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Outline of the talk

m Introduction: Parameter Estimation for SODE vs SPDE.

m Part |: Parameter Estimation for Stochastic PDEs.

Maximum Likelihood Estimators
Trajectory Fitting Estimators

m Part Il: Hypothesis testing
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Introduction

Stochastic ODE: Estimating Drift 6, with o known

dX (t) = 0X (£)dt + o X ()dw(t), >0

Problem

Assuming that one sample path X (w,t), t€[0,T], is observed,
find/estimate the parameters 6 and o.

0: Girsanov Theorem (change of drift) ~ find the Likelihood Ratio +
Maximize dPP/dPy — find MLE

~ 1 rtdx 1. X 2 -
9 dx(s) 1), X() o b, >0, t—o0

o X(s) t °X(0) 2

0t Quadratic Variation (X); = 02 [ X2ds ~ o =\/{X )/ [y X2ds
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Introduction
Stochastic ODE: conclusion

m the drift 6 - approximated.
Regular model
1) %ﬁ exists; 2) has a special form (LAN)
Same procedure for all
Find MLE by maximizing likelihood ratio

m the volatility o - exactly.
Singular model otherwise
Individual approach
In particular, if Py, 1L P,, for o1 # o2, then one may find o exactly
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What do we have for SPDEs?

Reference example of SPDE to keep in mind:
du(t,x) = Qugdt + cdW (t,z), t>0, xe[0,7],

with zero boundary conditions and dW (¢, z) = ¥.72; sin(kx)dwy(t).
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What do we have for SPDEs? Mostly singular problems.

The Heat Equation (simulated by Euler) du =v uxxdt+ £0 'dW, T=1,v=0.1,y=0,&= 0.5

Explore the singularity and try to find the exact value (or as a
limit of regular models) of the drift/viscosity coefficient.



> additive noise: Huebner-Khasminskii-Rozovskii '92, '95
> Bayesian: Bishwal ('02)

> Several parameters: Huebner ('97)

> Discrete-time observations: Piterbarg-Rozovskii ('97)
q= 2(m+2m) > 1, Markussen '03

> O(t)-random: Lototsky ('04)

> Small noise: Huebner ('97), Ibragimov-Khasminskii ('98,'99)
> "almost” diagonalizable model: Rozovskii-Lototsky ('97, '01)
> additive fractional noise: IgC, Lototsky, Pospisil ('09)

multiplicative noise: IgC and Lototsky ('08), IgC ('10)

nonlinear SPDE: IgC and Glatt-Holtz ('11)

Hypothesis testing: 1gC and Xu ('14, '15)

Non-MLE / Trajectory fitting estimators: 1gC, Gong, Huang ('16)

v Vv VvV V
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PART I(A): Maximum Likelihood Estimators

Ig. Cialenco, IIT August 15, 2016 Slide # 8



dU (t) + 0AU (t)dt + F(U)dt = adW (t), U(0) =0,
m given stochastic basis (Q, F,F,P)

m assume that U(w,t) belongs to some “suitable” Hilbert space #,;
in particular U = U (w, t,x)

m A a linear, selfadjoint, positive-defined (think Laplaceﬁ) in H with
eigenfunctions {hj}r>1 CONS in H

m odW (t) = Yis1 orhrdWi(t), Wi,k € N ind. Brownian Motions
m I’ maybe nonlinear; ¢ known

m U observed for all ¢ € [0,T'] - continuous observations

Find estimators é(w) w € €, for parameters 6 by observing a single
outcome U = U(w,t) € H over a finite time horizon ¢ € [0, T'].
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The Problem

Formal Procedure to Derive an Estimator

m Project the full system down to N dimensions Py () = Hy ~RY

dUN + (0AUYN + W) dt = PyodW, U(0) = Uy

m Let ]P’éV’T(-) =P(U" ¢) be the measure on C([0,T];RY)
generated by U
P! be the measure generated by U on C([0,T];H).

m Usually (at least in linear case), we can prove that Pé\i’T ~ Pé\;’T
Hence, get MLE type estimators gN,T.
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The Problem

Formal Procedure to Derive an Estimator

m Project the full system down to N dimensions Py () = Hy ~RY

dUN + (0AUYN + W) dt = PyodW, U(0) = Uy

m Let ]P’éV’T(-) =P(U" ¢) be the measure on C([0,T];RY)
generated by U
P! be the measure generated by U on C([0,T];H).
pN-T

m Usually (at least in linear case), we can prove that PY7 ~
61 02

Hence, get MLE type estimators gN,T.

Reasonable ansatz:

Onr — 0
NT %
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The Problem

Formal Procedure to Derive an Estimator in Nonlinear Case

m Formally treat Wy = Py F'(U) as an external and known quantity
(independent of 0)

m Assume that Pyo is invertible on Hy
m Take G := Pyo(U)(Pno(U))* and assume it commutes with A

m For a reference values 6y, apply (formally) Girsanov Theorem and
get the 'Likelihood Ratio’ (Radon-Nikodym derivative) dPy"" /dPy "

m Maximize the Log-Likelihood Ratio
On 1 (w) = argmax d]P’éV’T/d]ng’T(w)
0
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The Problem

d]P’N’T T
dPZV,T —exp| [ (0-00)(AUN, GaUN (1))
0
; (92 02 (AU, GAUN dt)

N fo (0 - 0p)(AU™, GVt ],
s Jo (AUN GdU™) + [ (AUN,GPyF(U))dt
[(AUN, GAUN)dt

N =
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The Problem

N, T
Ty —exp[[OT(e-00)<AUN,GdUN(t)>

N,T ~
dP)

1
2

+f0 (9—90)(AUN,G¢th)],
~  [AUN,GaUN) + [ (AUN, GPyF(U))dt
Oy = - -
JT( AUy, GAUN)dt

Main Idea #1: Modified MLE

~ [y AYPUNGRAU + [ AYP UNGR PNF(U))dt
[F A UNGR2 AU dt

(92 02 (AU, GAUN dt)

Oy = -

for some p1, po.

4
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Motivated by MLE type estimator

é fO A1+P1U GPQdUN+/O A1+p1UNGp2PNF(U))dt
b JT Ao Uy GR2 AUyt
) [ AP UNGR AUy + [ AP UNGR Py F(Uy))dt

92,N == )
foL Ar UnGR2 AU Nt
; JS AYPUNGR2 AU
3,N = — .
JL AP UNGR2 AU dt

Choose p1, pa such that we can prove

0 N — 0, as N — oo,

fori=1,2,3.
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The Problem

/‘OT<A1+P1 UN’ GP2 Zj\il O-J(U)@]dW](t)>
foT AP UNGR AUt

| J AN ae (PN ) - FNY)))dt
foT AV UnGR AUN A

f0T<A1+P1 UN’ GP2 Z;V:]- g](U)@]dW](t))
[ AR UNGR AU Nt

Jo (AU N G N (UN))dt

JF AP UNGR2 AU Nt

é27N:9+

é37N=9+

m Need to show that each of ‘the excess term converge to zero'

m Successfully applied to:

e Stochastic linear parabolic SPDE, additive noise
o Stochastic Navier-Stokes Equations, 2D, additive noise

Ig. Cialenco, IIT August 15, 2016 Slide # 14



PART I(B): Trajectory Fitting Estimators

I. Cialenco, R. Gong and Y. Huang, Trajectory Fitting Estimators for SPDEs Driven by
Additive Noise submitted for publication, 2016 http://arxiv.org/abs/1607.04912
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http://arxiv.org/abs/1607.04912

Trajectory fitting estimators (TFE) for SDEs

The observed process S(6) := {S(t;0) }+>0 follows the dynamics
dS(t;0) =b(0,S(t;0))dt + o(S(t;0)) dB(t),

where B is an 1d standard Brownian motion, and 6 is the parameter of
interest. Let F:R >R, Fe¢ C?; by 1td's formula,

FS(:0)) = F(s0) + [ (F/(S(s)(6,5() + 3 F"(S())r*(5(5)) ) ds
+f0tF’(5(s))a(5(s))dB(s).

For any 6 € © and t € [0,T'], consider an artificial trajectory

F(£:0) = F(S) + fot (F'(S(s))b(e, S(s)) + %F"(S(s))UQ(S(s))) ds.
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TFE for SDEs; continued

The trajectory fitting estimator O of 0 is defined as the solution to the
minimization problem

~ . T ~ 2
O = aragé(lanf j(; (F(S(t;0)) - F(t;:0)) dt.

The choice of F' depends on the underlying models to insure the desired
asymptotic properties of the estimator; e.g. F(z) = 2.

For ergodic, finite dimensional diffusion processes, one can prove that
Or -0, as T — oo.

m Can we derive tractable TFEs for SPDEs?

m Study the asymptotic properties of TFEs as number of Fourier
modes N increases.
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TFE for SPDEs

(Q, F,{F }+>0,P) a stochastic basis;
We consider the evolution equation, in a separable Hilbert space H

du(t) + 0Au(t) dt = o dW (t), wuge€H,

where A; is a linear operators on H, W := {WW () }4>0 is a cylindrical
Brownian motion in H

Continuous-time observation framework of first N Fourier modes on a
finite time interval ¢ € [0,T'].

Parameter of interest € © c R,..
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du(t) + 0 Au(t) dt = o dW(t), wuge H, (5.1)

m The operator A has only point spectra; the eigenfunctions {hg }ken
form a complete, orthonormal system in H; eigenvalues vy, k € N.

m The sequence {Vy }key is such that limy_, o v = +00.

m W is a cylindrical Brownian motion in H, and has the following form

W(t) = Z )\;’th’wk(t), t>0,
k=1

for some v > 0, where A\, := V;/(2m), k e N, for some m >0, and
wy, := {wg () }120, k € N, are independent standard Brownian
motions.

m That is: the equation (5.1) is linear, diagonalizable, parabolic, and
the solution exists and is unique.
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N e
du(t) + 0 Au(t) dt = o dW(t), wuge H,

The unique solution is given by

[e9)

u(t) = Z ug(t)hg, >0,
k=1

where, each Fourier mode uy, k > 1 satisfies the SDE
duk(t) + Qljk uk(t) dt = U)\;V dwk(t), uk(O) = (U(], hk)H,

t
wg(t) = e VR0, (0) + a)\lje_”ket fo e duy ().
We denote by Vj, the artificial trajectory of uy, as

t
Vie(;0) := uz (0) + fo (02)\;2'y - 2yk0ui(s)) ds, keN, te[0,T].
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Definition
The Trajectory Fitting Estimator for the drift parameter 6 is defined as

- o~ N T
On =On(T) :=arginf > f (Vi(t:0) - u%(t))2 dt.
0c® =170

By direct evaluations, TFE can be computed explicitly

il Zivﬂ Vi (%513(7 ) —U%(O)Yk(i ) —02)\227)(1«(7 ))
N =~
2Zk;j\[:l V;fzk(j)

)

where
k(1) ::—/Otu%(s) ds, Xi(t) ::/(;tsgk(s) ds,
Vilt)= [ Gls)ds,  Zut)= [ €s)ds
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TFE: Consistency
Noting that

Z]k‘v:]_ Vi (%fz - uz(O)Yk - 0'2/\];27Xk + 2I/k0Zk) L Z]kvzl VkAk
25V, V27 2%, Vi Zk

On—0 = —

Proposition (CGH '16)

E(Z) = W2(0) + 2T ko oo,
k k

12602

_27

Var(Zy) x S T (u2(0) + o>TA)
A‘”

E(Ay) TOZ (u2(0) + *TA),
_27

23
Var(Ag) = 303 (u2(0) + o*TA)".

v
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TFE: Consistency

Theorem (CGH '16)
Assume that -
YA = oo
Then,
lim Oy =6, P-a.s.

Ig. Cialenco, IIT August 15, 2016 Slide # 23



TFE: Asymptotic Normality

Theorem (CGH '16)
If in addition

8 1

-8y -1 _

E A, Vg = o0o.
k=1

Then, as N — oo,

gN—9+aN d

— N(0,1), (5.2)
bn
where
SN B /TR Va4 5
TSN emizy N ToyN 2Rz '
Yk=1Y% (Zk) =1V, (Zk)

d e
and where — denotes the convergence in distribution.

V.
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Fractional stochastic heat equation driven by an additive noise:
du(t,z)+0(-A) u(t,x) dt =0 > N hy(2) dwi(t), te[0,T], zeG,
k=1

with initial condition u(0,x) = ug(z) € H, where § >0, >0, v >0 and
o € R~ {0} are constants. In this case,

Vi ~ Clkzﬁ/d7 Ak~ \/akl/dv k — oo.

The consistency and the asymptotic normality hold for the TFE On,
whenever

28 + 8y < d.
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0.95

—True Parameter
“-MLE
=TFE
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PART II: Hypothesis Testing for SPDEs

I. Cialenco, L. Xu, Hypothesis testing for stochastic PDEs driven by additive noise,
Stochastic Processes and their Appl., vol. 125, Issue 3, March 2015, pp. 819-866.

I. Cialenco, L. Xu, A note on error estimation for hypothesis testing problems for some
linear SPDEs, Stochastic Partial Differential Equations: Analysis and Computations,
September 2014, vol. 2, No 3, pp. 408-431.
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Similar Setup

Fractional heat equation driven by additive noise:

AU(t,2) + 0(-AY°U(t,2)dt = 0 3 N h()dwy (8),
k=1

where z € G, G is a bounded domain in R?, ¢ € [0, T];

m zero initial conditions and boundary values;

m {wy(t)}rey are independent Brownian motions;

m A is the Laplace operator on G with zero boundary condition;

m {h;} are the eigenfunctions of A in L?(G); {px} are the
eigenvalues; A\, = \/—pj ~ k.

m consider solution in (HA**(G), H*(G), H**(@));

m 6 >0 (Unknown),
all other parameters 8 >0, v>0, 0 € R~ {0} known.
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Simple Hypothesis

AU (t,z) + 0(-A)PU(t,z)dt = o i A () dwy (1)
k=1

Assume that 6 can take only two values {6y, 6;}.

Consider a simple hypothesis:

%: 9:907
JH: 0=0.

For simplicity, assume 681 > 6y and o > 0.
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Hypothesis Testing
Construction of the Test

AU (t,z) + 0(-A)PU(t,z)dt = o i A hy(z)dw (t),  U(0,z) =0.
k=1

m The k-th Fourier coefficient uy(t) = (U(t,x), hi(z)) is given by
dug, = —9N udt + o X, dwy (1),  u(0) =0,

t
up(t) =oX,” fo efGAiﬂ(t*)dwk, kE>1.

m Let ]P’év’T(-) =P(UX ¢ ) be the measure on C([0,T];RY)
generated by UIJY(t) = (uq,...,un) up to time 7.
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Hypothesis Testing

Observable: First N Fourier coefficients u;(t),...,un(t), for all
te[0,T].

m Looking for rejection region R e B(C([0,T];RM)).

m Type | error = PéVO’T(R);

Type Il error = 1 —Pé\i’T(R), and power of the test = Pé\i’T(R)

m Define the class of test
Ko = {ReB(C([0,TERY)) : P (R) <a.

with « € (0,1) being the significance level, fixed in what follows.

Definition

We say that a rejection region R* € K, is the most powerful in the
class IC, if

Pp " (R) <Py (RY),  for all Re K.
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Hypothesis Testing
Neyman-Pearson Lemma

Theorem (C. and Xu, ’14, ’15)

Take the Likelihood Ratio

N
L(80,01,U7 ) =exp (—(91 LY )‘iﬁm
1

T 1 25 [T o
. (fo up(E)dun(t) + 5 (61 + 00) A2 fo w2(1)dt)).
Let ¢, be a real number such that
Py (L(60,61,Up) 2 ¢a) = c.
Then,

R* = {UY : L(60,61,UN) > o},

is the most powerful rejection region in the class K.

<
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Hypothesis Testing

The Difficulty:

The problem is that ¢, has no explicit formula for finite 7" and N.
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Hypothesis Testing

The Difficulty:

The problem is that ¢, has no explicit formula for finite 7" and N.

We suggest/take “Asymptotic Method”

(1) Fix N, let T — oo;

(2) Fix T, let N — oo.

In this talk we focus on case (1), large time asymptotics;

For case (2) see [CX '14 and '15].
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Hypothesis Testing

Asymptotic Method in Time 7"

Define a new class
. ] Ny 1 N, T
Ky o= {(RT)TER+ : Rp e B(C([0,T];R™), limsupPy " (Rr) < a},
Taoo

where N is fixed, and « is the “Asymptotic Significance Level”.
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Hypothesis Testing

Asymptotic Method in Time 7"

Define a new class
. ] Ny 1 N, T
K= {(RT)TER+ : Rp e B(C([0,T];R™), limsupPy " (Rr) < a},
T%Oo

where N is fixed, and « is the “Asymptotic Significance Level”.

We want to find a rejection region (R})7er, such that

lim7 e Py " (R}) = .
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Hypothesis Testing

We still try Likelihood Ratio test. Then, what is ¢,? I

To find ¢, we make the following heuristic argument: by Ito6’s Formula,

Pyt (L(00,01,U7 ) 2 )

ZPéV’T (XT _ 2(01 + 90) - > 490 lncg + M),
0 (01 - (90)0'\/T (91 - 90) T

where

N N )\2ﬂ+2’7u2(T)
._ 28 — k k
M= 2N K= 2 T
k=1 k=1

I 2B+ T
Yri=—+ Z AL / wpdwy,.
T = 0
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Hypothesis Testing

We can prove:

m And we have the split:

Pyt (L(00,01,U7 ) 2 ¢) < Pe" (X7 2 6)

NT (_ 200+00) . oIy
% (61 - 00)ovT ~ (61 -00)*T

+M—5).

m For any fixed § > 0, IF’Q;T (X729)—>0asT — oo.

Y S N(0,02M/(200)) as T — co.
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Hypothesis Testing

We can prove:

m And we have the split:

Pyt (L(00,01,U7 ) 2 ¢) < Pe" (X7 2 6)

NT (_ 200+00) . oIy
% (61 - 00)ovT ~ (61 -00)*T

+M—5).

m For any fixed § > 0, IF’Q;T (X729)—>0asT — oo.

Y S N(0,02M/(200)) as T — co.

It Is Reasonable To Take:

_[260 (61 - 0)VT [ 46pInc,

M 2(6; +6)) (.91_90)2T+M]:(Ja- (6.1)
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Hypothesis Testing

Solve (6.1) to get

01 - 0))2 02 - 02 [MT
b (T) = (O =00)" 0100 . 6.2
co(T) exp( 10, e T (6.2)
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Hypothesis Testing

Solve (6.1) to get

01 - 0))2 02 - 02 [MT
b (T) = (O =00)" 0100 . 6.2
co(T) exp( 10, e T (6.2)

Theorem (C. and Xu)

Suppose
R = {UY : L(60,61,UY) 2 A (T)},  for all T,

where c}, is given by (6.2). Then, the rejection region (Rk)rer, € KF,
and moreover

Jm BT () =
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Hypothesis Testing

The Next Question:

How does the power of this test Pé\i’T(Rﬁﬂp) behave?
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Hypothesis Testing

The Next Question:

How does the power of this test Pé\i’T(Rﬂf) behave?

Theorem (C. and Xu)

1~ Pé\i’T(R%‘) ~exp(=1(0p,601,N)T +0o(T)), asT — oo,
where 1(0y,01,N) = (61 — 60)>M /46y.
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Hypothesis Testing

The Next Question:

How does the power of this test Pé\i’T(Rcﬂr) behave?

Theorem (C. and Xu)

1-Py " (RE) ~ exp(=I(00, 01, N)T +0(T)), asT — oo,
where 1(007917N) = (91 - GO)ZM/490

Sketch of the Proof:

m Calculate the Moment Generating Function of the Log-Likelihood
ratio (Gapeev and Kiichler [2008])
e Use Feynman-Kac Formula to derive a PDE
e Make some transforms and guess the solution

m Apply a theorem for Large Deviation in Lin’kov [1999]

m Use some technics in limit theory to get the final result.

4
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Hypothesis Testing

Questions to be answered:

m Except for (Rk), how do other rejection regions work for the
testing? Is (R).) the best one?

m Is the class IC}, the best to take for the testing?

m How large T shall we take to insure the accuracy?
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Hypothesis Testing
Asymptotically The Most Powerful Test

We say that a rejection region (R}.) € K}, is asymptotically the most
powerful in the class K, if

liminf— >1, forall (Ry) ek,

Similarly, we define asymptotically the most powerful rejection regions for
a different given class of tests.
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Hypothesis Testing

Theorem (C. and Xu)

There exists rejection region (RT) € IC;, which is Asymptotically More
Powerful than (RY.), that is

, 1-P, " (Rr)
lim sup ToNT i <
T—oo 1— ]P)gl’ (RT)
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Hypothesis Testing

Theorem (C. and Xu)

There exists rejection region (RT) € IC;, which is Asymptotically More
Powerful than (RY.), that is

, 1-P, " (Rr)
lim sup ToNT i <
T—oo 1— Pel’ (RT)

Theorem (C. and Xu)

The rejection region of the form

Ry = {Uf : L(00, 01, UY) > ca(T)},

with ¢, (T) >0, can not be asymptotically the most powerful in the class
K.
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Hypothesis Testing
Refined Asymptotic Class

Consider the class of the form:

Kl = {(RT) : lim sup (P%’T(RT) - a) VT < al}.
T—oco

where a; is some explicitly computable quantity.

Theorem (C. and Xu)

The rejection region (R).) is asymptotically the most powerful
in the class K\,
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Thank You !



Asymptotic Method in Fourier Modes N — oo

Define class

Ko () = {(RN) : nglsup (ngT(RN) - a) VM < a1(5)}. (7.1)

We say that a rejection region (Ry) € K, is asymptotically the most
powerful in the class I, if

. 1-PT(Ry) 5
liminf ——<———2>1, forall (Ry) € K,. (7.2)
N=zeo ] — Pel’ (RN)

Similarly, we define asymptotically the most powerful rejection regions for

a different given class of tests.

v
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Following similar argument as in “T part”, one can find

RSy = {UN - L(0,61,UN) 2 &(N)},

such that
Theorem (Main Result I1)

Assume f3/d > 1/2. The rejection region (RY;) is asymptotically the most
powerful in ICy,(0).
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New Tests for Error Control

Theorem (Error Control for T' — oo)

Consider the test statistics of the form
R} ={U7 :InL(80,61,U7) 2noT},

where m is given by an explicit formula of the form

(01 90) M +O(T~ ). If T > Ty (Tp has explicit formula), then the
Type I and Type Il errors have the following bound estimates

IP’g;T (R}) <(1+0)a,

1-PYT(RY) < (1 (61~ 60)”
-P, " (Ryp) < (L+o)exp| -

1662 MT) ’

where o denotes a given threshold of error tolerance.

v
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Theorem (Error Control for N — o)

Consider the test statistics of the form
={U7 :InL(60,61,U7) 2 oM},

where Co is given by an explicit formula of the form
(01 00) T+ O(N-2-814) If N > Ny (Ny has explicit formula), then
the Type I and Type Il errors have the following bound estimates

IP’ggT (R(JJV) <(1+9)a,

(61— 60)*

N,T ({0
1-Py (RN)£(1+Q)exp( 1602

MT) ,

where o denotes a given threshold of error tolerance.
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Simulation Results

Table: Type | error for various «.

o 0.1 0.05 0.01 0.005

Th 629 818 1258 1447

Py (R},) 0020 0.006 0.002 0.001

Other parameters: 6y =0.1, 6; =0.2, N =3,
p=0.1,d=p=0=1, v=0.
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Table: Type I error for various T > T

T T() T() +T1 TO + 2T T() + 317 TO + 47T

P,>" (R}) 0.006 0014 0010 0006  0.010
0

P" (R}) 0054 0064 0050 0028  0.056
0

Other parameters:T; = 2000, o = 0.05, 65 =0.1, #; = 0.2,
N=3 p=01,d=p=0c=1, v=0.
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Appendix

Theorem (Criterion for Most Powerful Test)

Consider the rejection region of the form
Ry = {U7 : L(60,01, U7 ) 2 c3(T)}, (7.3)
where ¢, (T') is a function of T such that, ¢.,(T") >0 for all T >0 and
Jim Py (Ry) = a, (7.4)

(T
lim c(T)

—— " < 0. 7.5

Then (R7) is asymptotically the most powerful in IC},.
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R Avoendix
Proof for ch(7)/(1- )" (RY)) ~ VT
m Split the probability:

1-Py " (RY) = ArBr
m After some substitutions and calculations we get
Ap = exp[-1(09,61,N)T]
m By a series of technical lemmas we proved
Br ~ explo(T)]/NT
m Referring to the form of c!, in (6.2) we finally have

()] (1-P) " (B)) ~ VT
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Proof:
By the same reasoning as in ” Neyman-Pearson”, for a fixed T and any
(Rr) € K, we have that

By (Ry) - By, (Br) > ei(T) (BT (Ry) - By T (Rr)).

which can be written as

N,T .
1= ]P01 (RT) >1 ca(T)

+ PV (R -PY T (Ry)).
*\ s * 0 T 0 T
1—[P’é\i’T(RT) 1—Pf,V1T(RT)( 0 0 )
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- |mo=_________________
From here, using (7.4) and (7.5), we deduce

1-PY (R (T

liminf# >1+ lim % im IP’Q(Z’T(R})

Tooo | _PYT(Ry) ~ T 1-PNT(Ry) T
. ca(T) N,T

- lim 0‘—hmsup[?’ (Rr)
(T) ( : NT )
1+ lim — /) a-limsupP, " (R

T—oo ] — ]P)NT(R ) T—oco b ( T)

>1.

This completes the proof.
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Sketch of the proof for main theorem:
By the same reasoning as in ” Neyman-Pearson”, for a fixed T and any
(Rr) € K, we have that

N,T N, T N,T N,T
o (BE) B! (Rer) 2 e (T) (P (RY) - PR (R)),
which can be written as

1-Py " (Ry) (1)
N, T i 21+ N, T i
1 —IP’Q1 (RT) 1 _Pel (RT)

N, N,
(B3 () ~ BT ()
Taking the 'liminf’, we deduce
R n
lminf—— % " ) i o) (P%’T(RQF) - a)

, ct(T)
- limsup ——~"— (ng’T(RT) - a) .
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