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General strategy

Aim: Define and solve an equation of the type:
v = a+ [y o(ys) dBs, where B is fBm.

Properties of fBm:
Generally speaking, take advantage of two aspects of fBm:

@ Gaussianity
@ Regularity

Remark: For 1/3 < H < 1/2, Young integral isn't suficient

Levy area: We shall see that the following exists:
B2V = [tdB! [“dB € C3" for v < H

Strategy: Given B and B? solve the equation in a pathwise manner
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Pathwise strategy

Aim: For x € C{ con 1/3 < < 1/2, define and solve an equation of
the type:

ye=a+ [ o) dx )

Main steps:
@ Define an integral [ z dx, for z: function whose increments are
controlled by those of x

@ Solve (1) by fixed point arguments in the class of controlled
processes

Remark:

Like in the previous chapters, we treat a real case and b = 0 for
notational sake.

Caution: d-dimensional case really different here, because of x>
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Heuristics (1)

Hypothesis:
Solution y; exists in a space C{([0, T])

A priori decomposition for y:
t
Oyse = yt_ys:/ U(YV)dXv

= U(ys) OXst + /st[U(YV) - U(Ys)]dxv
- Cs 5Xst + It

Expected coefficients regularity:
¢ = o(y): bounded, y-Hélder, r: 2-Holder
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Heuristics (2)
Start from controlled structure: Let z such that
0z = (s Oxt + 1y, with C€C, reC®

Formally:

t t
/ z,dx, = Zs0Xs + / 0z, dx,
S S
t t
= Zs 5Xst + Cs/ 5st dxv + / Fsv dXv
S S

t
= Zs 5Xst + Cs Xit + / I'sy dXv
s
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Heuristics (3)
Formally, we have seen: z satisfies

t t
/ z,dx, = Zs OXst + Csxgt + / reydx,

Integral definition:
@ 2z, 0xs trivially defined
o (.x2 well defined, if Levy area x? provided
o [!r,dB, defined through operator A if r € C37, x € C] and
3y>1

Remark:
e We shall define [! z, dx, more rigorously
e Equation (1) solved within class of proc. with decomposition (2)
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Controlled processes

— Definition 1. |

Let
e 1/3<k<n
@ ze(y

0z =C_Cox+r,
with
e (€Cy

i.e. 525t = Cs 5Xst + Fst,

e ris a remainder such that r € C3*

We say that z is a process controlled by x, if zp = a € R, and

s,t €0, T], (3)
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Space of controlled processes

— Definition 2. | \
Space of controlled processes:
@ Denoted by Q.. ,

@ z € Q, , should be considered as a couple (z, ()

Natural semi-norm on Q, .:
Nlz; Q,..] = Nz Cf] + NT¢; CPl + N¢; CE] + Nr; €3]

with
o Nlg:Cr] = llgll»
° N[(;Cf(V)] = SUPgp<s<T |Cslv
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Operations on controlled processes

In order to solve equations, two preliminary steps:
© Study of transformation z — ¢(z) for

» Controlled process z
» Smooth function ¢

© Integrate controlled processes with respect to x
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Composition of controlled processes

,—[Proposition 3.] \

Consider z € Q,. ,, p € CZ. Define

2=¢(2), a=¢(a)

Then z € 9,3, and

with
{=Vp(z)¢ and F=Vo(2)r+[6(p(2)) — V(2)dz] .

Furthermore, N[2; Q.. 5] < c,.7 (1 + N?[z; Q.. ]).

\.
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Proof

Algebraic part: Just write

0z = p(2t) — (2s)

= Vp(25)0zst + p(2:) — p(25) — Vip(25)zst

= Vp(25)Cs0xst + Vo(zs)rse + ¢(2) — 0(25) — Vip(zs)0zst
= 655Xst + Fst
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Proof (2)

Bound for NV[2; O, 5(R")], strategy: get bound on
o N[z Ci(R")]
o N(;CrLdn
o NI(;CoLdm
o N#C3r(R)]
Decomposition for : We have
P=rt 47

with

?slt = V(zs)ree and ?szt = p(z:) — 0(z5) — Vi(25)(62) st
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Proof (3)

Bound for #': V¢ is a bounded £*"-valued function. Therefore

NP GER)] < [[VellooNTr: CGF(RY)). (3)
Bound for #2:

el < %||v290||00|(52)5t|2 < ¢ N[z CE(RY)][t — s*",
which vyields
NP C3H(R™)] < e, N2[r; C3F(RY)], (6)

Bound for #: Since # = #! + 72, we get from (5) and (6)

NTF G (R)] < ¢, (1+ N?[r; C3*(RY)])
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Proof (4)

Other estimates: We still have to bound
o N[z, C{(R")]
o NG CrLdn
o N(;chLdn

Done in the same way as for 7

Conclusion for the analytic part: We obtain

N2 Qual < cor (14 N[z Q,1])
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Composition of controlled processes (ctd)

Remark: In previous proposition
@ Quadratic bound instead of linear as in the Young case
@ Due to Taylor expansions of order 2

Next step: Define [J(z dx) for a controlled process z:
@ Start with smooth x, z

@ Try to recast J(z dx) with expressions
making sense for a controlled process z € CY
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Integration of smooth controlled processes

Hypothesis:
@ x,( smooth functions, r smooth increment

@ Smooth controlled process z € Q; ,, namely §zy = (s Oxst + st
Expression of the integral: 7(z dx) defined as Riemann integral and
t t
/ z,dx, = Zs[x¢ — Xs| + / [z, — z5]dx,

Otherwise stated:

J(zdx) = zox + J(0z dx).
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Integration of smooth controlled processes (2)
Levy area shows up: if 6z = (s Oxet + ret,

J(zdx) = z8x + J(Cox dx) + T(r dx).
Transformation of 7 (Cdx dx):
TalCOx d) = [ G [xadbal = G
Plugging in (7) we get
J(zdx) = z0x + (x* + J(r dx)

Multidimensional case:

t t i i . »
/ G [0%su dx] — / ¢ [6xd, dxf] = ¢T3

S st
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Levy area

Recall: J(zdx) = z6x + (x®+ J(rdx)
— For v < 1/2, x2 enters as an additional data

\.

,—[Hypothesis 4.]

Path x is y-Holder with v > 1/3, and admits a Levy area, i.e
x2 € C7(R*), formally defined as x? = "7 (dxdx)",
and satisfying:
0x2 = Ox @ 0x, i.e. O6x2¥ =6xl oxi,,

forany s,u,t € Ssrand i,j € {1,...,d}.
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Levy area: particular cases

Levy area defined in following cases:

@ x is a regular path
— Levy area defined in the Riemann sense

Q xisamewithH>%
— Levy area defined in the Stratonovich sense
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Integration of smooth controlled processes (3)

Analysis of J(r dx): we have seen

J(rdx) = J(zdx) — z5x — ( x*

Apply 6 on each side of the identity:

[6(T (r dx))]sut
= 5Zsu 5Xut + 5CSU xflt - CS 5X§Uf

= Cs 5Xsu 6Xut + rsy 5Xut + 5Csu xlzlt - Cs 5Xsu 5Xut

2
= Foy OXut + 0y Xy
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Integration of smooth controlled processes (4)
Recall: We have found

§(T(rdx)) = rox + 6¢x?

Regularities: We have
e reCy
e oxe(C)
e 0 elCs
o x2e (Y

Since kK +2v > 2k + v > 1, A can be applied
Expression with A: We obtain

S(T(rdx))=réx+6¢Cx* = J(rdx)=NA(rdx+6Cx?)
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Integration of smooth controlled processes (5)

Conclusion: We have seen:

J(zdx) = zox+(xP+ J(rdx)
J(rdx) = N(réx+0¢x?)

Thus, if m, x are smooth paths:

T(zdx) = z0x + ¢ x? 4+ N(rdx + ¢ x?)

Substantial gain: This expression can be extended to irregular paths!
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Integration of controlled processes

~ Theorem 5. \

Let
e xe (], withl/3< k<~

@ x satisfies Hypothesis 4, with Levy area x?

@ z € Q,p, with decomposition 0zs = (s0xst + rst

Define ¢ by zy = a € R, and
50 = J(zdx) = z0x + ¢ - x>+ N(rdx + 6¢ - x?).

Then
© /is an element of O, ,
@ ! = [ zdx for smooth paths
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Proof

Item 1: We have
o 0 = (tox+rt
o (f==z

o r=(x%+ N(réx+ ¢ x?)

ltem 2:
Proved in preliminary computations
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Properties of the integral

,—[Proposition 6.]

Let ¢ be defined as in Theorem 5. Then on an interval [0, 7]:

@ The semi-norm of £ in Q,, , satisfies

N Q] < o (lal + 77" Nz: Q]

@ We have
n
: 2
Tst(zdx) = lim > [zt,.éxt,.,,_;pr1 + - X2 t,-+1]
|7Tgt|*)0 . ’
i=0
\ 7
Samy T. (Purdue) Rough Paths 3 Aarhus 2016

29 / 49



Proof

Item 1: Elementary computations using decomposition
o 60 =(%x+rt
o (=12

o r! = (x2+ N(rdox + 5(x?)
Example of computation: Bound for ¢ = z. We have
1626t < [IClloollx[lyt = S| + Il |t — s[>
Hence
Izl < 777 [l Cloclixlly +77MIrll27] < 67Nz} Q]

and
[2]lo0 < |20 + 77| 2]lx < c7 (|a] + Nz; Qu.a])
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Proof (2)

Recall: Let g € C,, such that §g € C§ with u > 1. Define
k= (Id - Ao)g

Then

Z gf, tiv1

as |Mg:| — 0, where Mg, is a partition of [s, t].

St -
||_|5t|—)0
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Proof (2)

ltem 2: Let g = z0x + ¢ - x%. Then
° g =— (réx—l—é(xz)

e g eC3r
e J(zdx)=(ld—Nd)g
Therefore
\7st(z dX |”|1 th, tir1)
which yields ltem 2
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Pathwise strategy

Hypothesis: x is a function of C{ with 1/3 <~y <1/2.
It x admits a Levy area x?

Aim: We wish to define and solve an equation of the form:

Ve — a+/ota(ys)dxs (8)

Meaning of the equation: y € Q,,, and

oy = J(a(y) dx)
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Fixed point: strategy

A map on a small interval:
Consider an interval [0, 7], with 7 to be determined later

Consider k such that 1/2 <k <y <1

In this interval, consider I : Q, ([0, 7]) = Q... ([0, 7]) defined by:

M(z) = 2, with 2y = a, and for s, t € [0, 7]:

02¢ = /:U(zr)dxr = Jst(0(2) dx)

Aim: See that for a small enough 7, the map I is a contraction
< our equation admits a unique solution in C¥([0, 7])

Remark: Same kind of computations as in the Young case
— but requires more work (quadratic estimates, patching)!
Samy T. (Purdue)
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Existence-uniqueness theorem

~ Theorem 7. N

Let x € C{, with 1/3 < x < 7 and Levy area x2.

Let 0 : R — R be a C}? function. Then
@ Equation dy = J(o(y) dx) admits a unique solution y in
Qo forany 1/3 <k <.
@ Application (a, x,x?) + y is continuous
from R x C7 x C3” to Q...
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Proof

Bound on I': Set 2 =T(z) and 4 = o(a).
Then according to Proposition 6,

N1z Qral < o (8] + 7 "No(2); Qual)-
Now thanks to Proposition 3,
N1z Qral < . [l8l + corm ™ (14 N[z Q.])]

and thus
N2 Qual < o (14 777"N?[z; Qs 0]) (9)
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Proof (2)
Invariant set: For 7 > 0 set
A = {u ERL: o (l+77"7) < u}

Then

Q If 7 small enough, A, is non empty
@ In such case, consider M € A.

Invariant ball: For 74 small enough and M € A,,, we have

B(0,M) C Q. leftinvariant by T

Contraction within B(0, M): Similar to Young case
— Gives existence-uniqueness on [0, 7] with 7 = 71 A 7
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Proof (3)

Patching small intervals:
On [7, 7], the key estimate is

N2 Qpa] < o [Iél +co 71 " (1 + N?(z; Qﬁ,a])] :

where now
a=o(y,) = 3] <|ollw

One can thus proceed as on [0, 7]

Remark:
o with linear growth out of scope of rough paths theory
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Lyons theory: Geometrical structures

Lie algebra: In general (1,X!,... X") € R® RY @ (RY)"
< Lie algebra structure and associated Lie group: G"(RY)
— Structures introduced by Chen in the '50s

Rough path: ~-Hoélder function with values in G"(IR9)

Two important relations:

e (1,X1, ... X") determines all the iterated integrals if n > [1/~]
e Any element of G"(IR?) can be realized as iterated integrals of a
smooth function

Solving equations: Two possibilities

e Show that (y, x) is a single rough path
e Approximations, due to the second important relation above
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Lyons theory vs. algebraic integration

Advantages of Lyons' approach:
@ Elegant formalism (mixing geometry, analysis, probability)
@ Approximation in G"(RY) yields powerful estimates:
» Moments of solution to RDEs
» Differential of RDEs
Advantages of algebraic integration:
@ Simpler formalism
@ Controlled process can be adapted easily to many situations:

» Evolution, Volterra, Delay equations
» Integration in the plane, SPDEs, Regularity structures

@ Some results are hard to express without controlled processes:

— Norris type lemma
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Friz-Hairer's formalism

A short comparison with Friz-Hairer:

@ Friz-Hairer's formalism also based on controlled processes
— Reference to Gubinelli's derivative

@ The use of 9, A is less explicit
< In order to further simplify the theory

o Altogether, our presentation is very close to Friz-Hairer's book
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Regularity structures

A brief summary of regularity structures:
Can be seen as a wide generalization of controlled rough paths

@ Rough paths indexed by R” (instead of R,)

@ Richer rough paths structure indexed by trees (instead of N)
@ Product of distributions

e Additional group structure for renormalizations
@ Evaluation of singularities

Typical example of equation related to regularity structures:
e Equation: 0,Y:(€) = AY:(€) + (¢ Yi(€))? + x(£) — <
o (t,£) €[0,1] xR
@ X = space-time white noise
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Rough path assumptions

Regularity of X: X € C?(R9) with v > 0.
Iterated integrals: X allows to define
X" (i) = / X,y (i) dXo, (in) - - - dXo (in),
s<up<---<up<t
for0<s<t<T,n<|l/y|and i,...,ie{1,...,d}.

Regularity of the iterated integrals: X" € C3”(R9"), where

Nlg; C5]= sup gt

0<s<t<T |t — S|"C
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Main rough paths result

Theorem (loose formulation): Under the assumption of the previous
slide, plus regularity assumptions on o, one can

@ Obtain change of variables formula of 1t6’s type

@ Solve equations of the form dY; = o(Y;)dX;
Moreover, the application

F:R" x CJ(RY) x --- x C3"(RY")

C'(R™)
(a,x},...,x") — Y
is a continuous map
[dx, [ [ dxdx I Vi(x) ax
—_—
Rough paths theory

Smooth Vo, ..., Vy dy = Vj(y)dx’

N
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Meaning of the n'" iterated integral

Definition: The n'" order iterated integral associated to X is an
element {X% (i, ..., 0); s <t, 1<i,... i, <d} satisfying:
(i) The regularity condition X" € C;7(R?").

(ii) The multiplicative property:

n—1

OXDe(iny oo yin) = D0 XW ity ooy iy ) XD ™ (i1, - - -5 i)

m=1

(iii) The geometric relation: X% (i1, ..., in) X%(U1, - - -1 Jm)
can be expressed in terms of higher order integrals

Remark: The notion of controlled process is also more complicated

for higher order rough paths.

Samy T. (Purdue) Rough Paths 3 Aarhus 2016

49 / 49



	Heuristics
	Controlled processes
	Differential equations
	Additional remarks
	Other rough paths formalisms
	Higher order structures


