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Objective

Summary: We have obtained the following picture

[ dx, [ [ dxdx

Smooth V, ..., Vy
—_—

Remaining question:

J Vi(x) dx!

Rough paths theor )
P My = V()
—

How to define [ [ dxdx when x is a fBm with H > 1/27
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Levy area of fBm

,—[Proposition 1.} \

Let B be a d-dimensional fBm, with H > 1/3, and 1/3 < v <
H. Almost surely, the paths of B:

© Belong to C7
@ Admit a Levy area B2 € C37 such that

6B?> =0B® B, ie B =4B. 0B,

Conclusion:
The abstract rough paths theory applies to fBm with H > 1/3

Proof of item 1: Already seen (Kolmogorov criterion)
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Geometric and weakly geometric Levy area

Remark:

@ The stack B? as defined in Proposition 1 is called
a weakly geometric second order rough path above X
— allows a reasonable differential calculus

@ When there exists a family B® such that

» B¢ is smooth

» B2¢ is the iterated Riemann integral of B¢

» B2 = lim._,o B%¢
then one has a so-called geometric rough path above B
— easier physical interpretation
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Levy area construction for fBm: history

Situation 1: H > 1/4
— 3 possible geometric rough paths constructions for B.

@ Malliavin calculus tools (Ferreiro-Utzet)
@ Regularization or linearization of the fBm path (Coutin-Qian)
@ Regularization and covariance computations (Friz et al)
Situation 2: d =1
< Then one can take B2, =
Situation 3: H<1/4,d>1
The constructions by approximation diverge
Existence result by dyadic approximation (Lyons-Victoir)

Recent advances (Unterberger, Nualart-T)
for weakly geometric Levy area construction

(B:—Bs)?
2
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fBm kernel

Recall: B is a d-dimensional fBm, with
/ K(u)dW!,  t>o0,
where W is a d-dimensional Wiener process and

Ke(u) = (t—u)" 7 1open
OKe(u) ~ (t— U)H_% 1{0<u<t}-
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Heuristics: fBm differential

Formal differential:
we have B) = [ K,(u) dW/ and thus formally for H > 1/2

B — /Vava(u) dWi
0

Formal definition of the area:
Consider B'. Then formally

/01 B dBl — /1 B (/Vava(u)de> dv
- / (/aK B’dv)dWl{

This works for H > 1/2 since H — 3/2 > —1.
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Heuristics: fBm differential for H < 1/2

Formal definition of the area for H < 1/2:
Use the regularity of B’ and write

/1B’dBf—/ (/8K B’dv)dWL{
—/</8K V6B )de

1 . .
+/ Ki(u) B dWA.
0

Control of singularity: 0,K,(u) 6B, ~ (v — u)H=3/2+H
— Definition works for 2H —3/2 > —1,i.e. H > 1/4!

Hypothesis: ) B} dB) well defined as stochastic integral
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© Preliminaries on Malliavin calculus
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Space ‘H

Notation: Let
o & be the set of step-functions f : R — R
@ B bealdfBm

Recall:

1
Ru(s,t) = E[BeBs] = S (I + [t — |t — s[*")

Space H: Closure of £ with respect to the inner product

<1[51,52]’ 1[t1,t2]>7_[ = E[0B;;s, 0Byy1)] (1)
= Ru(s2, t2) — Ru(s1, t2) — Ru(s2, t1) + Ru(st, tr)
= A[S]_,Sz]X[tl,tz] RH
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Isonormal process

First chaos of B: We set
@ Hy(B) = closure in L?(Q) of linear combinations of 0B

Fundamental isometry: The mapping
l[t,t’] — Bt/ — Bt

can be extended to an isometry between H and H;(B)
— We denote this isometry by ¢ — B(y).

Isonormal process: B can be interpreted as

@ A centered Gaussian family {B(p); ¢ € H}
e Covariance function given by E[B(1)B(2)] = (p1, v2)u
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Underlying Wiener process on compact intervals

Volterra type representation for B:

Bt:/RKt(u) dw,

with
o W Wiener process
o K.(u) defined by

fotw) = e (4) " (e - 0y

1 TR L VI H-1
) [

Bounds on K: If H < 1/2

Ke(u)| S (8 — u)l=2 4 M3,
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Underlying Wiener process on R
Mandelbrot's representation for B:

B, :/ K(u)dW,,  t>0
R

with
o W two-sided Wiener process
o K;(u) defined by

(t— )] = ()T 1 iy

Kt(u) = CH

Boundson K: If H<1/2and 0 <u <t

IK(u)| < (t—u)"2, and  [9,K.(u)| < (t — u)H3.
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Fractional derivatives

Definition: For @ € (0,1), v € R and f smooth enough,

a o f, —f,
Da fu — / r u-+r
N M1—a)o  rite ar
1 00 f,
T°f, = / T
T e r—u)ie

Inversion property:

1° (D*f) =D° (I°f) = f
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Fractional derivatives on intervals

Notation: For f : [a, b] — R, extend f by setting f* = f 1}, 5

Definition:
f a bof _f
’Daf* :'DO( fu — u / u r d
T T ) A=) Je (=)
Tof = Tp f = — /b U
—u T b MNa) Ju (r—u)l—

A related operator: For H < 1/2,

Kf =DV "f
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Wiener space and fractional derivatives

,—[Proposition 2.]
For H < 1/2 we have

@ K isometry between H and a closed subspace of L?(R)
e For ¢, € H,

E[B(¢)B(¥)] = (¢, V) = (Ko, K9) 12(w),
@ In particular, for ¢ € H,

E [1B(o)P] = el = 1K¢l )

\.

Notation:
B(¢) is called Wiener integral of ¢ w.r.t B
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Cylindrical random variables

— Definition 3. \
Let
o f € C°(R%R)
@ v, e H, forie{l,... k}
@ F a random variable defined by

F — f(B(901)7 cee B(on))

We say that F is a smooth cylindrical random variable

\ J

Notation:
S = Set of smooth cylindrical random variables
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Malliavin's derivative operator

Definition for cylindrical random variables:
If F eS8, DF € H defined by

B(#1), ..., Blek))pi-

Proposition 4.}

D is closable from LP(Q2) into LP(2; H).

Notation: D*? = closure of S with respect to the norm

IFIZ, = E[IFP] + E[IIDFI3] .
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Divergence operator

—~ Definition 5. \

Domain of definition:

Dom(§°) = {qb € L*(;H); E[(DF,¢),] < C¢HF“L2(Q)}

Definition by duality: For ¢ € Dom(/) and F € D2

E[F 5°(¢)] = E[(DF, 9)x] (2)
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Divergence and integrals

Case of a simple process: Consider
en>1
e 0ty <<ty
@ a; € R constants

Then
n—1 n—1
50 (Z ail[t,',ti+1)> = Z dj 5Btiti+l
i=0 i=0

Case of a deterministic process: if ¢ € H is deterministic,

hence divergence is an extension of Wiener's integral
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Divergence and integrals (2)

,—{Proposition 6.}
Let

e B a fBm with Hurst parameter 1/4 < H < 1/2

e f a C3 function with exponential growth

e {M2; n> 1} = set of dyadic partitions of [s, t]
Define

2n—-1

3”70 — Z f(Btk) <& 6Btktk+1'
k=0

Then 5™ converges in [%(Q) to §°(f(B))

\.

Remark: In the Brownian case
< 0 coincides with It6's integral
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Criterion for the definition of divergence
,—[Proposition 7.] \

Let

@ a < b, and &P = step functions in [a, b]
o Ho([a, b]) = closure of £[*P] with respect to

||90||3{0 ([a,b])

|90 _§0u| ?
_/ 1 2Hdu—i—/ (/ —u)3/2_Hdr du.

Then
e Ho([a, b]) is continuously included in H
o If ¢ € DY2(Ho([a, b])), then ¢ € Dom(d°)
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Bound on the divergence

Corollary 8.

Under the assumptions of Proposition 7,

E [10°(8)] < E[I613s2io(imnty

Samy T. (Purdue) Rough Paths 4
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Multidimensional extensions

Aim:
Define a Malliavin calculus for (B, ..., B9)
First point of view: Rely on

o Partial derivatives DB with respect to each component
e Divergences 0>8', defined by duality
< Related to integrals with respect to each B’

Second point of view:

Change the underlying Hilbert space and consider

H==mHx{1,... d}
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Russo-Vallois’ symmetric integral

~{ Definition 9.) \
Let
@ ¢ be a random path

Then

/b¢w d°B! = 1% — lim —/ ¢W( s B";er)dw,

e—0 2¢

provided the limit exists.

Extension of classical integrals: Russo-Vallois' integral coincides with
@ Young's integral if H > 1/2 and ¢ € C1~H*¢

@ Stratonovich's integral in the Brownian case

Samy T. (Purdue) Rough Paths 4 Aarhus 2016 28 / 67



Russo-Vallois and Malliavin

,—[Proposition 10.] \

Let ¢ be a stochastic process such that
Q o1, € DV(Ho([a, b])), for all —oo < a < b < 0

@ The following is an almost surely finite random variable:

1 b
Tipp D6 = L2 — lim ~— / (D& ye.usey )2 du

e—0 2¢

Then [P ¢,d°Bi exists, and verifies

b .
| 6408l = (6 1(51) + Trpa Do
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Levy area: definition of the divergence

~ Lemma 11.

Let

o H> %
@ B a d-dimensional fBm(H)
0 0<s<t<™
Then for any i,j € {1,...,d} (either i = j or i # j) we have
Q ¢, = 0B, 4(u) lies in Dom(5°E")
© The following estimate holds true:

E| (5 (#))7] < cule — i
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Proof

Case i = j, strategy:
@ We invoke Corollary 8
o We have to prove ¢'1j, 4 € DV2E (Ho([s, t]))
o Abbreviation: we write DV25 (Ho([s, t])) = DV?(H,)

Norm of ¢ in Ho: We have
E 013, = AL+A42
a - [ ELE
st T

(t _ u)l 2H

(e |0Bi,) i
As = E{/ (/ mﬂ dU}

Samy T. (Purdue) Rough Paths 4 Aarhus 2016
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Proof (2)

Analysis of AL:

t |U — S|2H u:=s+(t—s)v 1 V2H
A = [ T s [
st . (t—uyr2H A A = it
= CH(t — 5)4H

Analysis of A2:

E@Biésf]

ury urp

t
2
Ast — /s du \/[\u,t]2 dr]_dr2(r1 . U)3/27H(r2 . U)3/27H

t
< CH/ (t — u)4H_1du = CH(t — S)4H

IN
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Proof (3)

Conclusion for ||¢']|#,: We have found

E (16713, < cu(t — )™

Derivative term, strategy: setting D = DB we have
e We have D, ¢}, = 1 ,(v)
@ We have to evaluate D¢’ € H§ @ H"

Computation of the H-norm: According to (1),

1D¢'|[3, = E[|0B2,P] = |u— s

Samy T. (Purdue) Rough Paths 4 Aarhus 2016
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Proof (4)

Computation for D¢': We get
E (106 Fen] = Bl + B2

B /stE{(u—s)zH}

(t — u)l-2H
tfrtlr—s|H—|u—s" \?
B2 = E{/s </u (r — s/ dr| du

0<|r—s —ju—s/ <|r—ulf

du

Moreover:

Hence, as for the terms AL, A2

= we get

E (1D |3en] < cnlt — )™
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Proof (5)

Summary: We have found
E (11613 ] + E [1D9'[3en] < cu(t —5)*

Conclusion for B': According to Proposition 7 and Corollary 8
e 9B 1 4 € Dom(5>F)
e We have

E |:<50’Bi (58;.1[s,t])>2:| < CH‘t _ 5’4H
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Proof (6)

Case i # j, strategy: Conditioned on F?&
e B/ and ¢/ = §B! are deterministic
o 5B (¢/) is a Wiener integral

Computation: For i # j we have

e\ ()]

e{E|( (¢)"| 7]}
= E[l¢I] (3)
cHE [||&[13,]

|4H
?

[VANRRVAN

CHlt —s
where computations for the last step are the same as for i = j.
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Definition of the Levy area

,—[Proposition 12.]

Let
o H> %
@ B a d-dimensional fBm(H)
e 0<s<t<
Then for any i,j € {1,...,d} (either i = j or i # j) we have
@ B2%/ = [!§BI, d°B' defined in the Russo-Vallois sense
@ The following estimate holds true:

d

2 ji
Bst

2
} < cy|t — s|*

Samy T. (Purdue) Rough Paths 4 Aarhus 2016
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Proof

Strategy:

@ We apply Proposition 10, and check the assumptions
@ Proposition 10, item 1: proved in Lemma 11

@ Proposition 10, item 2: need to compute trace term

Trace term, case i = j: We have

DE' ¢, = 15,41(v)
Hence

<D¢Iu> l[ufs,u+s]>’H = A[s,u]><[ufs,u+5] RH

Samy T. (Purdue) Rough Paths 4 Aarhus 2016
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Proof (2)

Computation of the rectangular increment: We have
A[s,u]><[u—:€,u—‘,—€] RH
= Ry(u,u+¢) — Ry(s,u+¢) — Ry(u,u — &) + Ry(s,u — )

1
:5[—52H+(u—s+f—:)2H+f—:2H—(u—s—s)z"’]

:%[(u—s+s)2”—(u—s—g)2*’}

Computation of the integral: Thanks to an elementary integration,

t
/ A[s u]l x[u—e,u+e] Ry du

2(2H - 1) [(t s+ 8)2H+1 _ g2H+L (t _s— 6)2H+1}
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Proof (3)

Computation of the trace term: Differentiating we get

Tr[s,t]Dqsi

_ 1 i (t — s+ e)2H+l — g2H+l _ (f _ 5 _ c)2H+1
2(2H + 1) e=0 2¢

B (t _ S)2H

2

Expression for the Stratonovich integral: According to Proposition 10

(t —s)*

" t . . .
BY = [0, B, =0F (¢ lp) + (&)
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Proof (4)

Moment estimate: Thanks to relation (4) we have
2,ii|? 4H
E UBsg ‘ ] < cy|t — s

Case i # j: We have
@ Trace termis 0
o BY = 5B (¢/1,p)
@ Moment estimate follows from Lemma 11
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Remark

Another expression for B:
Rules of Stratonovich calculus for B show that

(9BL)°

B;it = 2

Much simpler expression!
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Levy area construction

Summary: for 0 < s < t <7, we have defined the stochastic integral
t u . t u ) .
B2 — / / d°B, ® d°B,, i. e B2 = / / d°Bl d°Bl,
If i =
° Bﬁt(iv i) = %(Bt - 85)2

If i #j:
@ B’ considered as deterministic path
o B2Y is a Wiener integral w.r.t B/
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Algebraic relation

,—[Proposition 13.] \
Let

o (s,u,t) €Ss,
@ B2 as constructed in Proposition 12

Then we have

oB2Y = 5B 5B/,

sut
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Proof

Levy area as a limit: from definition of R-V integral we have
BZY = lim BZ°Y, where B2 = / B! dXY,
with
xXei= [ L 5Bl d
=/ — _ w
v 0 28 w—e,w-+te

Increments of B2%7: BZ™” is a Riemann type integral and

sut

6B2eT = §B! oX<J

We wish to take limits in (5)

Samy T. (Purdue) Rough Paths 4 Aarhus 2016
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Proof (2)

Limit in the lhs of (5): We have seen

2,e,ij Llﬂ) SB%i

lm) 5Bsut sut

Expression for X¢¥: We have

X = %{/VB{V_,_adW—/VB{;V_EC/W}
0 0
]_ vt+e | v—e .
_ Z{/ Bl,dw — [ Bfwdw}
1 vt+e | € i
_ { | Biaw- [ 8] dw} (6)

PERV/ -
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Proof (3)

Limit in the rhs of (5):
Invoking Lebesgue's differentiation theorem in (6), we get

lim X7 = 6B), =B — lim 6By, 60X, = 6By, B,
e— e—

Conclusion: Taking limits on both sides of (5), we get

oB2Y = 5B 5B/,

sut
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Regularity criterion in C,

~ Lemma 14. N

Let g € C,. Then, for any v > 0 and p > 1 we have

el < C(Uv;p(g) + ||5g||v)a

/p
AL '
(// o aededt]

with
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Levy area of fBm: regularity

,—[Proposition 15.] \
Let

e B2 as constructed in Proposition 12
e 0<y<H

Then, up to a modification, we have

B> € C37([0,7]; R*)
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Proof

Strategy: Apply our regularity criterion to g = B?
Term 2: We have seen: éB%2 = 6B ® 6B

BeCl = 06/B®dIBe(Cy

Term 1: For p > 1 we shall control

E[|U,(8Y)"] / /TE B2 ds dt

|t — s|P
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Proof (2)
Aim: Control of E [|B P ]

Scaling and stationarity arguments:
P
E[B%P] = E [ ]

_ s|2””EU/ dB’/ dgi|

Stochastic analysis arguments:
Since [y dB! [ dBJ is element of the second chaos of fBm:

1 p 1 _ru 2
El ]gc,ﬂEU/ dB'u/ B
0 0 0

Samy T. (Purdue) Rough Paths 4 Aarhus 2016
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Proof (3)

Recall: [|B2||, < ¢ (U,,,(B?) +[|6B2]|,)

Computations for U,.,(B?):
Let v < 2H, and p such that v+ 2/p < 2H. Then:

U 32 ! E |B“| ds dt
H i //|t_5|vp+2

|2pH

= C”/ / |t - s|P(7+2/P) [t— s S

Conclusion:
e B2c () forany v < H
e One can solve RDEs driven by fBm with H > 1/3!
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p-variation in R?

~ Definition 16. |

Let

@ X centered Gaussian process on [0, T]
@ R:[0, T]* — R covariance function of X
0 0<s<t<T

o [y = set of partitions of [s, t]
We set

HRH,';_W; [s,t2 — su2p Z ‘A[Si’5i+l]x[tjvtj+l]R

‘P
st 1y

and

cP—var — {f 0, TP = R; [Rllpvar < oo}
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Young's integral in the plane

,—[Proposition 17.]
Let
P f E Cp—var
@ g CiV
@ p, g such that%—i—% >1

Then the following integral is defined in Young's sense:

A[s7t11]X[s,Uz] f dg(“l; Uz)

[s:t]?
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Area and 2d integrals

,—[Proposition 18.] \
Let

e X € R smooth centered Gaussian process on [0, T]

@ Independent components X/
e R:[0, T]> = R common covariance function of X/'s
e 0<s<t<Tandi#j

Define (in the Riemann sense) X%/ = [X6X! dXJ. Then

[

] - [s.41 A[s,u1]><[s,u2]R dR(U]_, U2) (7)
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Proof

Expression for the area: We have
y t t
X2 — ["oxt,axi = [ oxi, Xi du

Expression for the second moment:

E[\xgt,u } _ /[ 3 E[0X00X0, XX, ] dncl

= | B [0X0, 00, E[X4 X dudu,
(11

sup Ssup ui” "uz

= Als,u)x[s.] R 02,0, R(u1, U2) durdus

uy u
[s,1]? .

= /[s . Afs u)x[s,u) R dR(u1, u)
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Remarks

Expression in terms of norms in H: We also have

E|[x27

2} _ / E [0BL,0B.,| dR(u1, us)
[s,t]?
- E[(68],0B.) |
This is similar to (3)

Extension:
e Formula (7) makes sense as long as R € CP~V2" with p < 2
@ We will check this assumption for a fBm with H > 1
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p-variation of the fBm covariance

,—[Proposition 19.] \
Let
° Bal—demwithH<%
@ R = covariance function of B
e 7 >0
Then

Re e
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Proof

Setting: Let
0 0<s<t<T
o m={t;} €Ny

© Sy =3 |E |0Bue,,0Bye..]

e Forafixed i, S. =3; ‘E [5Bt,-t,+158tjtj+1}

L
2H

I|"

Decomposition: We have
Si =84 52

with

571;1 = Z ‘E [5Btiti+158t1tf+1]
JF#i

Samy T. (Purdue) Rough Paths 4
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Proof (2)

A deterministic bound: If y; < 0 for all j # i then

Yol <Dyl =y

J#i J#i JF#i
This applies to y; = E[6By,,,0By+,,,] when H < 1

Bound for S!: Write

-

S7ir71 < ZE[dBtitf+léBtjtj+lj|

Jj#i
% L
< Z E |:5Btiti+168tjtj+1:| + ’E [ 5Bt/tr+1) } i
J
= |E[0Bye,0Bul | + [E [(0Bye,, )|
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Proof (3)
Bound for S!: We have found

L
2H

S7Ir S |E [(SBY-‘:'f-“H-l(SBSI‘]|ﬁ + 2 ‘E |:(6Btiti+1)2:|
= |E[0Bye,,0B]|? +2(ti1 — ;)

Bound on increments of R: Let [u,v] C [s,t]. Then
E[6B,,0Bs]| = |R(v, t) — R(u, t) — R(v,s) + R(u, s)]
= |(t = v = (t =0 = (v — 5" + (u— 5)"|
<[t =) = (t = o)+ |(v = ) = (u—5)?"|
<2(v—u)*H
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Proof (4)

Bound for S, ctd: Applying the previous estimate,

1
|E [5Bt,'t,'+1585t”2H + 2(t,'+]_ - t,)
4ty — t;)

S, <
<

Bound for S,: We have

Sr <Y SL<4(t—s)

Conclusion:
Since 7 is arbitrary, we get the finite %-variation
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Construction of the Levy area

Strategy:
© Regularize B as B°
© For B#, the previous estimates hold true

© Then we take limits
— This uses the %—variation bound, plus rate of convergence

— Long additional computations
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Outline

@ Some projects
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Current research directions

Non exhaustive list:

o Further study of the law of Gaussian SDEs:
Gaussian bounds, hypoelliptic cases

o Ergodicity for rough differential equations
@ Statistical aspects of rough differential equations
@ New formulations for rough PDEs:

» Weak formulation (example of conservation laws)
» Krylov's formulation

@ Links between pathwise and probabilistic approaches for SPDEs
< Example of PAM in R?
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