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Motivation and Applications I

PCA

Image compression: low-dimensional approximation based on
SVD may be sufficient.
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Game Plan

1 Classical Random Matrix Theory (RMT)

2 Largest, smallest eigenvalue under various moment
assumptions

3 Heavy-tailed entries: the iid case

4 Heavy-tailed entries: with dependence

5 Sample correlation matrices
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Stieltjes transform

For any sequence (An) of p× p matrices with only real eigenvalues
λ1(An), . . . , λp(An) the empirical spectral distribution is

FAn(x) =
1

p

p∑

i=1

1{λi(An)≤x}, x ∈ R , n ≥ 1.

In random matrix theory a lot of attention has been given to the
problem of finding a distribution function F such that FAn → F
at all continuity points of F .
Yesterday: Steen Thorbjørnsen’s talk: semicircle law
The Stieltjes transform of the empirical spectral distribution FA is

sA(z) =

∫
1

x− z dFA(x) =
1

p
tr(A− zI)−1 ,

where z = u+ iv ∈ C+, the complex numbers with positive
imaginary part. The convergence d(FAn , F )→ 0 is equivalent to
sFAn

(z)→ sF (z) for all z ∈ C+.
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Setup & Objective

Data matrix: a p× n matrix X = Xn consisting of n
observations of a p-dimensional time series, i.e.

X = (Xit)i=1,...,p;t=1,...,n.

We are interested in the non-normalized p× p sample covariance
matrix XX ′ and its ordered eigenvalues

λ(1) ≥ λ(2) ≥ · · · ≥ λ(p).
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The Marčenko–Pastur Law

Let X have iid, real-valued, centered entries with variance 1.
Assume p/n→ γ ∈ (0, 1].
The empirical spectral distribution F 1

n
XX′ converges to a

deterministic distribution with density supported on [x−, x+],
where x− = (1−√γ)2 and x+ = (1 +

√
γ)2, given by

√
(x− x−)(x+ − x)

2πxγ
1[x−,x+](x).

Direct implications from the Marčenko–Pastur law:

lim sup
n→∞

λ(p)

n
≤ (1−√γ)2 ≤ (1 +

√
γ)2 ≤ lim inf

n→∞

λ(1)

n
.
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Limiting spectral distribution under heavy tails

Assumption: regular variation of iid entries, infinite second
moment.
Then (Fa−2

n+pXX′) converges weakly with probability one to a

deterministic probability measure whose density ργα satisfies

ργα(x)x1+α/2 → αγ

2(1 + γ)
, x→∞ ,

see [Belinschi et al., 2009, Theorem 1.10] and
[Ben Arous and Guionnet, 2008, Theorem 1.6].
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Extreme eigenvalues + light tails

Assume that X has iid centered entries with unit variance.

Finite fourth moment of Xij .

If limn→∞ p/n = γ ∈ (0,∞), then

1

n
λ(1) → (1 +

√
γ)2 a.s.

In particular, if X has iid standard normal entries
[Johnstone, 2001] showed that

n2/3 (
√
γ)1/3

(
1 +
√
γ
)4/3

(λ(1)

n
−
(
1 +

√
p
n

)2) d→ Tracy–Widom distr.,

which is a generic distribution in Random Matrix Theory.

Recently [Tikhomirov, 2015] proved n−1λ(p) → (1−√γ)2 if X
has unit variance.

J. Heiny Sample covariance matrices



Four Moment Theorem, [Tao and Vu, 2010]
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Figure : Entry distribution: P(X =
√

3) = P(X = −
√

3) = 1/6,
P(X = 0) = 2/3. Note EX = 0, E[X2] = 1, E[X3] = 0 and E[X4] = 3,
i.e., the first 4 moments of X match those of the standard normal
distribution .
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Heavy tails, iid case

Infinite fourth moment of Xij .

If X is an n× n matrix with iid entries, [Bai et al., 1988] showed
that

lim sup
n→∞

λ(1)

n
=∞ a.s.

We need a stronger normalization than n.
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Infinite fourth moment, p→∞

Assume the iid entries Xij are regularly varying with index
α ∈ (0, 4), i.e. P(|X| > x) = x−αL(x) as x→∞, and

P(X > x) = qx−αL(x) and P(X < −x) = (1−q)x−αL(x)

for some q ∈ [0, 1].

Normalizing sequence (a2
np): (an) such that

nP(|X11| > anx)→ x−α, as n→∞ for x > 0.

Then anp = (np)1/α`(np).
We have

lim
n→∞

a2
nn

n
=∞.

Growth condition: p = nβL1(n)→∞ for β ∈ [0, 1].
Since XX ′ and X ′X have the same non-zero eigenvalues it
is enough to consider β ∈ [0, 1].
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More notation

Let

Di = (XX ′)ii =

n∑

t=1

X2
it

and denote by D(i) their order statistics.
We denote the order statistics of the random variables
X2
it, i = 1, . . . , p; t = 1, . . . , n by

X2
(1),np ≥ X2

(2),np ≥ . . . ≥ X2
(np),np.
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Main Result in the heavy-tailed iid case

Theorem

Consider a p× n-dimensional matrix X with iid regularly varying
entries with index α ∈ (0, 4). We assume E[X] = 0 for α ≥ 2
Then the following statements hold:

1 If β ∈ [0, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −D(i)

∣∣ P→ 0 .

2 If β ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −X2
(i),np

∣∣ P→ 0 .
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Reduction to diagonal

Diagonal

Assume that X = Xn has iid entries satisfying the regular
variation condition for some α ∈ (0, 4). If E[|X|] <∞ we also
suppose that E[X] = 0. Then for any sequence (pn) satisfying
pn = nβ`(n) with β ∈ [0, 1] we have

a−2
np ‖XX ′ − diag(XX ′)‖2 P→ 0 , n→∞ ,

where ‖ · ‖2 denotes the spectral norm.

(XX ′)ij =

n∑

t=1

XitXjt.
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Weyl

For any symmetric p× p matrices A,B, by Weyl’s inequality

max
i=1,...,p

∣∣λ(i)(A+B)− λ(i)(A)
∣∣ ≤ ‖B‖2 .

If we now choose A+B = XX ′ and A = diag(XX ′) we obtain
the following result:

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(diag(XX ′))
∣∣ P→ 0 , n→∞ .

Thus the problem of deriving limit theory for (λ(i)) has been
reduced to limit theory for the order statistics of the eigenvalues of
diag(XX ′).
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Eigenvectors

diag(XX ′).

Eigenvectors are canonical basisvectors ej .

Eigenvectors

Assume the conditions of the Theorem and let β ∈ [0, 1]. Then for
any fixed k ≥ 1,

‖vk − eLk‖`2
P→ 0 , n→∞ .
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Figure : Eigenvectors: In the case of Pareto tails,
maxi=1,...,p |v1,i| = 1− 10−5 The values used in the simulations are
p = 200, n = 1000, α = 0.8.
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Figure : Eigenvectors: Standard normal. The values used in the
simulations are p = 200, n = 1000.

J. Heiny Sample covariance matrices



Main Result in the heavy-tailed iid case

Theorem

Consider a p× n-dimensional matrix X with iid regularly varying
entries with index α ∈ (0, 4). We assume E[X] = 0 for α ≥ 2
Then the following statements hold:

1 If β ∈ [0, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −D(i)

∣∣ P→ 0 .

2 If β ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −X2
(i),np

∣∣ P→ 0 .

For β = 1 this result was proven in [Auffinger et al., 2009]. The
study of Hermitean matrices with power-law entries was started by
[Soshnikov, 2004, Soshnikov, 2006].
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Illustration
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Figure : Smoothed histograms of the approximation errors for the
normalized eigenvalues (a−2

npλ(i)) for entries Xit with α = 1.6, β = 1,
n = 1000 and p = 200.
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Applications

Then

Nn =

p∑

i=1

εa−2
npλi

d→
∞∑

i=1

ε
Γ
−2/α
i

= N.

The limit is a PRM on (0,∞) with mean measure
µ(x,∞) = x−α/2, x > 0, and

Γi = E1 + · · ·+ Ei, (Ei) iid standard exponential.

For fixed k ≥ 1:

lim
n→∞

P(a−2
np λ(k) ≤ x) = lim

n→∞
P(Nn(x,∞) < k) = P(N(x,∞) < k)

=

k−1∑

s=0

(
µ(x,∞)

)s

s!
e−µ(x,∞), x > 0.

In particular,
λ(1)

a2
np

d→ Γ
−α/2
1 , n→∞ ,

where the limit has a Fréchet distribution with parameter α/2.
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Applications

Mapping theorem: For fixed k ∈ N

a−2
np (λ(1), . . . , λ(k))

d→ (Γ
−2/α
1 , . . . ,Γ

−2/α
k ) = Yk,

a−2
np

(
λ(1) − (p ∨ n)E[X2], . . . , λ(k) − (p ∨ n)E[X2]

) d→ Yk .

We also have

(λ(2)

λ(1)
, . . . ,

λ(k)

λ(k−1)

)
d→
((Γ1

Γ2

)2/α
, . . . ,

(Γk−1

Γk

)2/α)
.

Law of large numbers:

λ(k+1)

λ(k)

P→ 1, k →∞.

J. Heiny Sample covariance matrices



Application: S&P 500 index
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Figure : Estimated tail indices of stock returns in the S&P 500 index.
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Application: S&P 500 index
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Application: S&P 500 index, original data (no rank
transform)

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●
● ●

●

●
●

●

● ●
●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ●

●
●

●

0 10 20 30 40 50

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

i

lo
g(

λ (
i+

1)
λ (

i))

Figure : The ratios (λ(i)/λ(i+1)) for the original (non-rank transformed)
S&P 500 log-return data.
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Heavy tails and dependence

Let (Zit) be a field of regularly varying random variables.

Stochastic volatility model:

Xit = Zit σ
(n)
it .

Generate covariance structure A:

X = A1/2Z .

Dependence among rows and columns:

Xit =

∞∑

l=0

∞∑

k=0

hklZi−k,t−l

with some constants hkl.
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ASYMPTOTIC THEORY FOR LARGE SAMPLE COVARIANCE MATRICES
JOHANNES HEINY, RICHARD DAVIS, THOMAS MIKOSCH, XIAOLEI XIE UNIVERSITY OF COPENHAGEN

ABSTRACT
In risk management an appropriate assessment
of the dependence structure of multivariate data
plays a crucial role for the trustworthiness of the
obtained results. The case of heavy-tailed compo-
nents is of particular interest.
We consider asymptotic properties of sample co-
variance matrices for such time series, where both
the dimension and the sample size tend to infinity
simultaneously.

SETUP & OBJECTIVE
Data matrix: a p× n matrix X consisting of n ob-
servations of a p-dimensional time series, i.e.

X = (Xit)i=1,...,p;t=1,...,n.

We are interested in the non-normalized p×p sam-
ple covariance matrix XX ′ and its ordered eigenval-
ues

λ(1) ≥ λ(2) ≥ · · · ≥ λ(p).

EXAMPLE

Figure 1: The density of the continuous part of Y de-
fined in (2) with α = 1.5.

Assume that α ∈ (0, 2) and

Xit = Zit + Zi,t−1 − 2(Zi−1,t − Zi−1,t−1). (1)

The matrix M has rank 2 and the non-negative
eigenvalues v1 = 8 and v2 = 2. The limit point
process in (4) is

∞∑

i=1

ε
8Γ

−2/α
i

+
∞∑

i=1

ε
2Γ

−2/α
i

.

By (5) we get

a−2
npλ(2)

d→ 2Γ
−2/α
1 ∨ 8Γ

−2/α
2 .

Since Γ1/Γ2 has a standard uniform distribution,
we can easily compute

P(2Γ
−2/α
1 > 8Γ

−2/α
2 ) = 2−α ∈ (1/4, 1).

The self-normalized spectral gap
λ(1) − λ(2)

λ(1)

converges in distribution to a random variable

which has the same distribution as

Y := 3/4I{U<2−α} +
(
1− U2/α

)
I{U>2−α}, (2)

where U is standard uniformly distributed. Y has
an atom at 3/4 with point mass 2−α. The ratio of
the two largest eigenvalues is of special interest.
In the case of independent rows it was shown that
λ(2)/λ(1) → Uα/2 in distribution. In our model,
however, the rows are dependent and the limit
takes the form

cα/2I{U<c} + Uα/2I{U>c}

for a non-negative constant c. To confirm this limit
structure we simulate the ratio (λ(2)/λ(1))

2/α from
the model (1) for α = 1.5. The theoretical limit
variable is

(1− Y )2/α = 0.35I{U<0.35} + U{U>0.35}. (3)
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Figure 2: The histogram of
(
λ(2)/λ(1)

)2/α based on
1000 replications from the model (1) with noise given
by a t-distribution with α = 1.5 degrees of freedom,
n = 1000 and p = 200.

A histogram based on realizations of the true limit
variable (3) would look very similar.

OUR MODEL
Suppose X = (Xit)i=1,...,p;t=1,...,n with

Xit =
∞∑

l=0

∞∑

k=0

hklZi−k,t−l

and regularly varying iid noise (Zit) with index
α ∈ (0, 4) (infinite fourth moment), i.e. there ex-
ists a normalizing sequence (an) such that

nP(|Z| > anx)→ x−α, as n→∞ for x > 0,

and a tail balance condition holds. If Z is regu-
larly varying with index α, then moments above
the αth do not exist.
Moreover we impose a summability condition on
the double array of real numbers (hkl) and a very
general growth condition on p = pn →∞.

POINT PROCESS CONVERGENCE
Let (Ei) be iid standard exponential random vari-
ables and Γi = E1 + . . . + Ei. Then we have the
point process convergence

p∑

i=1

εa−2
npλi

d→
∞∑

i=1

r∑

j=1

ε
Γ
−2/α
i vj

. (4)

An application of (4) then yields for every fixed
integer k ≥ 1,

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
d(1), . . . , d(k)

)
,

where d(1) ≥ · · · ≥ d(k) are the k largest ordered
values of the set {Γ−2/α

i vj : i, j ≥ 1}. In particular
we find

d(1) = v1Γ
−2/α
1 and d(2) = v2Γ

−2/α
1 ∨ v1Γ

−2/α
2 .

(5)
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KNOWN RESULTS
If the rows of X are independent and identically
distributed strictly stationary ergodic time series,
then for fixed p we have 1

nXX ′
a.s.−→ Ip.

In particular, if X has iid standard normal entries
Johnstone (2001) showed that for p, n → ∞ with
p/n→ γ > 0,

n2/3 (
√
γ)1/3

(
1 +
√
γ
)4/3

(λ(1)

n
−
(
1 +

√
p
n

)2) d−→ TW,

a Tracy-Widom distribution.
Let us now assume that the entries of X are still
iid but with infinite fourth moment (heavy tails).
Since lim supλ(1)/n =∞ a.s. a much stronger nor-
malization of XX ′ is required.

MAIN RESULT
The order statistics D(i) of the iid sequence
Ds =

∑n
t=1 Z

2
st and the ordered eigenvalues v(j)

of the matrix M given by Mij =
∑∞
`=0 hi`hj`

play a key role in determining the asymptotic
properties of the ordered eigenvalues λ(i).

Theorem. If α ∈ (0, 2), then

a−2
np max

i=1,...,p
|λ(i) − δ(i)| P→ 0, n→∞,

where δ(1) ≥ · · · ≥ δ(p) are the ordered values of
the set {D(i)v(j) : i ≤ p; j ≥ 1}.
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Autocovariance matrices

Autocovariance function and singular values.
Let

Xn(s) = (Xi,t+s)i=1,...,p,t=1,...,n , n ≥ 1 ,

then Xn = Xn(0). The autocovariance matrices for lags s ∈ N0

are
Xn(0)Xn(s)′.

Limit theory for singular values of such matrices.
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Sample Correlation Matrices

Assumptions: (Xit) iid, p/n→ γ ∈ (0, 1].
Define the p× p diagonal matrix F = (diag(XX ′))−1.
Sample correlation matrix R:

R = F1/2XX ′F1/2

and its ordered eigenvalues

µ(1) ≥ · · · ≥ µ(p) .

Note that the matrices F1/2XX ′F1/2 and XX ′F have the same
eigenvalues.
The results on sample covariance matrices can be used to draw
conclusions about the behavior of the eigenvalues of the sample
correlation matrix.
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Sample Correlation Matrices

By Weyl’s inequality we have

max
i=1,...,p

|µ(i) − n−1λ(i)| ≤ ‖XX ′F− n−1XX ′‖2

≤ n−1‖XX ′‖2‖nF− I‖2
= n−1λ(1) max

i=1,...,p

∣∣∣ n∑n
t=1X

2
it

− 1
∣∣∣ .

(1)

If E[X4] <∞,

max
i=1,...,p

∣∣∣ n∑n
t=1X

2
it

− 1
∣∣∣ a.s.→ 0.

This approach was used by [Jiang, 2004], and
[Xiao and Zhou, 2010].
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Sample Correlation Matrices under infinite fourth moment

Almost sure convergence of µ(1) for symmetric X

If the iid entries Xit satisfy a moment condition which is
”essentially”

nE
[X4

11

D2
1

]
→ 0 ,

then FR converges to the Marčenko–Pastur law and

lim
n→∞

µ(1) = (1 +
√
γ)2 , a.s. (2)

If

nE
[X4

11

D2
1

]
6→ 0 ,

the empirical spectral distribution FR does not converge to the
Marčenko–Pastur law.
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