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R Cont (Imperial College) Functional calculus for integer-valued measures
Workshop on Ambit Processes and Related Topics, Aarhus 2016 2

/ 29



Martingale representation theorem for jump processes

Let J(dtdy) be an integer-valued random measure on [0,T ]× Rd
0 with

compensator µ(dtdy) on a probability space (Ω,F ,P).
The filtration (Ft) generated by J is said to have the predictable
representation property if any Ft-adapted square-integrable martingale is
such that

Y (t) = Y (0) +

∫ t

0

∫
Rd
0

ψ(s, y)(J − µ)(ds dy)

with ψ : [0,T ]× Rd
0 × Ω→ Rd

0 , Ft-predictable.
The predictable representation property holds for Poisson random
measures (Itô, Ikeda-Watanabe).
Conditions for measures with non-deterministic compensators are given in
(Jacod 1987, Cohen 2013).
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Martingale representation formulas

Problem of finding an explicit representation appears in many
applications like hedging, control of jump processes or BSDEs with
jumps.

Has been approached through Malliavin calculus for jump processes
(Bismut 73, Jacod et al 1982, Lokka 05, Solé-Utzet-Vives 05,...) and
Markovian techniques (Jacod-Méléard-Protter 00).

In these results, ψ is represented in the form: ψ(t, z) = pE [Dt,zY |Ft ],
where D is an appropriate “Malliavin” derivative operator, for which
many constructions have been proposed.
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Outline

We develop a calculus for functionals of integer-valued measures.

For integer-valued random measure (IVRM) with the predictable
representation property, we provide a pathwise construction of a
’stochastic derivative’ operator, shown to be the adjoint of the
compensated stochastic integral with respect to this IVRM.

We provide an explicit version of the martingale representation
formula for functionals of integer-valued random measures.

These results extend the Functional Itô calculus to integer-valued
random measures.
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Canonical space of integer-valued random measures

Let Rd
0 := Rd − {0} and MT :=M([0,T ]× Rd

0 ) be space of
integer-valued Radon measures on [0,T ]× (Rd

0 ):

j : B([0,T ]× Rd
0 )→ N

such that j is σ-finite and there exists a sequence of (ti , zi ) ∈ [0,T ]× Rd
0

such that

j(.) =
∞∑
i=0

δ(ti ,zi )(.)

M2([0,T ]× Rd
0 ) denotes the subset of measures with∫

[0,T ]×Rd

‖z‖2j(dt dz) =
∑
i≥0
‖zi‖2 <∞
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Non-anticipative functionals

Notation: for j ∈MT , t ∈ [0,T ] denote jt the restriction of j to [0, t]:

∀A ∈ B(Rd
0 ), jt([0,T ]× A) = j([0, t]× A).

and jt− its restriction to [0, t):

∀A ∈ B(Rd
0 ), jt−([0,T ]× A) = j([0, t)× A).

A map F : [0,T ]×MT → R is said to be non-anticipative if

∀j ∈MT ,∀t ∈ [0,T ],F (t, j) = F (t, jt).

A map F : [0,T ]×MT → R is said to be predictable if

∀j ∈MT ,∀t ∈ [0,T ],F (t, j) = F (t, jt−).
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Integral functionals of integer-valued measures

Fundamental example: integral functionals
Let F : [0,T ]×MT → R defined by

F (t, j) =

∫ t

0

∫
Rd\{0}

ψ(s, y)(j − µ)(ds dy),

where ψ : [0,T ]× Rd\{0} → R is a kernel with support bounded away
from 0.
Then F is a non-anticipative functional.
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A finite difference operator on functionals

For z ∈ Rd , define

∇J,zF (t, j) = F (t, jt− + δ(t,z))− F (t, jt−) (FD)

The operator

∇JF : [0,T ]×MT × (Rd − {0}) 7→ R
(t, j , z) → ∇J,zF (t, j)

maps non-anticipative functionals into predictable functionals.
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Integral functionals of integer-valued measures

Proposition: integral functionals

Let Fψ : [0,T ]×MT → R defined by

Fψ(t, j) =

∫ t

0

∫
Rd\{0}

ψ(s, y)(j − µ)(ds dy),

where

ψ : [0,T ]× Rd\{0} → R is a kernel with support bounded away from
0, and

µ : B([0,T ]× Rd
0 )×M([0,T ]× Rd

0 )→ R+ is predictable in j and
σ-finite.

Then F is a non-anticipative functional and ∇JFψ = ψ, i.e.

∀(t, z) ∈ [0,T ]× Rd
0 , ∇J,zFψ(t, j) = ψ(t, z).
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Integer-valued random measures

We now consider MT =M([0,T ]× Rd
0 ) endowed with the filtration F0

generated by the canonical process

J : [0,T ]× B([0,T ]× Rd
0 )×MT → R

(t,A, j) → jt(A) = j([0, t] ∩ A)

We endow (Ω,FT ) with a probability measure P such that the canonical
process is an integer-valued random measure with P−compensator
µ(dt dz).
Let F be the P-completed version of F0

+.
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Multivariate point processes

Let us first consider the case of a multivariate point process for which
P(J([0,T ]× Rd

0 ) <∞) = 1. Then the the martingale representation
property for (J,F,P) always holds (Jacod 1975):
a right continuous process Z is a (P,F)l-ocal martingale if and only if
there exists a predictable map ψ : [0,T ]× Rd

0 ×MT → R such that

M(t) = M(0)+

∫ t

0

∫
E
ψ(s, z)(J − µ)(ds dz) = M(0)+

∫ t

0

∫
E
ψ(s, z)J̃(ds dz)..

Martingale representation formula for point processes
(Blacque-Florent, R.C 2015)

The integrand ψ has the following explicit representation:

∀j ∈MT , ψ(t, z , j) = ∇JM(t, z , j) = M(jt− + δ(t,z))−M(jt−) (1)
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Extension to square-integrable IVRM

We now assume that the compensator µ of J satisfies

µ(dsdy) = ν({s} × dy)ds and EP

[∫ T

0

∫
Rd
0

(|z |2 ∧ 1)µ(dsdz)

]
<∞,

and define
L2P(µ): { space of predictable random fields ψ : [0,T ]×Rd → R such that

‖ψ‖2L2P(µ) := E [

∫
[0,T ]×Rd

0

|ψ(s, y)|2µ(ds dy)] <∞}

I2P(µ) :=

{Y : [0,T ]× Ω→ R|Y (t) =

∫
[0,t]×Rd

0

ψ(s, y)(J − µ)(dsdy), ψ ∈ L2P(µ)}

‖Y ‖2I2P(µ) := E [|Y (T )|2]
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Set S of cylindrical simple predictable fields

A predictable map ψ : [0,T ]× Rd ×M([0,T ]× Rd
0 )→ Rd belongs to S

if has a representation

ψ(t, z , jt) =

I ,K∑
i=0
k=1

ψik(jti )1(ti ,ti+1](t)1Ak
(z)

where

Ak ∈ B([0,T ]× Rd\{0}),0 6∈ Ak and

ψik are bounded cylindrical functionals with support bounded away
from zero.

Then for any ψ ∈ S and any j ∈MT , the integral
∫
ψ(s, z)j(dsdz) may

be defined pathwise.
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Stochastic operators

The compensated stochastic integral w.r.t J is defined as

I : L2P(µ)→ I2P(µ)

ψ 7→
∫ .

0

∫
Rd
0

ψ(s, y)(J − µ)(dsdy)

Proposition: The operator

∇J : I (S)→ L2P(µ)

is defined (pathwise) on I (S) and for
F (t, J) =

∫ .
0

∫
Rd
0
ψ(s, y)(J − µ)(dsdy), we have

∇J,zF (t, J) = F (t, Jt− + δt,z)− F (t, Jt−) = ψ(t, z)
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Density of regular integral functionals

Proposition

The set I (S) integral processes Y having a regular functional
representation

Y (.) = F (., J) =

∫ .

0

∫
Rd\{0}

ψ(s, y)(J − µ)(dsdy) (2)

with ψ ∈ S, is dense in I2P(µ).

Then
∇J : I (S)→ S

is defined pathwise and for Y ∈ I (S) with the above representation,

∇JY (t, z) = ψ(t, z).

We now show that ∇J is closable on I (S) = L2P(µ).
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∇J as the adjoint of the stochastic integral

Theorem

The operator ∇J : I (S)→ L2P(µ) is closable in I2P(µ), and is the adjoint of
the stochastic integral in the sense of the following integration by parts.

< Y , I (φ) >I2P(µ)
:= E

[
Y (T )

∫ T

0

∫
Rd\{0}

φ(s, y)(J − µ)(dsdy)

]

= E

[∫ T

0

∫
Rd
0

∇JY (s, y)φ(s, y)µ(dsdy)

]
=:< ∇JY , φ >L2P(µ)
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Representation theorem for square-integrable martingales

The following result shows the link between the operator ∇J and the
martingale representation formula:

Martingale representation formula [R.C- Blacque-Florentin 2015]

Assume that the integer-valued random measure (J,F,P) has the
predictable representation property. Then for any square integrable
(F,P)-martingale M,

M(t) = M(0) +

∫ t

0

∫
Rd\{0}

∇JM(s, y)(J − µ)(dsdy) P-a.s.

So ∇J may be seen as a ’stochastic derivative’ with respect to the
compensated random measure J̃ = J − µ.
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Comparison with Malliavin calculus on Poisson space

Comparing with representation formulae obtained through Malliavin
calculus on Poisson space we obtain:
Proposition: Assume J is a Poisson random measure under P and let
D : Π1,2(P)→ L2([0,T ]× Ω) be the Malliavin derivative on Poisson
space.Then

∀H inΠ1,2(P),E [Dt,zH|Ft ] = ∇J E [H|Ft ](t, z) dtP− a.e.

and the following diagram is commutative, in the sense of dt × dP almost
everywhere equality:

I2(µ)
∇J→ L2(F)

↑(E [.|Ft ])t∈[0,T ] ↑(E [.|Ft ])t∈[0,T ]

Π1,2 D→ L2([0,T ]× Ω)

Note however that our construction works for more general integer-valued
random measures and does not involve the Poisson /independence
properties of the Poisson space.
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Including the continuous component

On a filtered probability space (Ω,F ,F,P) constructed similarly as before,
and F generated by an integer valued random measure J with compensator

µ(dsdy) = ν({s} × dy)ds and

∫ T

0

∫
Rd
0

|z |2µ(dsdz) <∞,P-a.s.,

and a continuous martingale X , any square-integrable martingale writes,
P-a.s.

Y (T ) = Y (0) +

∫ T

0
∇XY (s)dX (s) +

∫ T

0

∫
Rd
0

∇JY (s, z)J̃(ds dz),

with ∇XY defined as follows.
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Defining Sc as:

Set Sc of regular simple predictable processes

ψ : [0,T ]××D([0,T ])×M([0,T ]× Rd
0 )→ Rd belongs to Sc if

φ is predictable: ψ(t, z , x , j) = ψ(t, z , xt−, jt−)

and

φ(t, xt , jt) =
I∑

i=0
k=1

φi (xti , jti )1(ti ,ti+1](t)

with

φi = gi (x(τ1), · · · , x(τn),S
1
n
τ1 , . . . ,S

1
n
τn),

gik ∈ C∞c (R2n,Rn) and 0 ≤ τ1 ≤ τn ≤ ti ,

Sεt := j([0, t]× (ε,∞)d)
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Define L2P([X ]) := { space of predictable processes ψ : [0,T ]× Ω→ R
such that

‖ψ‖2L2P([X ]) := E [

∫
[0,T ]×Rd

0

|ψ(s, y)|2[X ](ds dy)] <∞}

and

I2P([X ]) :=

{Y : [0,T ]× Ω→ R|Y (t) =

∫
[0,t]×Rd

0

φ(s)dX (s), ψ ∈ L2P([X ])}

‖Y ‖2I2P([X ]) := E [|Y (T )|2]
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Defining:

IX :L2P([X ])→ I2P([X ])

φ 7→
∫ .

0
φ(s)dX (s),

The operator

∇x :IX (Sc)→ I2P([X ])

F (t, xt , jt) 7→ lim
h→0

F (t, xt + h1[t,∞), jt)− F (t, xt , jt)

h

= φ(t)

can be closed in I2P([X ]) in the same fashion as in the jump case, and the
closure is I2P([X ]) itself.
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Define the martingale-generating measure

M(ds dz) := 1{z=0}dX (s) + zJ̃(ds dz),

Then the martingale representation formula rewrites, P-a.s. as:

Y (t) = Y (0) +

∫ t

0

∫
Rd

∇Y (s, z)M(ds dz) P-a.s.

where

∇Y (s, z) :=

{
∇XY (s, y) if z = 0
∇JY (s,z)

z otherwise.

The continuous component is the limit operator of the operator appearing
in the jump case.
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Example: representation of the supremum of a Lévy
process

The representation formula for the supremum X of a Lévy process X

1 was proved by Shiryaev and Yor (2004) using Itô’s formula.

2 was reproved more recently by Rémillard-Renaud(2011) using
Malliavin calculus.

Main challenges in the functional Itô case:

1 Infinite variation: infinite variation, induced by a continuous
component and/or an infinite jump activity destroys the pathwise
characterisation of the quantities.

2 In case the Lévy process has a continuous component: the supremum
is not a vertically differentiable functional.

↪→ we need to truncate the jumps and smoothen the functional.
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Functional approximation

Define the Lévy process

X (t) = X (0) + µt + σW (t) +

∫ t

0

∫
|z|<1

zJ̃(dsdz) +

∫ t

0

∫
|z|≥1

zJ(dsdz)

and its approximation

X n(t) = X (0)+µt+σW (t)+

∫ t

0

∫
(−1,− 1

n
)∪( 1

n
,1)

zJ̃(dsdz)+

∫ t

0

∫
|z|≥1

zJ(dsdz)

It can be shown that

E [X (T )|Ft ] = X (t) +

∫ ∞
X (t)−X (t)

FT−t(u)du,

with FT−t(u) = P(X (T − t) ≤ u).
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Furthermore, consider the approximation of the supremum functional,

La(f , t) =
1

a
log(

∫ t

0
eaf (s)ds).

Define the approximation:

Y a,n(t) = La(X n, t) +

∫ ∞
La(X n,t)−X n(t)

FT−t(u)du

Since X n
L2

−→ X
n→∞

and La(f ,T ) −→
a→0

sups∈[0,T ] f (s), one can show:

lim
n→∞

lim
a→∞

E [|Y a,n(T )− X (T )|2] = 0
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We can now compute

∇JY
a,n(t, z) =

∫ La(X n,t)−X n(t)

La(X n,t)−X n(t)−z
FT−t(u)du

−→
a→∞
n→∞

∫ X (t)−X (t)

X (t)−X (t)−z
FT−t(u)du = ∇JX (t, z)

and

∇WY a,n(t) = lim
h→0

1

h

∫ La(X n,t)−X n(t)

La(X n,t)−X n(t)−σh
FT−t(u)du

= FT−t(L
a(X n, t)− X n(t))

−→
a→∞
n→∞

σFT−t(X (T )− X (t)) = ∇WX (t)
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