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Definition of fBm

Complete probability space: (22, F,P)

—~ Definition 1.)

A 1-d fBm is a continuous process B = {B;; t > 0} such that:

o Bo =0
@ B is a centered Gaussian process
o E[B.Bi] = L(|s|?" + [t]*" — |t — s|*M), for H € (0,1)

d-dimensional fBm: B = (B!,..., B?), with B’ independent 1-d fBm
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fBm: variance of the increments

Notation: If £ : [0, T] — R? is a function, we shall denote:

ofs
ofe=Ff—1f, and |f|l,= sup [0t

s,te[0,T] |t — s|#

Variance of the increments: for a 1-d fBm,

E[l6Bx/*] = E[|B; — Bs[*] = |t — s|*"
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FBm regularity

Proposition 2.]

FBm B = B is y-Hélder continuous on [0, T] for all v < H,
up to modification.

Proof: We have §Bs; ~ N(0, |t — s|[*). Thus for n > 1,
E [\5Bst]2"] =clt—s?" ie E [\5Bst]2"] = |t — s|HHH-D

Kolmogorov: B is y-Hélder for v < (2Hn —1)/2n = H — 1/(2n).
Proof finished by letting n — oo.
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Some properties of fBm

,—[Proposition 3.] \
Let B be a fBm with parameter H. Then:
Q@ {a"B.; t>01}isafBm (scaling)
@ {Biih— Bn t >0} is a fBm (stationarity of increments)
@ B is not a semi-martingale unless H = 1/2
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Proof of claim 3

Semi-martingale and quadratic variation:
If B were a semi-martingale, we would get on [0, 1]:

P— lim Z(B,-/,, - B(i—l)/n)2 = (B);,

n—o00 4

=

were (B) is the (non trivial) quadratic variation of B.

We will show that (B) is trivial (0 or co) whenever H # 1/2.
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Proof of claim 3 (2)

A p-variation: Define

Vap =2 |Bi/n = Bi—pynl®,  and Yo, =0V,
i=1

By scaling properties, we have:

d A

Yop = Vop, with Vo, =n>"|B — Bi1]P.
i=1

The sequence {B; — B;_1; i > 1} is stationary and mixing

=V, , converges P — a.s and in L' towards E[|B; — Bo|”]

= P — limp_00 Yo, = E[|B1]P]

= P —limy,ocVop =0if pH > 1, 0o if pH < 1
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Proof of claim 3 (3)

Recall: V,, =311 |Bi/n — Bi—1)/nl?

Definition: P — lim,_.c VP = V,(B) is called p-variation of B
:>WehaveseenV(B)—O|pr>1, oo if pH < 1

Property: if p1 < p,, then V,, (B) > V,,(B)
Case H > 1/2: choose p < 2 such that pH > 1
= V,(B) =0=V(B)=0

Case H < 1/2: choose p > 2 such that pH < 1
= Vp(B) =00 = V5(B) = 0

Conclusion: if H # 1/2, Itd’s type methods do not apply in order to
define stochastic integrals
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Strategy for H > 1/2

@ Generally speaking, take advantage of two aspects of fBm:

» Gaussianity
» Regularity

For H > 1/2, regularity is almost sufficient
e Notation: C{ = C{(R) = ~-Hélder functions of 1 variable
o IfH>1/2, Be({ forany1/2 <~y < H as
@ We shall try to solve our equation in a pathwise manner
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Equation under consideration

Xt_a+/ dB+/ telo,T]

a € R" initial condition
b, o coefficients in C}

B = (B!,...,B9) d-dimensional Brownian motion

B’ iid Brownian motions
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Notational simplification

Simplified setting: In order to ease notations, we shall consider:

@ Real-valued solution and fBm: n=d = 1.
However, we shall use d-dimensional methods

e b=0
Simplified equation: we end up with
t
X, = a+/ o(X,)dBs, tel0,T]
0

e ac R, 0e CLR)

@ B is a 1-d Brownian motion
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Pathwise strategy

Aim: Let x be a function in C{ with v > 1/2. We wish to define and
solve an equation of the form:

Ve — a+/0ta(ys) dx, (3)

Steps:
@ Define an integral [ z; dxs for z € Cy, with Kk +v > 1
@ Solve (3) through fixed point argument in C§ with 1/2 < x <~

Notation: We set .
Jst(z dx) = / z,,dx,,"”

for reasonable extensions of Riemann's integral
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Particular Riemann sums

Aim: Define fol zsdxs for z € Cf,x € Cf, with k + vy > 1

Dyadic partition: set t! = /2", forn>0,0 </ <?2"

Associated Riemann sum:

2n—1 2n—1

h=2_ zelxe, —xol = 3 zip Oxeper, -

i=0 i=0

Question: Can we define Jo1(z dx) = lim,_o 1,7

Possibility: Control |/,+1 — I,| and write (if the series is convergent):

Jo1(z dx) = Iy + Z(ln—l—l — 1)

n=0
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Control of /,,1 — I,

We have:
2n—1 2n—1
b = ; 2 OXepep,, = g Zgn [Fxggs + Oxgin o |
2n_1
he = 3 [z g + 2 g
Therefore:
2n—1
i =l = |2 Szigrrgs St ges
o
< ZO Izl t53 = e (IxllL e — el
Z
2]l [ %11y

2r+y9n(k+v-1)
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Definition of the integral

We have seen: fora=xk+~y—1>0and n> 0:

C

Series convergence:
Obviously, 352 5(l,+1 — In) is a convergent series
— yields definition of Jo1(z dx), and more generally: J:(z dx)

Remark:
One should consider more general partitions 7, with |7| — 0
— C.f Lejay (Séminaire 37)
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Young integral, version 1
,—[Proposition 4.] \
Let z € C([0, T]),x € C{([0, T]), with K +~ > 1, and 0 <
s<t<T. Let
@ (m,)n>0 a sequence of partitions of [s, t] such that
lim,—o0 |Tn| =0

@ [/, corresponding Riemann sums
Then:

© |/, converges to an element J(z dx)

@ The limit does not depend on the sequence (7"),>0

© Integral linear in z, and coincides with Riemann's integral
for smooth z, x

Q If0<s<u<t<T, wehave
Tet(z dx) = Tau(z dx) + Tue(z dx)

\ J
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Notations: increments

Simplex: For k > 2 and T > 0 we set

SkyT:{(S]_,...,Sk);O§$1<"'<5k§ T}

(k — 1)-increment: Let T > 0, a vector space V and k > 1:

C(V) = {g € C(Sk.1: V), t,-l—imﬂ 8ty =0, 1 < k — 1}

Remark: We mostly consider V = R for notational sake
— We write Cx = Ci([0, T|; R)
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Notations: operator ¢

Operator ¢:
k+1
L
0 : Cx — Cry1, 08t -ty = »_(—1) By,
i=1
where
= (t,. t)
ffd_l == (t17"‘7ti—17ti+1""7tk+1)

Examples: if g € C; and h € C, we have, for s,u, t € S5 7,

6gst =&t — &8s and 5hsut = hst - hsu - hut-
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First properties of ¢

Proposition 5.]

00 : Cx — Cyyp satisfies 60 = 0

Notation: ZCy = [Cx N Kerd]

,—[Proposition 6.}

Let
e k>1
@ he ZCria
There exists a (non unique) f € Cy such that h = §f.

\.
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Proofs

Proposition 5, easy case: If k =1, g € C; and h = dg, then:

(56g)sut - 5hsut - hst - hsu - hut
= (g — & —[8u — &) — gt — 8]
=0
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Proofs (2)

Proposition 5, general case: Let g € Ci. Then:

k+2
((55g)tk+2 = Z (— 1)k+1_i5gfl_<+2

i=1
k+1

= Z(—l)k“_"égf;ﬁz — 0 gkt
i=1
Decomposition for £72: Write £¥72 = sk*1. Then

ss=1t ifj<i—1, and s =t ifj>i.
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Proofs (3)

Computation of dgr2: For i < k + 1 we have

k+1 )
g = Oggrn = (—1) gy
1 j:1 J

i—1 ] k+1 ]

= 2 (D) g+ 3 (1) Vg,
j=1 = '
i—1 ] k42 )

= > (1) g+ D (1) T g
j=1 P =i "
i—1 ) k+1 )

= 2 (D) gpn+ > (1) T g —gun (5)
j=1 ' j=i+1 ’
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Proofs (4)

Conclusion for Proposition 5: Plugging (5) into (4), we get

k+1 k+1 )
(5(5g)tk+2 = Z( ]_k+1' Z( ]. gtk+2+ Z kH_lgyfﬂ
j=i+1 "
k+1

+ Z(—l)k_"gem — 5gtk+1
= Yo (DT g+ Y (1) g
1<j<i<k+1 o 1<i<j<k+1 "
F0Gek1 — Ok
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Proofs (5)

Proposition 6, strategy: We show that the following works:
ﬂ'lmtk - _htlmtkT

Relation 6h = 0: can be written as

k+1
Ghyez = Y (=1)"hyez — by = 0
i=1
Verification of our claim: Set g;,..+, = hy...t, 7 = —f..t,- Then
k+1 k+1
Ogkt1 = Z( gtk+1 Z( 1 Ihf:/‘(-l-lT
i=1 '
k41

= — Z(—l)k—i_l_ihyfﬂ-r (g) — hexn
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Particular case of Proposition 6

,—[Proposition 7.]
Let

e he Z(C
Then

e f is unique up to a constant

@ There exists f € C; such that h = of.

Proof of existence:
Take f; = —hgt as in the general case.

Proof of uniqueness:

A function f defined by its increments is unique up to a constant.
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First relation with integrals

,—[Proposition 8.}

Let f and g two smooth functions on [0, T]. Define I € C, by

t v
ls :/ </ dfw> dg,, for s,te]0,T].

Then we have, for s < u < t:

5Isut == [fu - fs][gt - gu] = 5fsu 5gut-

\

Remark: This elementary property is important:
@ ) transforms integrals into products of increments.

@ We have already seen that products of the type 0f g
— both regularities of f and g can be used.
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Proof

Invoking the very definition of § and /:

(o) (] )

- /ut

5l)sut — Ist

(o)
([ o) ([ o)
[ )

([ af) ([ dg) = oo
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Holder spaces

Aim: take into account some regularities in C.

Case k=2: if f € C,, set

fs
Il= sup L and et = fF e e ]l < oo}

(s,t)eSs 7 |t — s|*
Case k=1: if g € (4, set
lgllu = llogll; and  CY = {g € Cy; [lg]lu < o0}
Remark: || - ||, defines a semi-norm in C{". It is a norm on

={g:[0,T] = R; go = a, ||g]l, < o0}
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and
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Holder spaces (2)
Case k=3: if h € C3, set

1hll,. =

sup

(S,u,f)ESg,’T

|hsut’
|t — |

¢4 = {h € Cs; [|h], < o0}
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Operator A (Sewing map)

—~ Theorem 9. \

Let > 1. There exists a unique linear application A : ZC4 —
Ch such that

6N =1ldzes  and NS = Ides.
Equivalent statement: for any h € C§ such that 6h =0,
there exists a unique element g = A(h) € C4 such that g = h.

Furthermore, for any . > 1, the application A is continuous
from ZC4 to CY, and

1
IABl, < Al he ZCh

\ J
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Second relation with integrals

,—[Proposition 10.]

Let g € Cy, such that 6g € C§ with p > 1. Define
k= (Id — Ao)g

Then

kst = E 8titii1

\I_Ist|%0

as |Mg| — 0, where My is a partition of [s, t].

\.

Interpretation: Increment k can be seen as an integral of g.
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Proof of Proposition 10

An equation for g: Thanks to Proposition 7, we have
k=(d—-No)g = k=0 = k=506f

for f € C; unique up to a constant. Thus:
g =0f +Nog (7)

Conclusion: Thanks to (7) we have

n

5“ = thiti+1 Z 5ﬂ,t,+1 + Z Aég titiyr = 6f5t + Z Aég titiy1-

i=0 i=0 i=0

Then the last sum converges to zero, since Adg € C37(V)
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Young integral: strategy

Smooth case: Let f,g € Ci. Define | € C, by

t v
/St:/ </ dfw> dg,, for stel0, T

Decomposition-recomposition scheme: we have

l:/df/dgi>(5f)(5g)Ll:/df/dg.

Indeed:
@ First step: already established.
@ Second step: (0f) (d0g) € ZC4 with u > 1 = Proposition 9

Important: Second step can be extended to more irregular situations
— fel],g eCfwithpu=~y+r>1.
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Operator A (repeated)

r—[Theorem 11.]

Let > 1. There exists a unique linear application A : ZC4 —
Ch such that

oN = IdZC; and N = Idcg

Equivalent statement: for any h € C§ such that 6h =0,

there exists a unique element g = A(h) € C4 such that g = h.

Furthermore, for any o > 1, the application A is continuous
from ZC% to CY, and

1
IABl, < SNl he 205

J
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Operator A: uniqueness

Definition of 2 increments:
Let M, M be two elements in C4 such that M = §M = h.

Define Q = M — M.
Then 0Q =0 and Q € Ch.

Contradiction:
Hence there exists an element g € C; such that Q = dq, and

1G: — gs| = |Qst| < |t — s|*

Since 1 > 1, g is constant in [0, T], and thus Q@ = 0.
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Operator A: existence

Algebraic increment:
0h = 0 = existence of B € C, such that 6B = h.

Construction of a sequence:
Called M., defined for s,t € [0, T], with s < t

For n > 0, consider partition {r/"; i < 2"} of [s, t], where
, (t —s)i
i =5 + on 9

For n > 0, define

for 0<i<2".

2"—-1

n __
MSf o BSt o Z Brln’rln+1'
1=0

Easy step: check MY, = 0.
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Operator A: existence (2)

Control of M" — M"*1: we have

2"—1

n n+1 E :

Mst _— Mst+ = — (BrnJrl rn+1 _— Brn+1 rn+1 — Brn+l rn+1)
. 2i '2i42 2i '2i+1 2i4+12"2j42
i=0
2"—1 2"—1
- — g 5Brn+1 ptl ol = — E hrn+1 Pl ntl

—0 2i 0T2i41072i42 ‘—0 2i 7204177242
1= 1=

Since h € C§ with u > 1, we get

o _ yit| < Mhllu(t =)
’Mst_Mst ‘S 2upn(u=1)

Taking limits: we obtain existence of My; = lim,_, o M., such that

st

1Al
’Mst’ S ﬁ‘t — S’M.
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Operator A: existence (3)

More general sequences: Consider
e {m, n> 1} sequence of partitions of [s, t]
o my={rg,r{,....r0, ]}
o 7, C mpy1, and lim,_ o k, = 00

Tn — kn
° Mts - Bts - Z/:o Br,ll,r,"

Removing points of a partition:
For n > 1, there exists 1 < [ < k,, such that

[ — ] < T (8)
n
Then
@ Pick now such an index /
@ Transform 7" into 7, where
F= gt )
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Operator A: existence (4)
Estimate for the difference: As for dyadic partitions we have

Mg, = Mgy — (0B)y,

n n
+1071 =1

t—s\*
<2l ()

Iteration of the estimate: We repeat this operation and

= M — h

n n,.n
M frr—

and thus
ME — M

e We end up with the trivial partition 7o = {s, t}
e M =0
o We obtain

kn oo
(M| < 28 [[hlluft—s" >~ < 2M(|hll[t—s" D7 = cunlt—s|".
j=1 j=1
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Operator A: existence (5)

More general sequences, conclusion: By compactness arguments

@ One can find a subsequence {m,; m > 1} of {m,; n > 1}
o It satisfies lim 0o M[" = M
o M, satisfies Mys < ¢, |t — s|*

Uniqueness of the limit: One can show
< That the limit does not depend on the sequence of partitions.
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Operator A: existence (6)

Algebraic property:
We wish to show that 6M = h.

Family of partitions: Consider
0 0<s<u<t<T
e 77, sequence of partitions of [s, u] such that lim, o |72,| =0
e 7!, sequence of partitions of [u, t] such that lim,_o |7],| =0
© Mg = Mg, Uy,

Limits along the partitions: One can construct 7}, 72, 72 such that

uty “su

. 7 . n . g
im “ =M [im MZs« = M lim st = M.
M—s00 ut uts Moo su su m—00 st st
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Operator A: existence (7)

Notation: We call
@ k[ the number of points of the partition 77},
@ kI, the number of points of the partition 77,

@ k], the number of points of the partition 7},
Applying 6: We have
Oz = Mzt — MZ — M
Kn4kn —1 Ko —1 Km-km—1
=0Bout — Z Brlnrln+1 - Z Br/"”/"ﬂ - Z Br/mr/"ll
1=0 =0 I=kn,

:5Bsut — hsut-

Taking the limit n — oo in the latter relation, we get dMs,; = hg,:
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Expression for smooth functions

Riemann integral: Let f, g € C}
— Jst(f dg) defined in Riemann sense and

t t
\.7st(fdg) E/ fu dgu = fségst +/ [fu - fs] dgu

t
= f0ga+ [ Ofu g, = fiOgae + Tu(0F dg).

Analysis of J(0f dg) € Cy: for s,u,t € [0, T] we have

hsue = [0 (T (df dg))]sut = 0fu 08ur.

Therefore, f € Cf,g € C] = he Z2CJ™"
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Expression for smooth functions (2)

We have seen:

If K4+~ > 1 (smooth case: k =~ = 1), then h € Dom(A)
Thus (explain convention on products),

J(0f dg) = A(h) = N(0f dg),

and we get:
Jat(f dg) = £, 0gst + Nt (0 0g) - (9)

Generalization: RHS in (9) makes sense whenever r + v > 1
— natural extension of the notion of integral
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r—[Theorem 12.] \

Let f € Cr,g € C], with k +~ > 1. Define
Tst(f dg) = £ 0gs + Nst (0 0g) . (10)

Then:

Q If f, g are smooth functions
— Then J4(f dg) = Riemann integral

@ Generalized integral J(f dg) satisfies:
| Tee(f dg)| < I llocllglly It — s+ cyullFllullglly [t — s

@ J(f dg) coincides with usual Young integral:

n—1

t75t(fdg) = lim th, 5gtiti+1‘
i=0

|’7T5t|—>0 —

\ J
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Proof

Claim 1: Already obtained at (9)

Claim 2: Recall that

Hence, setting h = §f ig:

|fs 5gst|
At (0 0g)|

Samy T. (Purdue)

<
<

Iflloollgll5[t = sI”

CollBllyanlt = s < cyullfllxllglly 1 — s

Rough Paths 2

Aarhus 2016

51/ 74



Proof (2)

Claim 3:
Recall: that, if §¢ € C§ with p > 1,

k=(1d=N) = ke= lim Z&,w

|ﬂ'st|—)0

Application: take £ = fdg, namely {5, = f;0gs = 00 = —6f Og

Conclusion: we have

fs 08t + Nst (07 0g) = fi0gs — Aot (6(F 0g)) = [Id — AS](F dg)
— ‘ﬂ-hmoz ft, gt,f,+1
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Pathwise strategy (repeated)

Aim: Let x be a function in C{ with v > 1/2. We wish to define and
solve an equation of the form:

Ye=a+ /Ota(ys) dx, (11)

Steps:
@ Define an integral [ z; dx; for z € Cf, with K+ > 1
@ Solve (11) through fixed point argument in Cj with 1/2 < k <

Remark: We treat a real case and b = 0 for notational sake.

Samy T. (Purdue) Rough Paths 2 Aarhus 2016 54 / 74



Existence-uniqueness result

r—[Theorem 13.] ‘
Consider

e Noise: x € C{ =C{([0, T]), with v > 1/2

o Coefficient: 0 : R — R a C? function

e Equation: dy = J(o(y) dx)
Then:

@ Our equation admits a unique solution y in Cf
forany 1/2 < k < 7.

@ Application (a, x) — y is continuous from R x C{ to Cy.
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Fixed point: strategy

A map on a small interval:
Consider an interval [0, 7], with 7 to be determined later

Consider k such that 1/2 <k <y <1
In this interval, consider I' : C([0, 7]) — C§([0, 7]) defined by:
[(z) = 2, with 2y = a, and for s, t € [0, 7]:

s = | Co(2)dx = Tue(o(2) d¥)

Aim: See that for a small enough 7, the map I is a contraction
< our equation admits a unique solution in C§([0, 7])
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Contraction argument in [0, 7]

Definition of 2 processes:
Let z*, 22 € C§([0, 7]). Define 2" =T (z’). Then

58t — 2 )stz/:[ (21) = o(22)] o = T ([0(2") — o(22)] o)

Evaluation of the difference:

Tal[o(21) = o] )| < 10(2) — () elixl £ =T
+ Cv,nHU'(zz) — 0‘(21)”&”)(”7“. _ S|7+n

Important step: Control of

lo(2*) = o(z")l.
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Control of ||o(2?) — o(2Y)||.

Lemma 14.

Let o € C2. We have

lo(2%) = (")l < cor (14 121w + [12201) 1122 = 2"

Problem: Application o : C{([0, 7]) — C5([0, 7])
is only locally Lipschitz
Solution: Decomposition of the fixed point argument:

@ If 7 small enough and M large enough:
existence of an invariant ball B(0, M) by map I" in Cf ([0, 7])

© Within the invariant ball, usual contraction argument
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Invariant ball

Lemma 15.

Let 7 < c=1/7, where ¢ = ¢(7, £, ||o]|oc, [10"]|oc, [1X]1-).
Let M > [em""]/[1 — c77].
Then ball B(0, M) in Cf ([0, 7]) is invariant by T".

Proof: Start from our bound:

| Tst(0(2)dx)| < |lo(2)|sollX]l5[t = s|” + cyillo(2)|lellx]l4 ]t — 5[
<ol Xyt = s[*777% + ¢y kllo’ ool 2]l ]|y [t — 5|77

< Cumolixlly [T+ |zl ] |t = 5|7

e[+ 2] It — s
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Invariant ball: proof

Inequality for M: We have seen

IF@)x < c [+ [1z]l7] -

Hence, if M satisfies:
c {T'y’“ + /\/ITV} < M,
ball B(0, M) invariant by T

Remark:

We have used v > « in order to gain a contraction factor 77"
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Invariant ball: proof (2)
Solving (12): Write

(12) <= ¢ [TV"" + MT’Y} <M= MQA—-cr)>cr™"

First condition on 7: ¢77 < 2. Then a sufficient condition for (12) is

M >2c7"™F

1
Second condition on 7: We take M =1 and 7 < (2—1C> e

Conclusion: Relation (12) satisfied and B(0, 1) invariant if

<(2) A (L) = ntmo)
T X 2c 2 = Ti\7, Kk, 0, X,y
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Contraction argument in [0, 71]
Recall: Setting Ky = Ju:([o(2') — o(2°)] dx), we have seen

|Kee| < ll0(2%) = o(2") eIl |t = I
+eullo(2%) — o (2 lullxl, [t — s

Bounds on Hoélder norms:
On [0, 7»] with 7, < 74 we have (cf Lemma 14)

lo(2?) —o(2)llx < 3cmll2? = 2Mx
and

lo(2) — 0w < ll2— 2

<
< CO'T;HZZ - Zl”/ﬂ

ComallZ® = 21
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Contraction argument in [0, 7] (2)
Bound on K: Owing to previous computations we get

Kstl < Comlixlly 21l = 22,1t = 5|7

Recall: Let 2,22 € C§([0, 72]). Define 2" =T(z'). Then

Contraction: We have obtained
IF(z*) = ()l < Comlixlls5l12% = 2711,
Considering 7 < inf{71, (2¢, ., ||x|l5) "/} this yields

1
M) = Tk < 5122 = 2
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Contraction argument in [0, 71] (3)

Existence-uniqueness on a small interval:
Thanks to Banach-Steinhaus, for

< inf 1
n
2= CopnlXl e S

we get unique solution of (11) in C7 ([0, 2])
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From [0, 7] to [7, 27]

New map I': In [7,27], consider the map
r: Ci([r, 27]) = Ci([r, 27])

defined by: ['(z) = 2, with 2, = a,, where
e a, = final value of the solution in [0, 7]
@ For s, t €[r,27], 624 = Ts(z dx)

New fixed point argument: the same fixed point arguments yield a
unique solution y of y; = a, + [! f(ys) dxs in C£([r, 27]).

Remark:

In order to use the very same arguments, need a bound on o,0’, 0"
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Continuity with respect to initial condition (1)

Notation: We set
@ y? solution of equation (11) with initial condition a
@ a;, a» two initial conditions

0 z=yR —ya

Equation for z:

0z = [o(y") — o (¥ 0xse + AN (3]0 (y") — o (yi?)]ox)
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Continuity with respect to initial condition (2)

Notation: Set, for 4 > 0,
o ||wlly = ||wl, 0, for a path w
o Z, =sup,,|z|
° a = ¢llxl,

0 &= Copo (1+ Iy e+ ly2lle) IxIl,
Bound for z: We get

10zse]| < 1 Zs|t = s|” + ca|z]]|t — s

Bound for Z: We trivially have

Z, < |a' — @+ ||z||. 7
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Continuity with respect to initial condition (3)

Bound for the Hoélder norm of z: We have

Izl < am ™ (la' = & + ||zl 78) + collzllury

< ar "lat =2+ (a + )2l

Choosing 71: such that 4 <1 and

C3 Y 1
=\ = (atoa)y=;
(1 + ”X||7> 2
Conclusion on a small interval: On [0, ;] we have
Izllnomy < 207 "2t — 27|
zn| < 2ol + 72l < A+ carl) [a" = 27
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Continuity with respect to initial condition (4)

Iteration of the estimate: For j > 0 and setting d, = 1 + ¢;77 we get

||ZHH; Um,(+1)m1] < d}’;|al — 32|

Patching small interval estimates: Consider

jTl§S<(j—|-1)7'1<k7'1§t<(k—|—1)7'1

Then 1
|5Zst| S |5zs,(j+1)7'1| + Z |6zl7'1,(/+1)7'1| + |5zk7'1,t|
I=j+1
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Continuity with respect to initial condition (5)

Patching small interval estimates, ctd:
We get (recall d, — 1 = ¢477)

525 o k—1
% <G+ —s"+ Z dfﬂ'f + d)’f|t — km|”
|at — &2| I=j+1

dk—j—l _

<+ 1 —sf 4@ ST

<odl (|(G+1)m —s|"+70 + [t —kn|")
< cgdi |t —s|

1+ df:|t — k|7
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Continuity with respect to initial condition (6)

Bound on k: In previous computations,

T
k< T = k< —
T1

Conclusion for Hélder's norm: We have obtained

-
Izl < cod)/™|at — a®| = ¢ exp <T— ln(dx)> |a' - &°
1
< o exp (r (1+]|x],)"7) |a" = 27|

Continuity proved!
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Control of ||o(2%) — o(2!)]|.. (repeated)

Lemma 16.
Let o € CZ2. We have

lo(2%) = o(Z)lx < Cor (T4 1241 + 12%]1x) 122 = 2"

Proof: For A, € [0, 1], define the path
a(\, p) =zt —|—)\(zt -z ) —|—,u(z —z)+)\,u(zt2—zs2—zt1+zsl)
Then

a(0,0) =z}, a(0,1) =2z, a(1,0) =2z, a(1,1)=2
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Proof
Let G(\, ) = o(a(X, 1)), and

AR = |o(2) - o(z)] = [0(2) — o(2d)]
We have:

AR = G(1,1) — G(1,0) — G(0,1) + G(0,0) / / 2 ,G dAdp

Set 2 = 7% — 7! and compute:

0,6 = 8;\“30/( )+ Ohad,ac’(a)
Oa= oz +[1—ploz
dpa= A2+ [1— N2,

2 ~
8>\7Ma - 525!’
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Proof (2)

Thus:

0xa| = |n0Z2 + [1 = pl 6z%| < [[I2}]|x + I1Z2[1s] |t — sI*
0ua] = A2+ [1 = Nz| < [z = 22 7

0308l = 102se| < (|27 = 2°[lult — I,
M

and

0,6 = ‘afwaa’(a)-|—(9Aa@uaa”(a)’
< | 8] 110 lloo + [0xal 0,2l [lo”]|o

The result is now easily deduced.
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