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Graphical models [Lauritzen (1996)]

e D = (V, E): directed acyclic graph (DAG)
@ X =(Xj,...,Xy): joint probability distribution
@ Markov relative to D

Example. V =1{1,2,3,4}, E={(1,2),(1,3),(2,4),(3,4)}
(local) Markov property:

X, AL Xnd(v)\pa(v)|Xpa(v)
Xy L Xi| X, X3
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Structural equation models

Structural equation models [Pearl (2009)]

Fori=1,...,d:
@ f, measurable functions
@ Z; independent noise variables
@ Define X; := fi(Xpa(i), Zi)

Examples: in the literature mainly discrete models and Gaussian
models with X; = fi(Xpa(i)» Z)) = Zkepa(i) Ci Xk + G Zi-
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Max-linear structural equation models

Max-linear structural equation models (ML-SEM)

For Zi,...,Zy > 0 independent, continuous with support R* and
c; € (0, 1], we define the max-linear structural equation model

Xi=\/ dXvez i=1,...d
kepa(i)
X1:C:Z1

Xo = c2Xy V C3Zy = ¢|c?Zy v 22

Xs =Xy VEiZy =c{c}Zy v ciZs

Xs =XV C3Xa V Ci2Z4

=cy(c{c?Zy v EZ) v ci(ci 32y v e3Z;) v ¢ Z,
=(c{cfcy v ejcdcd)Zy v c5eyZa v €33 Zs v ¢l Z,
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A ML model on a DAG

Max-linearity of X by path analysis

Let X = (Xi, ..., Xy) be generated by a max-linear SEM with

coefficients c, € (0,1] and DAG D = (V, E).

Forapath p =[j = ko — ki — --- — k, = i] define the coefficients
d(p) := Gy -+~ Ci

andforalli=1,...,d,

ji 1= \/ di(p) Vjean(i), b;=c andallother b;=0,
PEP;i

We call the specific path/paths giving b; max-weighted paths.
Theorem. X is a max-linear model: Fori=1,...,d,

X = \/b,,Z_ \/ bz (An(i) = an(i) U {i}).

jeAn(i)
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A ML model on a DAG

A SEM as max-linear model on a DAG

The ML coefficient matrix B is a weighted reachability matrix.

For our example we find:

1 2 3 2 ~4 3 A4

c, 012 c; Ccc, \2 c;cy
B_ 0 ¢ 03 c%
0 0 cj ox
0 0 O c;

Reachability matrix: R = sgn(B)
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A ML model on a DAG

Transitive reduction

A DAG D" = (V, E") is called transitive reduction of D, if
(a) foralli,je Vthe DAG D" has a path from j to i if and only if D
has a path from j to i, and

(b) there is no DAG with less edges satisfying condition (a).

e‘:.e eée
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A ML model on a DAG

Theorem

Let (D, X) be a ML model on a DAG with coeff. matrix B = (bjj)gxd-
Let further D' = (V, E") be the transitive reduction of D. Define

by }

bII

B~ {(kl)erV k € pa(i)\pa"(i) and by = v

lede(k)npa(i)

and for EB := E \ B~ the DAG D® := (V, EB).
Then (D5, X) is a minimal ML model on a DAG.

Remark: DB is minimal causal w.r.t. X.
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Max-weighted ML model on a DAG

A ML model on a DAG (D, X) is called max-weighted,
if all paths are max-weighted:
for all paths p = [j = ko — ki — ... = k, = i] we have

bi = ¢ -+ ¢ e = dj(p).
Proposition. (1) Let (D, X) be a max-weighted ML model on a
DAG. Then DB = DV,
(2) A ML model (D, X) on a directed tree is max-weighted.
(8) For every DAG we can construct a max-weighted ML model by
choosing ¢, = ni/n;, ¢ = 1/n; for n; := |An(i)| for k € pa(i).
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Asadi, P, Davison, A.C. and Engelke, S. (2015) Extremes on river networks.

x P.ASALE, AL L. LAY ISUR, AT S REVLRLNR

FICURE 1. Topographic map of the upper Danube basin, showing sites of
31 gauging stations (red blobs) along the Damube and its tributaries. Water
Hows broadly from left to right.
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wind speed Viy

ground speed Vgs
Vk = Va+ Vi

headwind vy , energy

touchdown point

/]

ground speed Vgs
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Examples

Einmahl, Kiriliouk and Segers (2016) A continuous updating weighted least squares estimator of tail dependence in high dimensions.

Xo (EURO STOXX 50),
Xi1, Xq2, X13, X14 (chemical industry, insurance, DAX, CAC40),
X21 , X22, X23, X24, X25 (Bayer, BASF, AIIianz, Axa, A|rI|qU|de)
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The distributional ML model on a DAG

The multivariate distribution function of a ML model on a DAG

Let Zi.,...,Zy € MDA(®,) with ®,(x) = e, x > 0.
Then X = (Xi,..., Xy) € MDA(G), where for x = (X4,...,Xg) >0

d
G(x) = exp{ - Z \/ b,‘j‘,x,‘"}
k=1 keAn(i)
In particular,

Gx(x) = exp{—x“’ Z bfj,-}

keAn(i)

b’,af b.a
o) — ool 3 (2]

keAn(i)nAn(j) X
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Tail dependence coefficient
For notational simplicity assume from now on

=1 for eV
keAn(i)

Then G has standard marginal distributions @,
For i,j € V the tail dependence coefficient between X, and X

x(i)) = mP(X>ulX>u)= >  biaby
e keAn(DNAN())

We also assume from now on

a=1 suchthat x(i,j) = Z bii A by, i,jE V.
keAn(i)nAn(j)

Goal: Estimate a max-weighted ML model (D, X) from y.
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Max-weighted ML model on a DAG

Proposition. Let (D, X) be a max-weighted ML model on a DAG.

@ Forj € An(i) we have x(j, i) = g—’;.
@ Forj e An(i) with path [j = ko = ki — --- — k, = i] we have

XU, ) = x(Ko, k1) -+ x(Kn-1, Kn).

Corollary. Let V, denote the set of initial nodes.
@ Then k € An(i) if and only if x(k, i) > 0 and for all
j € An(i) nAn(k) N Vo we have x(j, i) = x(j, k)x(k, i).
@ Thereisapath [j = ky — --- — k] if and only if
x(Kkm, kmi1) >0form=0,...,n-1 and
for all j € An(i) N V, we have)((j, i) = x(ko, k1) - - x(Kn-1, kn).

O
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The distributional ML model on a DAG

Theorem. The following are equivalent
Q@ x(i.j)=0
@ X and X are independent
Q An()NAn()=0
We call W € V a y-clique of D if x(i,j) =0 foralli,je W, i #j.

Lemma. Let V, denote the set of initial nodes of D.
@ Foralli,j e Vo we have x(i,j) = 0;i.e. Vyis a y-clique.
Q@ Let W C V suchthat x(i,j) =0forall i,j e W.

Then |W| < |V,l; i.e. Vg is a maximal y-clique.
Hence, |An(i) N Vo| =1 forallie W.

Theorem. The matrix B is identifiable from y and V.
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Identify (D, X) from data

(I) Find D from the given (or estimated) tail dependence matrix y.
(1) Calculate all maximum cliques.
— There is only one maximum clique = this is V.
— There are various maximum cliques
= there may be several DAGs with different V.
(2) Construct a reachability matrix R (hence D) from y and every
maximum clique Vj.
Use: for k,i € V, k € An(i) if and only if x(k, i) > 0 and
x (1) = x(j. k)x (k. i) for all j € Vo with x(j. i)x(j. k) > 0.
Thus we find for every node its ancestors, giving a possible R.
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Identify (D, X) from x

(Il) Find B.

For all j € V, we know b = 1.
For j € An(i) we have b; = x(i, ).
Since ¥ jean(y bi = 1,

bi=1- Z bji =1- Z bjj)((i’j)'

jean(i) jean(i)
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