0} \mathbf{B}_{st}^{2,\varepsilon,ij}, \quad \text{where} \quad \mathbf{B}_{st}^{2,\varepsilon,ij} = \int_{s}^{t} \delta B_{sv}^{i} \, dX_{v}^{\varepsilon,j},$$

with

$$X_{v}^{\varepsilon,j} = \int_{0}^{v} \frac{1}{2\varepsilon} \, \delta B_{w-\varepsilon,w+\varepsilon}^{j} \, dw$$

Increments of $\mathbf{B}^{2,\varepsilon,ij}$: $\mathbf{B}^{2,\varepsilon,ij}_{st}$ is a Riemann type integral and

$$\delta \mathbf{B}_{sut}^{2,\varepsilon,ij} = \delta B_{su}^i \, \delta X_{ut}^{\varepsilon,j} \tag{5}$$

We wish to take limits in (5)

→□▶→□▶→□▶→□▶
□◆□▶→□▶→□
□◆□▶→□
□◆□▶→□
□◆□
□◆□
□◆□
□◆□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
<

Proof (2)

Limit in the lhs of (5): We have seen

$$\lim_{\varepsilon \to 0} \delta \mathbf{B}_{sut}^{\mathbf{2},\varepsilon,ij} \overset{L^2(\Omega)}{=} \delta \mathbf{B}_{sut}^{\mathbf{2},ij}$$

Expression for $X^{\varepsilon,j}$: We have

$$X_{v}^{\varepsilon,j} = \frac{1}{2\varepsilon} \left\{ \int_{0}^{v} B_{w+\varepsilon}^{j} dw - \int_{0}^{v} B_{w-\varepsilon}^{j} dw \right\}$$

$$= \frac{1}{2\varepsilon} \left\{ \int_{\varepsilon}^{v+\varepsilon} B_{w}^{j} dw - \int_{-\varepsilon}^{v-\varepsilon} B_{w}^{j} dw \right\}$$

$$= \frac{1}{2\varepsilon} \left\{ \int_{v-\varepsilon}^{v+\varepsilon} B_{w}^{j} dw - \int_{-\varepsilon}^{\varepsilon} B_{w}^{j} dw \right\}$$
(6)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

48 / 67

Samy T. (Purdue) Rough Paths 4 Aarhus 2016

Proof (3)

Limit in the rhs of (5):

Invoking Lebesgue's differentiation theorem in (6), we get

$$\lim_{\varepsilon \to 0} X_{\mathbf{v}}^{\varepsilon,j} = \delta B_{0\mathbf{v}}^j = B_{\mathbf{v}}^j \quad \Longrightarrow \quad \lim_{\varepsilon \to 0} \delta B_{\mathbf{s}\mathbf{u}}^i \, \delta X_{\mathbf{u}\mathbf{t}}^{\varepsilon,j} = \delta B_{\mathbf{s}\mathbf{u}}^i \, \delta B_{\mathbf{u}\mathbf{t}}^j$$

Conclusion: Taking limits on both sides of (5), we get

$$\delta \mathbf{B}_{sut}^{2,ij} = \delta B_{su}^i \, \delta B_{ut}^j$$

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

Samy T. (Purdue)

Regularity criterion in C_2

Lemma 14.

Let $g \in \mathcal{C}_2$. Then, for any $\gamma > 0$ and $p \ge 1$ we have

$$\|g\|_{\gamma} \leq c \left(U_{\gamma;p}(g) + \|\delta g\|_{\gamma}\right),$$

with

$$U_{\gamma;p}(g) = \left(\int_0^T \int_0^T \frac{|g_{st}|^p}{|t-s|^{\gamma p+2}} ds dt\right)^{1/p}.$$

Levy area of fBm: regularity

Proposition 15.

Let

- B² as constructed in Proposition 12
- 0 < γ < H

Then, up to a modification, we have

$$\mathbf{B^2} \in \mathcal{C}^{2\gamma}_2([0, au];\mathbb{R}^{d,d})$$

Proof

Strategy: Apply our regularity criterion to $g = B^2$

Term 2: We have seen: $\delta \mathbf{B^2} = \delta B \otimes \delta B$

$$B \in \mathcal{C}_1^{\gamma} \quad \Rightarrow \quad \delta B \otimes \delta B \in \mathcal{C}_3^{2\gamma}$$

Term 1: For $p \ge 1$ we shall control

$$E\left[\left|U_{\gamma;p}(\mathbf{B}^2)\right|^p\right] = \int_0^T \int_0^T \frac{\mathbf{E}\left[\left|\mathbf{B}_{st}^2\right|^p\right]}{|t-s|^{\gamma p}} ds dt$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 9000

Proof (2)

Aim: Control of $\mathbf{E}\left[|\mathbf{B}_{st}^2|^p\right]$

Scaling and stationarity arguments:

$$\mathbf{E}\left[|\mathbf{B}_{st}^{2,ij}|^{p}\right] = \mathbf{E}\left[\left|\int_{s}^{t} dB_{u}^{i} \int_{s}^{u} dB_{v}^{j}\right|^{p}\right]$$
$$= |t - s|^{2pH} \mathbf{E}\left[\left|\int_{0}^{1} dB_{u}^{i} \int_{0}^{u} dB_{v}^{j}\right|^{p}\right]$$

Stochastic analysis arguments:

Since $\int_0^1 dB_u^i \int_0^u dB_v^j$ is element of the second chaos of fBm:

$$\mathbf{E}\left[\left|\int_0^1 dB_u^i \int_0^u dB_v^j\right|^p\right] \leq c_{p,1} \mathbf{E}\left[\left|\int_0^1 dB_u^i \int_0^u dB_v^j\right|^2\right] \leq c_{p,2}$$

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 53 / 67

Proof (3)

Recall:
$$\|\mathbf{B^2}\|_{\gamma} \leq c \left(U_{\gamma;p}(\mathbf{B^2}) + \|\delta\mathbf{B^2}\|_{\gamma}\right)$$

Computations for $U_{\gamma,p}(\mathbf{B}^2)$:

Let $\gamma < 2H$, and p such that $\gamma + 2/p < 2H$. Then:

$$E\left[\left|U_{\gamma;p}(\mathbf{B}^{2})\right|^{p}\right] = \int_{0}^{T} \int_{0}^{T} \frac{E\left[\left|\mathbf{B}_{st}^{2}\right|^{p}\right]}{\left|t-s\right|^{\gamma p+2}} ds dt$$

$$\leq c_{p} \int_{0}^{T} \int_{0}^{T} \frac{\left|t-s\right|^{2pH}}{\left|t-s\right|^{p(\gamma+2/p)}} ds dt \leq c_{p}$$

Conclusion:

- $\mathbf{B}^2 \in \mathcal{C}_2^{2\gamma}$ for any $\gamma < H$
- One can solve RDEs driven by fBm with H > 1/3!

Samy T. (Purdue)

54 / 67

Outline

- Main result
- Construction of the Levy area: heuristics
- Preliminaries on Malliavin calculus
- 4 Levy area by Malliavin calculus methods
- 6 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

p-variation in \mathbb{R}^2

Definition 16.

Let

- ullet X centered Gaussian process on [0, T]
- $R: [0, T]^2 \to \mathbb{R}$ covariance function of X
- $0 \le s < t \le T$
- $\Pi_{st} \equiv$ set of partitions of [s, t]

We set

$$\|R\|_{p-\mathsf{var};\,[s,t]^2}^p = \sup_{\Pi^2_{\mathsf{st}}} \sum_{i,j} \left|\Delta_{[s_i,s_{i+1}] imes [t_j,t_{j+1}]} R
ight|^p$$

and

$$\mathcal{C}^{p-\mathsf{var}} = \left\{ f : [0, T]^2 \to \mathbb{R}; \ \|R\|_{p-\mathsf{var}} < \infty \right\}$$

- ◆□▶◆@▶◆意▶◆意▶ · 意 · かへぐ

Young's integral in the plane

Proposition 17.

Let

- $f \in \mathcal{C}^{p-\mathsf{var}}$
- $ullet \ g \in \mathcal{C}^{q-\mathsf{var}}$
- p, q such that $\frac{1}{p} + \frac{1}{q} > 1$

Then the following integral is defined in Young's sense:

$$\int_{[s,t]^2} \Delta_{[s,u_1]\times[s,u_2]} f \, dg(u_1,u_2)$$

Area and 2d integrals

Proposition 18.

Let

- ullet $X \in \mathbb{R}^d$ smooth centered Gaussian process on [0,T]
- Independent components X^j
- $R:[0,T]^2 \to \mathbb{R}$ common covariance function of X^{j} 's
- $0 \le s < t \le T$ and $i \ne j$

Define (in the Riemann sense) $\mathbf{X}_{st}^{2,ij} = \int_{s}^{t} \delta X_{su}^{i} dX_{u}^{j}$. Then

$$\mathbf{E}\left[\left|\mathbf{X}_{st}^{2,ij}\right|^{2}\right] = \int_{[s,t]^{2}} \Delta_{[s,u_{1}]\times[s,u_{2}]} R \, dR(u_{1},u_{2}) \tag{7}$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Proof

Expression for the area: We have

$$\mathbf{X}_{st}^{2,ij} = \int_{s}^{t} \delta X_{su}^{i} dX_{u}^{j} = \int_{s}^{t} \delta X_{su}^{i} \dot{X}_{u}^{j} du$$

Expression for the second moment:

$$\begin{split} \mathbf{E} \left[\left| \mathbf{X}_{st}^{2,ij} \right|^{2} \right] &= \int_{[s,t]^{2}} \mathbf{E} \left[\delta X_{su_{1}}^{i} \delta X_{su_{2}}^{i} \dot{X}_{u_{1}}^{j} \dot{X}_{u_{2}}^{j} \right] du_{1} du_{2} \\ &= \int_{[s,t]^{2}} \mathbf{E} \left[\delta X_{su_{1}}^{i} \delta X_{su_{2}}^{i} \right] \mathbf{E} \left[\dot{X}_{u_{1}}^{j} \dot{X}_{u_{2}}^{j} \right] du_{1} du_{2} \\ &= \int_{[s,t]^{2}} \Delta_{[s,u_{1}] \times [s,u_{2}]} R \ \partial_{u_{1}u_{2}}^{2} R(u_{1},u_{2}) du_{1} du_{2} \\ &= \int_{[s,t]^{2}} \Delta_{[s,u_{1}] \times [s,u_{2}]} R \ dR(u_{1},u_{2}) \end{split}$$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

59 / 67

Remarks

Expression in terms of norms in \mathcal{H} : We also have

$$\mathbf{E}\left[\left|\mathbf{X}_{st}^{2,ij}\right|^{2}\right] = \int_{[s,t]^{2}} \mathbf{E}\left[\delta B_{su_{1}}^{i} \delta B_{su_{2}}^{i}\right] dR(u_{1}, u_{2})$$
$$= \mathbf{E}\left[\left\langle\delta B_{s\cdot}^{i}, \delta B_{s\cdot}^{i}\right\rangle_{\mathcal{H}}\right]$$

This is similar to (3)

Extension:

- ullet Formula (7) makes sense as long as $R \in \mathcal{C}^{p ext{-}\mathsf{var}}$ with p < 2
- We will check this assumption for a fBm with $H > \frac{1}{4}$

4□ > 4□ > 4□ > 4 = > 4 = > = 90

p-variation of the fBm covariance

Proposition 19.

Let

- ullet B a 1-d fBm with $H<rac{1}{2}$
- $R \equiv$ covariance function of B
- T > 0

Then

$$R \in \mathcal{C}^{rac{1}{2H}-\mathsf{var}}$$

Proof

Setting: Let

- $0 \le s < t \le T$
- $\pi = \{t_i\} \in \Pi_{st}$
- $S_{\pi} = \sum_{i,j} \left| \mathbf{E} \left[\delta B_{t_i t_{i+1}} \delta B_{t_j t_{j+1}} \right] \right|^{\frac{1}{2H}}$
- For a fixed i, $S_{\pi}^{i} = \sum_{j} \left| \mathbf{E} \left[\delta B_{t_{i}t_{i+1}} \delta B_{t_{j}t_{j+1}} \right] \right|^{\frac{1}{2H}}$

Decomposition: We have

$$S_{\pi}^{i} = S_{\pi}^{i,1} + S_{\pi}^{i,2},$$

with

$$S_{\pi}^{i,1} = \sum_{i \neq i} \left| \mathbf{E} \left[\delta B_{t_i t_{i+1}} \delta B_{t_j t_{j+1}} \right] \right|^{rac{1}{2H}}, \quad ext{and} \quad S_{\pi}^{i,2} = \left| \mathbf{E} \left[\left(\delta B_{t_i t_{i+1}}
ight)^2 \right] \right|^{rac{1}{2H}}$$

Samv T. (Purdue) Rough Paths 4 Aarhus 2016 62 / 67

Proof (2)

A deterministic bound: If $y_j < 0$ for all $j \neq i$ then

$$\sum_{j\neq i} |y_j|^{\frac{1}{2H}} \le \left| \sum_{j\neq i} |y_j| \right|^{\frac{1}{2H}} = \left| \sum_{j\neq i} y_j \right|^{\frac{1}{2H}}$$

This applies to $y_j = \mathbf{E}[\delta B_{t_i t_{i+1}} \delta B_{t_i t_{i+1}}]$ when $H < \frac{1}{2}$

Bound for $S_{\pi}^{i,1}$: Write

$$S_{\pi}^{i,1} \leq \left| \sum_{j \neq i} \mathbf{E} \left[\delta B_{t_i t_{i+1}} \delta B_{t_j t_{j+1}} \right] \right|^{\frac{1}{2H}}$$

$$\leq \left| \sum_{j} \mathbf{E} \left[\delta B_{t_i t_{i+1}} \delta B_{t_j t_{j+1}} \right] \right|^{\frac{1}{2H}} + \left| \mathbf{E} \left[(\delta B_{t_i t_{i+1}})^2 \right] \right|^{\frac{1}{2H}}$$

$$= \left| \mathbf{E} \left[\delta B_{t_i t_{i+1}} \delta B_{st} \right] \right|^{\frac{1}{2H}} + \left| \mathbf{E} \left[(\delta B_{t_i t_{i+1}})^2 \right] \right|^{\frac{1}{2H}}$$

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 63 / 67

Proof (3)

Bound for S_{π}^{i} : We have found

$$S_{\pi}^{i} \leq |\mathbf{E} [\delta B_{t_{i}t_{i+1}} \delta B_{st}]|^{\frac{1}{2H}} + 2 |\mathbf{E} [(\delta B_{t_{i}t_{i+1}})^{2}]|^{\frac{1}{2H}}$$
$$= |\mathbf{E} [\delta B_{t_{i}t_{i+1}} \delta B_{st}]|^{\frac{1}{2H}} + 2(t_{i+1} - t_{i})$$

Bound on increments of R: Let $[u, v] \subset [s, t]$. Then

$$\begin{aligned} |\mathbf{E} \left[\delta B_{uv} \delta B_{st} \right]| &= |R(v,t) - R(u,t) - R(v,s) + R(u,s)| \\ &= \left| (t-v)^{2H} - (t-u)^{2H} - (v-s)^{2H} + (u-s)^{2H} \right| \\ &\leq \left| (t-v)^{2H} - (t-u)^{2H} \right| + \left| (v-s)^{2H} - (u-s)^{2H} \right| \\ &\leq 2(v-u)^{2H} \end{aligned}$$

Samy T. (Purdue)

Proof (4)

Bound for S_{π}^{i} , ctd: Applying the previous estimate,

$$S_{\pi}^{i} \leq |\mathbf{E}[\delta B_{t_{i}t_{i+1}}\delta B_{st}]|^{\frac{1}{2H}} + 2(t_{i+1} - t_{i})$$

 $\leq 4(t_{i+1} - t_{i})$

Bound for S_{π} : We have

$$S_{\pi} \leq \sum_{i} S_{\pi}^{i} \leq 4(t-s)$$

Conclusion:

Since π is arbitrary, we get the finite $\frac{1}{2H}$ -variation

→□▶→□▶→□▶→□▶
□◆□▶→□▶→□
□◆□▶→□
□◆□▶→□
□◆□
□◆□
□◆□
□◆□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
<

Samy T. (Purdue)

Construction of the Levy area

Strategy:

- Regularize B as B^{ε}
- **②** For B^{ε} , the previous estimates hold true
- Then we take limits
 - \hookrightarrow This uses the $\frac{1}{2H}$ -variation bound, plus rate of convergence
 - \hookrightarrow Long additional computations

Outline

- Main result
- Construction of the Levy area: heuristics
- Preliminaries on Malliavin calculus
- 4 Levy area by Malliavin calculus methods
- 6 Algebraic and analytic properties of the Levy area
- 6 Levy area by 2d-var methods
- Some projects

Current research directions

Non exhaustive list:

- Further study of the law of Gaussian SDEs: Gaussian bounds, hypoelliptic cases
- Ergodicity for rough differential equations
- Statistical aspects of rough differential equations
- New formulations for rough PDEs:
 - Weak formulation (example of conservation laws)
 - Krylov's formulation
- Links between pathwise and probabilistic approaches for SPDEs
 - \hookrightarrow Example of PAM in \mathbb{R}^2