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In the last talk:

Limit theory for the power variation in the setting of infill asymptotics,

V (p)n ∶=
n

∑
i=1

∣∆n
i X ∣p, ∆n

i X ∶= X i
n
−X i−1

n
.

Process (Xt)t∈R a stationary increment moving average of the form

Xt = ∫
t

−∞
{g(t − s) − g0(−s)}dLs

Limiting behavior of V (p)n is divided into three different regimes
depending on

β – the Blumenthal-Getoor index of the driving Lévy process L

α – the power characterising the behavior of g at 0

p – the power for the power variation.
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In this talk:

1 Generalisation to Lévy semistationary processes:

Xt ∶= ∫
t

−∞
{g(t − s) − g0(−s)}σsdLs ,

where σ is a predictable process.

2 Functional convergence

3 Applications and further generalisations.
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Lévy semistationary (LSS) Processes, definition and
assumptions

A Lévy semistationary (LSS) process is given as

Xt = ∫
t

−∞
(g(t − s) − g0(−s))σs dLs .

(Lt)t∈R is a Lévy process on the real line.

g and g0 are deterministic functions, g is continuously
differentiable on (0,∞), and g0(u) = 0 for u < 0. For this talk we
assume that g0 ≡ 0.

(σt)t∈R is cádlág and predictable process, not necessarily
independent of L.

If σ is stationary and independent of L, then X is stationary.

X generally not a semimartingale, nor an infinitely divisible process.
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(σt)t∈R is cádlág and predictable process, not necessarily
independent of L.

If σ is stationary and independent of L, then X is stationary.

X generally not a semimartingale, nor an infinitely divisible process.
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4/25 Limit theory for Lévy semistationary processes



Introduction LSS processes Functional convergence Application and further extension
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Motivation: Ambit fields and relative intermittency

Xt = ∫
t

−∞
(g(t − s) − g0(−s))σs dLs .

LSS processes are an important purely temporal subclass of ambit
fields, a class of stochastic processes introduced for modelling
velocities in turbulent flows (Barndorff-Nielsen and Schmiegel 2005).

The relative intermittency process σ̃2+
t = (∫

t
0 ∣σs ∣2ds)/(∫

1
0 ∣σs ∣2ds),

t ∈ [0,1] models energy dissipation and is important for application
in physics.

Typically, σ2 is modelled as (exponential of an) ambit process, e.g.
(Hedevang and Schmiegel 2013).
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Limit theory for Brownian semistationary processes

(Barndorff-Nielsen, Corcuera, Podolskij 2009,2011): Limit theory for BSS
processes:

Xt = ∫
t

−∞
g(t − s)σs dWs ,

where (Wt)t∈R is a Brownian motion.

Denote τ 2
n = ∫

1/n
0 g2(x)dx + ∫

∞
0 (g(1/n + x) − g(x))2 dx .

Theorem 2.1

It holds that

n−1τ−pn

[tn]

∑
i=1

∣∆n
i X ∣p PÐ→ E[∣N(0,1)∣p]∫

t

0
∣σs ∣p ds.

⇒ Consistent estimation of relative intermittency

(∫
t

0 ∣σs ∣2ds)/(∫
1

0 ∣σs ∣2ds) possible, cf. (Barndorff-Nielsen, Pakkanen and
Schmiegel 2015).
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Pure jump LSS processes:

Xt = ∫
t

−∞
g(t − s)σs dLs ,

where (Lt)t∈R is a symmetric pure jump Lévy process with Lévy measure
ν.

β ∈ [0,2): Blumenthal-Getoor index of L, defined as

β ∶= inf {r ≥ 0 ∶ ∫
1

−1
∣x ∣rν(dx) < ∞}.

α > 0: Behavior of g at 0:

lim
t↓0

∣g(t)∣/tα = c0 ∈ (0,∞)

The limiting behavior of V (p)n depends on α,β and p. We obtain three
different regimes with different limits and convergence rates.
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Theorem (Basse-O’Connor, H. and Podolskij)

(i): Assume that L is a SβS process with β ∈ (0,2). If α ∈ (0,1 − 1/β)
and p < β, we obtain

np(α+1/β)−1V (p)n PÐ→ mp ∫
1

0
∣σt ∣pdt.

Last talk:

Theorem (Basse-O’Connor, Lachièze-Rey and Podolskij)

(i): Assume that L is a SβS process with β ∈ (0,2) and let σ ≡ 1. If
α ∈ (0,1 − 1/β) and p < β, we obtain

np(α+1/β)−1V (p)n PÐ→ mp.

Proof: Bernstein’s blocking technique
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8/25 Limit theory for Lévy semistationary processes



Introduction LSS processes Functional convergence Application and further extension

Xt = ∫

t

−∞
g(t − s)σsdLs

V (p)n =
n

∑
i=1

∣∆n
i X ∣

p, ∆n
i X = X i

n
−X i−1

n

Step 1: Yt = ∫

t

−∞
g(t − s)dLs

Ṽ (p)n =
n

∑
i=1

∣σ i−1
n

∆n
i Y ∣

p

∣np(α+1/β)−1
(V (p)n − Ṽ (p)n)∣

P
Ð→ 0.

Step 2: Introduce second block size 1/l .

Ṽ (p)n,l =
l

∑
j=1

∣σ j−1
l
∣
p
( ∑

i
n
∈[ j−1

l
,
j
l
)

∣∆n
i Y ∣

p
)
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P
Ð→ 0.

Step 2: Introduce second block size 1/l .
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Introduce second block size 1/l .

Ṽ (p)n,l =
l

∑
j=1

∣σ j−1
l
∣
p
( ∑

i
n
∈[ j−1

l
,
j
l
)

∣∆n
i Y ∣

p
)

It holds for all ε > 0 that

lim
l→∞

lim sup
n→∞

P(∣np(α+1/β)−1(Ṽ (p)l,n − Ṽ (p)n)∣ > ε) = 0

Applying the limit theorem for constant σ we obtain

np(α+1/β)−1Ṽ (p)l,n PÐ→
n→∞

l

∑
j=1

∣σ j−1
l
∣p
mp

l

PÐ→
l→∞

mp ∫
1

0
∣σt ∣pdt.
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np(α+1/β)−1Ṽ (p)l,n PÐ→
n→∞

l

∑
j=1

∣σ j−1
l
∣p
mp

l

PÐ→
l→∞

mp ∫
1

0
∣σt ∣pdt.

10/25 Limit theory for Lévy semistationary processes



Introduction LSS processes Functional convergence Application and further extension

Important ingredient: For asymptotic equivalence of V (p)n, Ṽ (p)n and
Ṽ (p)l,n we need the following isometry of the integral mapping.

Theorem (Kwapień, Woyczyński)

Let L be a symmetric β-stable Lévy process. There are positive constant
c ,C such that for all predictable F that are integrable w.r.t. L

cE[∫
R
∣Fs ∣β ds] ≤ ∥∫

R
Fs dLs∥

β

β,∞ ≤ CE[∫
R
∣Fs ∣β ds],

where ∥ ⋅ ∥β,∞ denotes the weak Lβ(Ω)-norm.

The weak Lβ-norm satisfy ∥X ∥β′ ≤ ∥X ∥β,∞ ≤ ∥X ∥β for all β′ < β.

11/25 Limit theory for Lévy semistationary processes



Introduction LSS processes Functional convergence Application and further extension

Integration theory (Kwapień & Woyczyński, 1993), part 1

Extension of the integration theory w.r.t. Lévy bases established in
(Rajput & Rosiński 1989) towards predictable integrands

Decoupling inequalities approach

F is L-integrable (K & W) ⇔ F (ω) is L-integrable (R & R),
for almost all ω.

⇔ ΦL,0(F ) < ∞, almost surely

Here, ΦL,0 is the functional

ΦL,0(F ) ∶= ∫
R2

∣Fsx ∣2 ∧ 1 ν(dx) ds.

(Recall that L is a symmetric Lévy process)
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Extension of the integration theory w.r.t. Lévy bases established in
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Theorem (Basse-O’Connor, H. and Podolskij)

(ii) For p ≥ 1, α > 1 − 1/(β ∨ p) it holds that

n−1+pV (p)n PÐ→ ∫
1

0
∣Fu ∣p du

where

Fu = ∫
u

∞
g ′(u − s)σs dLs a.s. and ∫

1

0
∣Fu ∣p du < ∞ a.s.

For α > 1 − 1/(β ∨ p), the sample paths of X are almost surely
absolutely continuous with derivative F , cf. (Braverman and
Samorodnitsky 1998).

⇒ By mean value theorem: n−1∑n
i=1 ∣n∆n

i X ∣p ≈ n−1∑n
i=1 ∣F i−1

n
∣p, for

large n.
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Theorem (Basse-O’Connor, H. and Podolskij)

Assume that α < 1 − 1/p, p > β and p ≥ 1. We obtain the F-stable
convergence

nαpV (p)n L−sÐ→ ∣c0∣p ∑
m∶Tm∈[0,1]

∣∆LTmσTm ∣pZm.

Here, (Tm)m≥1 is a sequence of stopping times exhausting the jumps of
(Lt)t≥0, and

Zm =
∞
∑
l=0

∣(l +Um)α − (l +Um − 1)α+ ∣p,

where (Um)m≥1 is a sequence of independent and uniform
[0,1]-distributed random variables, defined on an extension of the
original probability space, independent of L and σ.

Note that Zm is finite since (α − 1)p < −1.
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Functional convergence:

So far: asymptotic behavior of

V (p)n =
n

∑
i=1

∣∆n
i X ∣p ∈ L0(Ω,R).

Power variation as process:

V (p)nt =
[tn]

∑
i=1

∣∆n
i X ∣p, t ∈ [0,1]

⇒ V (p)n ∈ L0(Ω,D([0,1]))

In which sense do we get convergence of nγV (p)n to a limiting
process in L0(Ω,D([0,1])), where γ is the convergence rate
established in the last section?
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In which sense do we get convergence of nγV (p)n to a limiting
process in L0(Ω,D([0,1])), where γ is the convergence rate
established in the last section?
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Theorem (Basse-O’Connor, H. and Podolskij)

(i’): Assume that L is a SβS process with β ∈ (0,2). If α ∈ (0,1 − 1/β)
and p < β, we obtain

np(α+1/β)−1V (p)nt
u.c.p.
Ô⇒ mp ∫

t

0
∣σs ∣pds.

Z n u.c.p.
Ô⇒ Z (‘uniformly on compacts in probability’) if for all C > 0

and for all ε > 0
P( sup

t∈[0,C]
∣Z n

t − Zt ∣ > ε) → 0.

Theorem (Basse-O’Connor, H. and Podolskij)

(ii’) For p ≥ 1, α > 1 − 1/(β ∨ p) it holds that

n−1+pV (p)nt
u.c.p.
Ô⇒ ∫

t

0
∣Fu ∣p du

where Fu = ∫
u
∞ g ′(u − s)σs dLs .
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Do we get functional F-stable convergence for Theorem (iii)? With
respect to which topology on D([0,1])?

Candidates are the four Skorokhod topologies J1, J2,M1 and M2.

Examples for convergence towards a
function with a single jump in the dif-
ferent topologies.

Source: W.Whitt, Stochastic-Process Limits

(Avram & Taqqu 1998): Functional convergence of sums of moving
averages w.r.t. M1 but not J1 topology.
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Theorem (Basse-O’Connor, H. and Podolskij)

Assume that α < 1 − 1/p, p > β and p ≥ 1. We obtain the functional
F-stable convergence

nαpV n(p)t
LM1

−s
ÐÐÐ→ ∣c0∣p ∑

m∶Tm∈[0,t]
∣∆LTmσTm ∣pZm,

where

Zm =
∞
∑
l=0

∣(l +Um)α − (l +Um − 1)α+ ∣p, Um ∼ U([0,1]).

The stable convergence in law does also hold with respect to the M2

topology, but not with respect to the J1 or J2 topology.
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g(x) ∼ xα, as x → 0.

Lévy process L.

Xt = ∫
t
−∞ g(t − s)σsdLs , σ ≡ 1.

Jump times of Lévy process
govern asymptotic behavior of
V (p)n.
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Introduction LSS processes Functional convergence Application and further extension

Let L be compound Poisson process with a jump at time
T ∈ ((i0 − 1)/n, i0/n], then

∆n
i0X ≈ c0(i0/n −T )ασT∆LT ,

∆n
i X ≈ c0((i/n −T )α − ((i − 1)/n −T )α)σT∆LT .

Lemma 1

For an absolutely continuous random variable Z with differentiable
density we have the F-stable convergence

{nZ} L-sÐ→ U,

where U ∼ U([0,1]) is independent of Z . Here, {x} = x − [x] denotes the
fractional part of x.

Since nT ∈ ((i0 − 1), i0], we obtain

∣∆n
i0X ∣p d≈ n−αp ∣c0σT∆LT ∣p ∣U ∣αp,

∣∆n
i X ∣p d≈ n−αp ∣c0σT∆LT ∣p ∣(U + i − i0)α − (U + i − i0 − 1)α∣p.
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Extension to general L

Idea: Let a > 0 and let L>a be the truncated Lévy process

L>at − L>as = ∑
u∈(s,t]

∆Lu1{∣∆Lu ∣>a},

and L≤at = Lt − L>at . Let

X >a

t = ∫
t

−∞
g(t − s)σs dL>as , X ≤a

t = ∫
t

−∞
g(t − s)σs dL≤as .

Claim: The error in the power variation caused by replacing X by X >a

becomes negligible for a → 0. More precisely, we show that
lim supn→∞ P[npαV (X ≤a,p)nt > ε] → 0, as a → 0 for all ε > 0.
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Integration Theory (Kwapień & Woyczyński), part 2

Define for p ≥ 1 and for a predictable process F the functional

ΦL,p(F ) = ∫
R2

∣Fsx ∣21{∣Fsx ∣≤1} + ∣Fsx ∣p1{∣Fsx ∣>1} ν(dx) ds.

Moreover, on the linear space of F with ΦL,p(F ) < ∞ almost surely,
introduce the random (quasi-)norm

∥F ∥p,L ∶= inf{λ ≥ 0 ∶ Φp,L(F /λ) ≤ 1}.

Theorem (Kwapień & Woyczyński 1993)

There are positive constants c ,C such that we obtain for all F with
ΦL,p(F ) < ∞

cE[∥F ∥pp,L] ≤ E[∣∫
R
Fs dLs ∣

p

] ≤ CE[∥F ∥pp,L].

For deterministic integrands the result was shown in (Rajput & Rosiński
1989).
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There are positive constants c ,C such that we obtain for all F with
ΦL,p(F ) < ∞

cE[∥F ∥pp,L] ≤ E[∣∫
R
Fs dLs ∣

p

] ≤ CE[∥F ∥pp,L].

For deterministic integrands the result was shown in (Rajput & Rosiński
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Application: Estimation of α and β

Three regimes:
Thm (i): α < 1 − 1/β, p < β. n−1+p(α+1/β)V (p)n converges
Thm (ii): α > 1 − 1/p. np−1V (p)n converges
Thm (iii): α < 1 − 1/p, p > β. nαpV (p)n converges

Different convergence rates allow estimation of the parameters α and β ∶

Sα,β(n,p) ∶= −
logV (p)n

log n

Sα,β(n,p)
PÐ→ Sα,β(p) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

αp ∶ α < 1 − 1/p and p > β
p(α + 1/β) − 1 ∶ α < 1 − 1/β and p < β
p − 1 ∶ α > 1 − 1/max(p, β)

(α̂n, β̂n) ∶= argminα>0, α+1/β∈(1/2,1) ∫
2

1
(Sα,β(n,p) − Sα,β(p))2

dp.
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In the context of Theorem (i), that is for β-stable driving Lévy process,
and α < 1 − 1/β, p < β, we obtain

∑[tn]
i=1 ∣∆n

i X ∣p

∑n
i=1 ∣∆n

i X ∣p
PÐ→ ∫

t
0 ∣σs ∣p ds

∫
1

0 ∣σs ∣p ds
, t ∈ (0,1).

The right hand side is the relative intermittency and plays an
important role in turbulence applications.

We allow for kth order increments:

∆n
i,kX ∶=

k

∑
j=0

(−1)j(k
j
)X(i−j)/n, i ≥ k.

The limiting behavior of Vn(X ,p; k) depends on the interplay between
α,β,p and k.
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