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Introduction

In the last talk:

Limit theory for the power variation in the setting of infill asymptotics,
n
V(p)":= > |ATX|P, ATX = Xi = Xia.
& " A

Process (X;):er a stationary increment moving average of the form

Xe= [ {e(t-9)- (-5}l

Limiting behavior of V(p)" is divided into three different regimes
depending on

@ [ — the Blumenthal-Getoor index of the driving Lévy process L
@ « — the power characterising the behavior of g at 0

@ p — the power for the power variation.
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Introduction

In this talk:

© Generalisation to Lévy semistationary processes:

Xe= [ {g(t-9)-go(-s)}oudlLs,

where o is a predictable process.
@ Functional convergence
© Applications and further generalisations.
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LSS processes

Lévy semistationary (LSS) Processes, definition and
assumptions

A Lévy semistationary (LSS) process is given as

Xe= [ (g(e-9) - go(-9)as dLe

@ (L¢)ter is a Lévy process on the real line.
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A Lévy semistationary (LSS) process is given as

Xe= [ (g(e-9) - go(-9)as dLe

@ (L¢)ter is a Lévy process on the real line.

@ g and gy are deterministic functions, g is continuously
differentiable on (0, 00), and go(u) =0 for u < 0. For this talk we
assume that gp = 0.
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LSS processes

Lévy semistationary (LSS) Processes, definition and
assumptions

A Lévy semistationary (LSS) process is given as

Xe= [ (g(e-9) - go(-9)as dLe

@ (L¢)ter is a Lévy process on the real line.

@ g and gy are deterministic functions, g is continuously
differentiable on (0, 00), and go(u) =0 for u < 0. For this talk we
assume that gp = 0.

@ (0t)ter is cadldg and predictable process, not necessarily
independent of L.

@ If o is stationary and independent of L, then X is stationary.

@ X generally not a semimartingale, nor an infinitely divisible process.
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LSS processes

Motivation: Ambit fields and relative intermittency

Xe= [ (g(e-9) - go(-9)as dLe

@ LSS processes are an important purely temporal subclass of ambit
fields, a class of stochastic processes introduced for modelling
velocities in turbulent flows (Barndorff-Nielsen and Schmiegel 2005).
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Motivation: Ambit fields and relative intermittency

Xe= [ (g(e-9) - go(-9)as dLe

@ LSS processes are an important purely temporal subclass of ambit
fields, a class of stochastic processes introduced for modelling
velocities in turbulent flows (Barndorff-Nielsen and Schmiegel 2005).

o The relative intermittency process 52* = ([, o5[2ds)/( [, |os[2ds),
t € [0,1] models energy dissipation and is important for application
in physics.
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LSS processes

Motivation: Ambit fields and relative intermittency

Xe= [ (g(e-9) - go(-9)as dLe

@ LSS processes are an important purely temporal subclass of ambit
fields, a class of stochastic processes introduced for modelling
velocities in turbulent flows (Barndorff-Nielsen and Schmiegel 2005).

o The relative intermittency process 52* = ([, o5[2ds)/( [, |os[2ds),
t € [0,1] models energy dissipation and is important for application
in physics.

@ Typically, 02 is modelled as (exponential of an) ambit process, e.g.
(Hedevang and Schmiegel 2013).
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LSS processes

Limit theory for Brownian semistationary processes

(Barndorff-Nielsen, Corcuera, Podolskij 2009,2011): Limit theory for BSS
processes:

t
Xt:/ g(t—s)as dW,,

where (W;)ter is a Brownian motion.
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LSS processes

Limit theory for Brownian semistationary processes

(Barndorff-Nielsen, Corcuera, Podolskij 2009,2011): Limit theory for BSS
processes:

t
Xt:f g(t—s)as dW,,

where (W;)ter is a Brownian motion.
Denote 72 = [/ g2(x)dx + [;"(g(1/n+x) - g(x))? dx.

It holds that

[tn] t
nP 187X S EIW(0, D) [ ol ds.
i=1
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LSS processes

Limit theory for Brownian semistationary processes

(Barndorff-Nielsen, Corcuera, Podolskij 2009,2011): Limit theory for BSS
processes:

t
Xt:f g(t—s)as dW,,

where (W;)ter is a Brownian motion.
Denote 72 = [/ g2(x)dx + [;"(g(1/n+x) - g(x))? dx.

It holds that

[tn] t
nP 187X S EIW(0, D) [ ol ds.
i=1

= Consistent estimation of relative intermittency
(Ji|os[?ds)/( [y |osPds) possible, cf. (Barndorff-Nielsen, Pakkanen and
Schmiegel 2015).
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LSS processes

Pure jump LSS processes:

t
Xt:f g(t—s)os dLs,

where (L;)ter is a symmetric pure jump Lévy process with Lévy measure
V.

@ $¢€[0,2): Blumenthal-Getoor index of L, defined as

1
ﬁ::inf{rZO:[ Ix|"v(dx) < oo}.
-1
@ a>0: Behavior of g at 0:

lim (£)|/1° = o € (0,00)
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LSS processes

Pure jump LSS processes:

t
Xt:f g(t—s)os dLs,

where (L;)ter is a symmetric pure jump Lévy process with Lévy measure
V.

@ $¢€[0,2): Blumenthal-Getoor index of L, defined as

1
ﬁ::inf{rZO:[ Ix|"v(dx) < oo}.
-1
@ a>0: Behavior of g at 0:
lim g (0))/¢” = co € (0, 0)

The limiting behavior of V(p)” depends on «, 8 and p. We obtain three
different regimes with different limits and convergence rates.
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LSS processes

Theorem (Basse-O'Connor, H. and Podolskij)

(i): Assume that L is a SS3S process with S € (0,2). If a € (0,1-1/8)
and p < (3, we obtain

1
pP(a+1/B)-1 V(p)"& mpf |oe|Pdt.
0
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Theorem (Basse-O'Connor, H. and Podolskij)

(i): Assume that L is a SS3S process with S € (0,2). If a € (0,1-1/8)
and p < (3, we obtain

1
pP(a+1/B)-1 V(p)"& mpf |oe|Pdt.
0

Last talk:

Theorem (Basse-O'Connor, Lachiéze-Rey and Podolskij)

(i): Assume that L is a SS3S process with 8 € (0,2) and let o = 1. If
a€(0,1-1/B) and p < 3, we obtain

nP(a*1/B)=1y/( pyn - m,.
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LSS processes

Theorem (Basse-O'Connor, H. and Podolskij)

(i): Assume that L is a SS3S process with S € (0,2). If a € (0,1-1/8)
and p < (3, we obtain

1
pP(a+1/B)-1 V(p)"& mpf |oe|Pdt.
0

Last talk:

Theorem (Basse-O'Connor, Lachiéze-Rey and Podolskij)

(i): Assume that L is a SS3S process with 8 € (0,2) and let o = 1. If
a€(0,1-1/B) and p < 3, we obtain

nP(a*1/B)=1y/( pyn - m,.

Proof: Bernstein's blocking technique
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LSS processes

t
X; = f g(t-s)o.dLs
V(p)" = STIAIXP,  AIX = X; - Xis

i=1
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LSS processes

t
Xt:f g(t-s)o.dLs

V(p)"= S IAIX]P,  AIX = X - Xia
P n n

t
Step 1: Y: = / g(t—s)dLs

V(p)' =Y loa ATYP

i=1

«@ - o] n P
PV (p), - V(p)")| — 0.
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LSS processes

t
Xt:f g(t-s)o.dLs

V(p)"= S IAIX]P,  AIX = X - Xia
P n n

t
Step 1: Y: = / g(t—s)dLs

V(p)' =Y loa ATYP

i=1

«@ - o] n P
PV (p), - V(p)")| — 0.

Step 2: Introduce second block size 1//.

~ ]
V(p>"”:z\af;1|*’( 5 |A,-"V|P)
=T NdEy)
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LSS processes

Introduce second block size 1//.

]
Ve -Sleal( ¥ iarvr)
=

=)
EE[T’T)

It holds for all € >0 that

Jim limsup P(|nP YAV (p)n — V(p)")| > ) =0

n—oo
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LSS processes

Introduce second block size 1//.

- ]
v<p>"”=z|ag|"( » |A,-"V|")
=1 ! 4[ 117/,)

It holds for all € >0 that

lim limsup P(|nP YAV (p)n — V(p)")| > ) =0

n—oo
Applying the limit theorem for constant ¢ we obtain
p(a+1/8)-1{7( )1 P I pMp P op
n ViR = Yol — mpfo |o¢[Pdt.
j=1

n—oo |00
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LSS processes

Important ingredient: For asymptotic equivalence of V(p)”, V(p)" and
V(p)"" we need the following isometry of the integral mapping.

Theorem (Kwapien, Woyczyriski)

Let L be a symmetric S-stable Lévy process. There are positive constant
¢, C such that for all predictable F that are integrable w.r.t. L

cE[/IFSW ds]£|/Fs dL|” gCE[/|FS|B ds],
R R B,00 R

where | - | 5.. denotes the weak L?(Q)-norm.

The weak L?-norm satisfy | X[z < [X| .00 < [X]p for all 8" < 3.
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LSS processes

Integration theory (Kwapien & Woyczynski, 1993), part 1

@ Extension of the integration theory w.r.t. Lévy bases established in
(Rajput & Rosiriski 1989) towards predictable integrands
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LSS processes

Integration theory (Kwapien & Woyczynski, 1993), part 1

@ Extension of the integration theory w.r.t. Lévy bases established in
(Rajput & Rosiriski 1989) towards predictable integrands

@ Decoupling inequalities approach
F is L-integrable (K & W) <« F(w) is L-integrable (R & R),
for almost all w.
< &, o(F) < oo, almost surely

Here, ®, ¢ is the functional

®ro(F)= fR [Fex? A1 v(dx) ds.

(Recall that L is a symmetric Lévy process)
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LSS processes

Theorem (Basse-O'Connor, H. and Podolskij)
(i) For p>1, a>1-1/(B Vv p) it holds that

1 P 1
nPV(p)" — f |Fu|P du
0
where

u 1
F, = f g'(u-s)osdls as. and f |FulP du<oo as.
oo 0
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LSS processes

Theorem (Basse-O'Connor, H. and Podolskij)

(i) For p>1, a>1-1/(B Vv p) it holds that

1 P !
nPV(p)" — f |Fu|P du
0

where

u 1
F, = f g'(u-s)osdls as. and f |FulP du<oo as.
oo 0

@ For a>1-1/(8 vV p), the sample paths of X are almost surely
absolutely continuous with derivative F, cf. (Braverman and
Samorodnitsky 1998).
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LSS processes

Theorem (Basse-O'Connor, H. and Podolskij)

(i) For p>1, a>1-1/(B Vv p) it holds that

1 P !
nPV(p)" — f |Fu|P du
0

where

u 1
F, = f g'(u-s)osdls as. and f |FulP du<oo as.
oo 0

@ For a>1-1/(8 vV p), the sample paths of X are almost surely
absolutely continuous with derivative F, cf. (Braverman and
Samorodnitsky 1998).

@ = By mean value theorem: n™' S0 [nA?PX[P x nt S0 |Fix
large n.

P for
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LSS processes

Theorem (Basse-O'Connor, H. and Podolskij)

Assume that « <1-1/p, p> 8 and p > 1. We obtain the F-stable
convergence

PV (p)" el Y |ALr,or, P Zn.
m:Tre[0,1]

Here, (T,)ms1 is a sequence of stopping times exhausting the jumps of
(Lt)tzo, and

3

m= 2 |(I+ Un)® = (1 + Un - 1)$?,

1=0
where (Un,)ms1 is a sequence of independent and uniform
[0, 1]-distributed random variables, defined on an extension of the
original probability space, independent of L and o.

Note that Z, is finite since (- 1)p < -1.
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Functional convergence

Functional convergence:

@ So far: asymptotic behavior of

V(p)" =Y |AIX]P e L°(Q,R).

i=1
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Functional convergence

Functional convergence:

@ So far: asymptotic behavior of

V(p)" =Y |AIX]P e L°(Q,R).

i=1
@ Power variation as process:
n [tn] n
V(p)t = Z |AiX|p7 te [Oa 1]
i=1

= V(p)" € L°(2,D([0,1]))
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Functional convergence

Functional convergence:

@ So far: asymptotic behavior of

V(p)" =Y |AIX]P e L°(Q,R).

i=1

@ Power variation as process:

[tn]
V(p)i = 2 IATXIP, te[0,1]
i=1

= V(p)" € L°(2,D([0,1]))

@ In which sense do we get convergence of n”V(p)” to a limiting
process in L°(Q,D([0,1])), where  is the convergence rate
established in the last section?
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Functional convergence

Theorem (Basse-O'Connor, H. and Podolskij)

(i"): Assume that L is a SBS process with 3 € (0,2). If a € (0,1-1/3)
and p < 3, we obtain

u.c.p. t
pP(a+1/B)-1 V(p)" 2B m, f |los|Pds.
0

u.c

o 7" =25 Z (‘uniformly on compacts in probability’) if for all C >0
and for all e >0

P( sup |Z] - Z|>¢)—0.
te[0,C]

Theorem (Basse-O'Connor, H. and Podolskij)

(i) For p>1, a>1-1/(8 v p) it holds that

PV (p)? “”’f IFulP du

where F, = [ g'(u~s)os dLs.
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Functional convergence

@ Do we get functional F-stable convergence for Theorem (iii)? With
respect to which topology on D([0,1])?
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Functional convergence

@ Do we get functional F-stable convergence for Theorem (iii)? With
respect to which topology on D([0,1])?

@ Candidates are the four Skorokhod topologies J;, J>, My and M.
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Functional convergence

@ Do we get functional F-stable convergence for Theorem (iii)? With
respect to which topology on D([0,1])?
@ Candidates are the four Skorokhod topologies J;, J>, My and M.

Examples for convergence towards a
function with a single jump in the dif-
ferent topologies.

Source: W.Whitt, Stochastic-Process Limits
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Functional convergence

@ Do we get functional F-stable convergence for Theorem (iii)? With
respect to which topology on D([0,1])?
@ Candidates are the four Skorokhod topologies J;, J>, My and M.

Examples for convergence towards a
function with a single jump in the dif-
ferent topologies.

Source: W.Whitt, Stochastic-Process Limits

(Avram & Taqqu 1998): Functional convergence of sums of moving
averages w.r.t. M; but not J; topology.
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Functional convergence

Theorem (Basse-O’Connor, H. and Podolskij)

Assume that a<1-1/p, p> 8 and p > 1. We obtain the functional
F-stable convergence

ﬁ -
PV (p)e — |colP Y. |ALt,o7,1PZnm,

m:Tne[0,t]
where
Z I+ Un)*= I+ Un-1)¢P,  Un~U([0,1]).
=0

The stable convergence in law does also hold with respect to the M,
topology, but not with respect to the J; or J; topology.
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Functional convergence

g(x) ~x% as x — 0. Lévy process L.

for Lévy semistationary processes



Functional convergence

g(x) ~ as x > 0. Lévy process L.

/ o X;= [ g(t-s)osdls, o=1.
JA @ Jump times of Lévy process
, | govern asymptotic behavior of

N V(p)".

for Lévy semistationary processes



Functional convergence

y semistationary processes



Functional convergence

y semistationary processes



Functional convergence

Let L be compound Poisson process with a jump at time
T € ((ip—1)/n,ip/n], then

AZ)X N Co(fo/n— T)aO'TALT7
AIX ~ co((ifn-T)* = ((i-1)/n- T)*)orALr.
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Functional convergence

Let L be compound Poisson process with a jump at time
T € ((ip—1)/n,ip/n], then
AZX N Co(fo/n— T)aO'TALT7
AIX ~ co((ifn—-T)* = ((i-1)/n=T)*)orALr.

Lemma 1

For an absolutely continuous random variable Z with differentiable
density we have the F-stable convergence

{nz} 230,

where U ~U([0,1]) is independent of Z. Here, {x} = x — [x] denotes the
fractional part of x.
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Functional convergence

Let L be compound Poisson process with a jump at time
T € ((ip—1)/n,ip/n], then

AZX N Co(fo/n— T)OtO"rALT7
AIX ~ co((ifn-T)* = ((i-1)/n- T)*)orALr.

Lemma 1

For an absolutely continuous random variable Z with differentiable
density we have the F-stable convergence

{nz} 230,

where U ~U([0,1]) is independent of Z. Here, {x} = x — [x] denotes the
fractional part of x.

Since nT € ((ip— 1), ig], we obtain
A2 XIP & 0P| oo T ALT[P|UIP,
IATX[P & n=oP| oot ALTPI(U+i—ig)® = (U + i —ig - 1)°P.
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Functional convergence

Extension to general L

Idea: Let a> 0 and let L>? be the truncated Lévy process

L7-L17= ) Aldgarpa,

ue(s,t]

and L7 =L, - L} Let

t t
Xo= [ g(t-s)oadly, xp= [ glt-s)o.diz.

Claim: The error in the power variation caused by replacing X by X*?
becomes negligible for a — 0. More precisely, we show that
limsup,_,. P[nP*V(X=,p)f >e] -0, as a— 0 for all £ > 0.
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Functional convergence

Integration Theory (Kwapien & Woyczynski), part 2

Define for p > 1 and for a predictable process F the functional

&L p(F) = fR |Fox*1qincay + [FxlPLpsry v(dx) ds.
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Integration Theory (Kwapien & Woyczynski), part 2

Define for p > 1 and for a predictable process F the functional
&L p(F) = fR |Fox*1qincay + [FxlPLpsry v(dx) ds.

Moreover, on the linear space of F with ®; ,(F) < co almost surely,
introduce the random (quasi-)norm

IFlp=inf{A20: &, (F/A) <1}.
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Functional convergence

Integration Theory (Kwapien & Woyczynski), part 2

Define for p > 1 and for a predictable process F the functional
&L p(F) = fR |Fox*1qincay + [FxlPLpsry v(dx) ds.

Moreover, on the linear space of F with ®; ,(F) < co almost surely,
introduce the random (quasi-)norm

IFlp=inf{A20: &, (F/A) <1}.

Theorem (Kwapieri & Woyczyriski 1993)

There are positive constants ¢, C such that we obtain for all F with
q)L,p(F) < 00

p
cIE[|F||Z7L]sEH/H-§FS dLs ]SCE[”H;L].
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Functional convergence

Integration Theory (Kwapien & Woyczynski), part 2

Define for p > 1 and for a predictable process F the functional
&L p(F) = fR |Fox*1qincay + [FxlPLpsry v(dx) ds.

Moreover, on the linear space of F with ®; ,(F) < co almost surely,
introduce the random (quasi-)norm

IFlp=inf{A20: &, (F/A) <1}.

Theorem (Kwapieri & Woyczyriski 1993)

There are positive constants ¢, C such that we obtain for all F with
q)L,p(F) < 00

p
cIE[|F||Z7L]sEH/H-§FS dLs ]SCE[”H;L].

For deterministic integrands the result was shown in (Rajput & Rosiriski
1989).
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Application and further extension

Application: Estimation of a and

Three regimes:
Thm (i):  a<1-1/8, p<pB. n7PE*B) /()" converges
Thm (ii): a>1-1/p. nP~1V(p)" converges
Thm (iii): a<1-1/p, p> 5. n*PV(p)" converges
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Application and further extension

Application: Estimation of a and

Three regimes:
Thm (i):  a<1-1/8, p<pB. n7PE*B) /()" converges
Thm (ii): a>1-1/p. nP~1V(p)" converges
Thm (iii): a<1-1/p, p> 5. n*PV(p)" converges

Different convergence rates allow estimation of the parameters « and (5 :

_ logV(p)"

S()t,ﬂ(nap) T |ogn

. ap: a<l-1/pand p> g

Sap(n,p) — Sap(p):=1 pla+1/B)-1: a<l-1/Fand p<f
p-1: a>1-1/max(p,B)
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Application and further extension

Application: Estimation of a and

Three regimes:
Thm (i):  a<1-1/8, p<pB. n7PE*B) /()" converges
Thm (ii): a>1-1/p. nP~1V(p)" converges
Thm (iii): a<1-1/p, p> 5. n*PV(p)" converges

Different convergence rates allow estimation of the parameters « and (5 :

_log V(p)"

Sa,ﬂ(n,P) = log n

. ap: a<l-1/pand p> g
Sap(n,p) — Sap(p):=1 pla+1/B)-1: a<l-1/Fand p<f
p-1: a>1-1/max(p,B)

NP . 2 2
(Gn, Bn) = argming.o, a+1/5€(1/2,1)‘/1 (Sa,ﬂ(n,P)—Sa,ﬂ(P)) dp.
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Application and further extension

In the context of Theorem (i), that is for 3-stable driving Lévy process,
and a<1-1/3, p< 3, we obtain

Z,[Z] |A?X|p P fot |Us|p ds

— , te(0,1).
Y |ArX|P fol |os|P ds ©.1)

The right hand side is the relative intermittency and plays an
important role in turbulence applications.
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The right hand side is the relative intermittency and plays an
important role in turbulence applications.

We allow for kth order increments:
K ik
AfyX = Z(_l)J( -)X(i—j)/n, i>k.
j=0 J

The limiting behavior of V,,(X, p; k) depends on the interplay between
«, B, p and k.
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