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Brownian Semistationary Processes and
Volatility/Intermittency

Ole E. Barndorff-Nielsen and Jürgen Schmiegel

Abstract. A new class of stochastic processes, termed Brownian semistationary processes (BSS), is
introduced and discussed. This class has similarities to that of Brownian semimartingales (BSM),
but is mainly directed towards the study of stationary processes, andBSS processes are not in
general of the semimartingale type. We focus on semimartingale - nonsemimartingale issues and
on inference problems concerning the underlying volatility/intermittency process, in the nonsemi-
martingale case and based on normalised realised quadraticvariation. The concept ofBSS processes
has arisen out of an ongoing study of turbulent velocity fields and is the purely temporal version of
the general tempo-spatial framework of ambit processes. The latter, which may have applications
also to the finance of energy markets, is briefly considered atthe end of the paper, again with refer-
ence to the question of inference on the volatility/intermittency.
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0.1 Introduction

This paper discusses stochastic processesY = {Yt}t∈R
of the form

Yt = µ+

∫ t

−∞

g(t− s)σsdBs +

∫ t

−∞

q(t− s)asds (0.1)

whereµ is a constant,B is Brownian motion,g andq are nonnegative deterministic
functions onR, with g (t) = q (t) = 0 for t ≤ 0, andσ anda are càdlàg processes.
Whenσ anda are stationary then so isY . Accordingly we shall refer to processes of
this type asBrownian semistationary (BSS) processes. It is sometimes convenient to
indicate the formula forY as

Y = µ+ g ∗ σ •B + q ∗ a • Leb. (0.2)

whereLeb denotes Lebesgue measure.
We consider theBSS processes to be the natural analogue, for stationarity related

processes, of the classBSM of Brownian semimartingales

Yt =

∫ t

0

σsdBs +

∫ t

0

asds. (0.3)

In the present paper the processesσ anda will, unless otherwise stated, be taken to
be stationary, and we then refer toσ as thevolatility or intermittency process. The term
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intermittency comes from turbulence, and in that scientific field intermittency plays a
key role, similar to that of (stochastic) volatility in finance.

In turbulence the basic notion of intermittency refers to the fact that the energy in a
turbulent field is unevenly distributed in space and time. The present paper is part of a
project with aim to construct a stochastic process model of the field of velocity vectors
representing the fluid motion, conceiving of the intermittency as a positive random
field with valuesσt (x) at positions(x, t) in space-time. However, most extensive data
sets on turbulent velocities only provide the time series of the main component (i.e.
the component in the main direction of the fluid flow) of the velocity vector at asingle
location in space. In the present paper the focus is on this latter case, butin Sections
0.8 and 0.9 some discussion will be given on the further intriguing issuesthat arise
when addressing tempo-spatial settings. For a detailed discussion ofBSS and the
more general concept of tempo-spatial ambit processes, in the context of turbulence
modelling, we refer to Barndorff-Nielsen and Schmiegel (2004), Barndorff-Nielsen
and Schmiegel (2007), Barndorff-Nielsen and Schmiegel (2008a), Barndorff-Nielsen
and Schmiegel (2008b) and Barndorff-Nielsen and Schmiegel (2008c). There it is
shown that such processes are able to reproduce main stylized facts ofturbulent data.

In general, as we shall discuss in Section 0.3, models of theBSS form are not
semimartingales. One consequence of this is that various useful techniques developed
for semimartingales, such as the calculation of quadratic variation by Ito algebra and
those of multipower variation, need extension or modification.

The recently established theory of multipower variation (Barndorff-Nielsen et al
(2006a), Barndorff-Nielsen et al (2006b) and Jacod (2008a), cf. also Barndorff-Nielsen
and Shephard (2003), Barndorff-Nielsen and Shephard (2004),Barndorff-Nielsen and
Shephard (2006a), Barndorff-Nielsen and Shephard (2006b), Barndorff-Nielsen et al
(2006c) and Jacod (2008b)) was developed as a basis for inference onσ underBSM
models and, more generally Ito semimartingales, with particular focus on inference
about the integrated squared volatilityσ2+ given by

σ2+
t =

∫ t

0

σ2
sds. (0.4)

In the present paper the focus is similarly on inference forσ2+
t . Specifically we shall

discuss to what extent (a suitable normalised version of) realised quadratic variation of
Y can be used to estimateσ2+

t .
It is important to realise that, as regards inference onσ2+, there may be substantial

differences between cases whereg is positive on all of(0,∞) and those whereg (t) = 0
for t > l for somel ∈ (0,∞). This will be discussed in detail later.

In semimartingale theory the quadratic variation[Y ] of Y is defined in terms of the
Ito integralY • Y , as [Y ] = Y 2 − 2Y • Y . In that setting[Y ] equals the limit in
probability asδ → 0 of therealised quadratic variation [Yδ] of Y defined by

[Yδ]t =

⌊t/δ⌋
∑

j=1

(

Yjδ − Y(j−1)δ

)2
(0.5)

where⌊t/δ⌋ is the largest integer smaller than or equal tot/δ.
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However, the question of whether[Yδ] has a limit in probability - and what that limit
is - is of interest more broadly than for semimartingales, and in particular for BSS
processes. For any processY = {Yt}t≥0 we shall use[Y·] to denote the limit, when it
exists, i.e.

[Y·]t = p- lim
δ→0

[Yδ]t .

Thus, in caseY ∈ BSM we have[Y·] = [Y ].1

We abbreviate realised quadratic variation toRQV and writeQV for [Y·].
The paper is organised as follows. Brownian semistationary processesare intro-

duced in Section 0.2 and related non-semimartingale issues are considered in Section
0.3. Section 0.4 introduces a concept ofq-orthogonality of stochastic processes and
considers the computation of QV in some semimartingale difference cases. In Section
0.5 we turn to the increments of Brownian semistationary processes. Section 0.6 de-
fines a normalised version[Yδ] of RQV, and Section 0.7 derives sufficient conditions
for the convergence in probability of[Yδ] to σ2+. Extensions to the tempo-spatial set-
ting is discussed in Sectione 0.8 and 0.9. Some indications of ongoing further work
and open problems are given in the concluding Section 0.10.

0.2 BSS processes

We have defined the concept of Brownian semistationary processes (BSS) as processes
Y = {Yt}t∈R

of the form

Yt = µ+

∫ t

−∞

g(t− s)σsdBs +

∫ t

−∞

q(t− s)asds (0.6)

where, in the context of the present paper, the processesσ anda are taken to be station-
ary. The integrals in (0.6) are to be understood as limits in probability foru→ −∞ of
the integrals

∫ t

u

g(t− s)σsdBs +

∫ t

u

q(t− s)asds

which are assumed to exist, the first defined for each fixedt as an Ito integral. This
of course poses restrictions on which functionsg andq are feasible, including square
integrability ofg.

The focus of the present paper is on inference about the integrated squared volatility
σ2+ given by (0.4). In particular, we shall discuss to what extent realisedquadratic vari-
ation ofY can be used to estimateσ2+

t . Note that the relevant question here is whether
a suitably normalised version of the realised quadratic variation, and not necessarily
the realised quadratic variation itself, converges in probability and law.

As a modelling framework for continuous time stationary processes the specification
(0.6) is quite general. In fact, the continuous time Wold-Karhunen decomposition says2

1 Of course, for semimartingalesY we have the more general result that

[Y ]
t
= p- lim|τ |→0 [Yτ ]

whereτ denotes a subdivision of[0, t], |τ | is the maximal span in the subdivision, andYτ is theτ -discretisation
of Y over the interval[0, t].

2 See Doob (1953) and Karhunen (1950)
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that any second order stationary stochastic process, possibly complexvalued, of mean
0 and continuous in quadratic mean can be represented as

Zt =

∫ t

−∞

φ (t− s) dΞs + Vt

where

• the deterministic functionφ is an, in general complex, deterministic square inte-
grable function

• the processΞ has orthogonal increments withE
{

|dΞt|
2
}

= ̟dt for some con-
stant̟ > 0

• the processV is nonregular (i.e. its future values can be predicted by linear
operations on past values without error).

Under the further condition that∩t∈Rsp {Zs : s ≤ t} = {0}, the functionφ is real
and uniquely determined up to a real constant of proportionality; and the same is there-
fore true ofΞ (up to an additive constant).

0.3 BSS and semi - nonsemimartingale issues

If Y ∈ BSS thenY may or may not be of the semimartingale type. This Section
discusses criteria for either of these cases.

0.3.1 Semimartingale cases

We begin by recalling a classical necesssary and sufficient condition, due to Knight
(1992), for the processY to be a semimartingale, valid in the special simple situation
whereσ = 1 anda = 0, i.e. where the process is of the form

Yt =

∫ t

−∞

g (t− s) dBs. (0.7)

Knight’s Theorem says that(Yt)t≥0 is a semimartingale in the
(

FB
t

)

t≥0
filtration if and

only if

g (t) = c+

∫ t

0

b (s) ds (0.8)

for somec ∈ R and a square integrable functionb.

Example An example of some particular interest is where

g (t) = tαe−λt for t ∈ (0,∞)

and someλ > 0. In order for the integral (0.7) to exist,α is required to be greater than
− 1

2 , and forg to be of the form (0.8) we must haveα = 0 or α > 1
2 . In other words,
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the nonsemimartingale cases areα ∈
(

− 1
2 , 0
)

∪
(

0, 1
2

]

. �

Generally, one may ask under what conditions moving average processes of the form

Xt =

∫ ∞

−∞

(g (t− s) − h (−s)) dBs,

with g andh deterministic, are semimartingales. More specifically, when is(Xt)t≥0 a
(

FX
t

)

t≥0
-seminartingale, whereFX

t is theσ-algebra generated by{Xs, s ≤ t}. Con-
structive necessary and sufficient conditions for this are given in a recent paper by
Basse, see Basse (2007a).

More generally still is the question of when a processX is a Gaussian semimartin-
gale. Also for this case a necessary and sufficient criterion has been obtained by Basse,
in Basse (2008), cf. also Basse (2007b) which discusses the spectral representation of
Gaussian semimartingales.

At a further level of generalisation, Basse and Pedersen, in Basse and Pedersen
(2008), consider processesX of the general form

Xt =

∫ t

−∞

(φ (t− s) − ψ (−s)) dLs

whereL is a (two-sided) nondeterministic Lévy process with characteristic triplet
(

γ, σ2, ν
)

, φ andψ are deterministic functions and the integral exists, in the sense
of Rajput and Rosinski (1989). These authors establish various necessary conditions
on
(

γ, σ2, ν
)

andφ, ψ in order for(Xt)t≥0 to be an
(

FL
t

)

t≥0
-semimartingale.

Now, turning to the generalBSS case, we first argue formally, as if the differential
of Y exists. From (0.6),

dYt = g (0+)σtdBt + {ġ ∗ σ •Bt + q (0+)at + q̇ ∗ a • Lebt}dt

suggesting thatYt can be reexpressed as

Yt = Y0 + g (0+)

∫ t

0

σsdBs +

∫ t

0

Asds

with
A = ġ ∗ σ •B + q (0+)a+ q̇ ∗ a • Leb.

This will indeed be the case provided the following conditions are satisfied (recall that
we have assumed thatσ anda are stationary):

(i) g (0+) andq (0+) exist and are finite.

(ii) g is absolutely continuous with square integrable derivativeġ

(iii) The procesṡg(−·)σ· is square integrable

(iv) The procesṡq(−·)a· is integrable.
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In view of the results by Knight and Basse, mentioned above, these conditions must
be close to necessary as well.

We shall here not further discuss affirmative conditions forY to be of the semi-
martingale type. Instead we turn to cases whereY can be written as a linear combi-
nation of semimartingales which are orthogonal, in a sense that will be specified, and
have different filtrations.

0.4 RQV and linear combinations of semimartingales

While the focus will be on cases where a givenBSS processY can be rewritten as
Y + − Y −, where bothY + andY − are semimartingales, we begin by considering the
broader issue of existence and calculation of[Y·] whenY is a linear combination of
q-orthogonal processes,q-orthogonality being defined below.

0.4.1 General considerations

Suppose that a processY = {Yt} is representable in law as a linear combinationY =
Y ′ +Y ′′ of some processesY ′ andY ′′ of interest, of semimartingale type or not. Then,
defining[Y ′

δ , Y
′′
δ ] and[Y ′

· , Y
′′
· ] by

[Y ′
δ , Y

′′
δ ]t =

⌊t/δ⌋
∑

j=1

(

Y ′
jδ − Y ′

(j−1)δ

)(

Y ′′
jδ − Y ′′

(j−1)δ

)

and
[Y ′

· , Y
′′
· ] = p- lim

δ→0
[Y ′

δ , Y
′′
δ ]t

we have
[Yδ] = [Y ′

δ ] + [Y ′′
δ ] + 2 [Y ′

δ , Y
′′
δ ]

and hence, provided the limit exists (in probability),

[Y·] = [Y ′
· ] + [Y ′′

· ] + 2 [Y ′
· , Y

′′
· ] .

We will write this symbolically as

d [Y·] = d [Y ′
· ] + d [Y ′′

· ] + 2d [Y ′
· , Y

′′
· ] .

In case[Y ′
· , Y

′′
· ] = 0 we say thatY ′ andY ′′ areq-orthogonal and express this by

writing
dY ′dY ′′ = 0.

Then
[Y·] = [Y ′

· ] + [Y ′′
· ] .

In particular, ifY ′ andY ′′ are both semimartingales, in general with different own
filtrations, and q-orthogonal then

[Y·] = [Y ] = [Y ′] + [Y ′′]
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andd [Y·] may be calculated as

d [Y·]t = (dY ′
t )

2
+ (dY ′′

t )
2
.

In this case we may definedY asdY ′ + dY ′′ and then, as in the usual semimartingale
world, we have

[Y·]t =

∫ t

0

(dYs)
2
ds.

An elementary instance of thisYt = Y ′
t + Y ′′

t with Y ′
t = Bt andY ′′

t = −Bt−1 and
whereB = {Bt}R

is Brownian motion on the real line.
These considerations are extendable to settings whereY is a linear combination

Y =
∫

Y
(c)
t M (dc) of mutually q-orthogonal processesY (c) and whereM is a deter-

ministic, possibly signed, measure. We shall not here discuss specific general condi-
tions for this; however an example is given in the next Subsection.

0.4.2 SomeBSS cases

Let G be the class of functions of the form (0.8). Ifg ∈ G then for anyu > 0 the
functionh (·) = g (· + u) also belongs toG. This has the important consequence that
if g is of the formg#1A with A = (0, l) for somel > 0 andg# ∈ G thenY itself is not
a semimartingale but it is the difference between two semimartingales, specifically

Yt = Y +
t − Y −

t

where

Y +
t = µ+

∫ t

−∞

g (t− s)σsdBs + q ∗ a • Leb

and

Y −
t =

∫ t

−∞

g (t− s+ l)σs−ldBs−l.

BothY + andY − are semimartingales but with different filtrations, namely
{

FB
t

}

t∈R

and
{

FB
t−l

}

t∈R
. Moreover,Y + andY − are q-orthogonal, and hence

d [Y·]t =
(

dY +
t

)2
+
(

dY −
t

)2
.

More generally, suppose thatg has the form

g (t) =

∫ ∞

0

g0 (t− c) dM (c)

for a g0 ∈ G and whereM is a function of bounded variation onR+. In this case we
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have

Yt =

∫ t

−∞

g (t− s)σsdBs

=

∫ t

−∞

∫ ∞

0

g0 (t− s− c) dM (c)σsdBs

=

∫ ∞

0

∫ t

−∞

g0 (t− s− c)σsdBsdM (c)

=

∫ ∞

0

∫ t−c

−∞

g0 (t− c− s)σsdBsdM (c)

=

∫ ∞

0

Y
(c)
t dM (c)

where

Y
(c)
t =

∫ t

−∞

g0 (t− s)σs−cdBs−c

showing thatY is a linear combination of q-orthogonal semimartingales with different
filtrations (namely, conditional onσ the filtration ofY (c) is

{

FB
t−c

}

t∈R
.)

0.5 Increment processes

Again, suppose thatg = g#1[0,l] for somel > 0 andg# ∈ G. For any givent we define
the increment process

{

Xu|t

}

u≥0
by

Xt+u|t = Yt+u − Yt

=

∫ t+u

t

g (t+ u− s)σsdBs +

∫ t

−∞

{g (t+ u− s) − g (t− s)}σsdBs

+

∫ t+u

t

q (t+ u− s) asds+

∫ t

−∞

{q (t+ u− s) − q (t− s)} asds.

It will be convenient to rewriteXt|t−u as

Xt|t−u =

∫ 0

−∞

φu (−v)σv+tdBv+t +

∫ 0

−∞

χu (−v) av+tdv (0.9)

whereφu andχu are defined by

φu (v) =











g (v) for 0 ≤ v < u

g (v) − g (v − u) for u ≤ v <∞

and

χu (v) =











q (v) for 0 ≤ v < u

q (v) − q (v − u) for u ≤ v <∞

.
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From now on we assume that(σ, a) is independent ofB and thata is adapted to
the filtrationFσ. This, together with (0.9), implies in particular that the conditional
variance ofYt − Yt−u given the processσ takes the form

E
{

(Yt − Yt−u)2 |σ
}

=

∫ ∞

0

ψu (v)σ2
t−vdv +

(∫ ∞

0

χu (v) at−vdv

)2

where

ψu (v) =











g2 (v) for 0 ≤ v < u

{g (v − u) − g (v)}2 for u ≤ v <∞

.

Remark 1 Note thatφu (v) = ψu (v) = χu (v) = 0 for v ≥ l + u while for
l ≤ v < l + u we haveψu (v) = g (v − u)

2 andχu (v) = q (v − u). �

Let

c (u) =

∫ ∞

0

ψu (v) dv. (0.10)

Remark 2 Trivially,

c (δ) ≥

∫ δ

0

ψδ (v) dv =

∫ δ

0

g2 (v) dv

implying that ifg(0+) > 0 thenc (δ) cannot tend to0 faster thanδ. �

Remark 3 We have
c (u) = 2 ‖g‖2 r̄ (u)

wherer̄ = 1 − r with r being the autocorrelation function ofY . Furthermore,

E
{

(Yt − Yt−u)
2
}

= E
{

σ2
0

}

c (u)

+E
{

a2
0

}

∫ ∞

0

∫ ∞

0

χu (v)χu (w) ̺ (|v − w|) dvdw

where̺ is the autocorrelation function ofa. �

0.6 Normalised RQV

We now define thenormalised RQV as

[Yδ] =
δ

c (δ)
[Yδ] .

The question we wish to address here is whether and under what conditions [Yδ]
converges in probability toσ2+. Concerning the related question of a central limit
theorem for[Yδ], see Section 0.10.
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In the present paper we shall largely restrict the discussion to quite regular forms
of the weight functiong, assuming in particular thatg is positive on a finite interval
(0, l) only. Specifically, we now assume that the functiong is positive, continuously
differentiable, convex and decreasing on an interval(0, l) where0 < l < ∞ and that
g (t) = 0 outside that interval. Also, we require thatσ anda are stationary and càdlàg
and, as before, thata is adapted to the natural filtration ofσ. Without loss of generality
we taket/δ to be an integern so thatt = nδ. Below C denotes a constant that is
independent ofn but whose value may change with the context.

0.7 Consistency

To discuss the question of when[Yδ]
p
→ σ2+ we first note that, by (0.9),

[Yδ]t =

n
∑

k=1

(∫ 0

−∞

φδ (−v)σv+kδdBv+kδ

)2

+2

n
∑

k=1

∫ 0

−∞

φδ (−v)σv+kδdBv+kδ

∫ 0

−∞

χδ (−v) av+kδdv

+

n
∑

k=1

(∫ 0

−∞

χδ (−v) av+kδdv

)2

.

It follows that

E
{

[Yδ]t|σ
}

=

∫ ∞

0

{

δ

n
∑

k=1

σ2
kδ−v

}

πδ (dv) + c (δ)
−1
Dδ (a) (0.11)

where

πδ (dv) =
ψδ (v)

c (δ)
dv

and

Dδ (a) =

∫ ∞

0

∫ ∞

0

χδ (v)χδ (w)

{

δ

n
∑

k=1

akδ−vakδ−w

}

dvdw.

Thusπδ is an absolutely continuous probability measure on(0, l+ δ). Furthermore,

|Dδ (a)| ≤ C

(∫ ∞

0

|χδ (v)| dv

)2

where the constantC depends ona,l andt.
This leads us to introduce

Condition A c (δ)
−1 (∫∞

0
|χδ (v)| dv

)2
→ 0. �
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Remark 4 Note that in this connection ifq is a positive decreasing function then
∫ ∞

0

|χδ (v)|dv = 2

∫ δ

0

q (v) dv. (0.12)

�

Suppose thatπδ converges weakly, asδ → 0, to a probability measureπ on [0, l], i.e.

πδ
w
→ π. (0.13)

Then, if Condition A holds we obtain from (0.11) that

E
{

[Yδ]t|σ
}

→

∫ ∞

0

(

σ2+
t−v − σ2+

−v

)

π (dv) . (0.14)

In particular, ifπ = δ0, the delta measure at0, then

E
{

[Yδ]t|σ
}

→ σ2+
t (0.15)

where

σ2+
t =

∫ t

0

σ2
sds.

The following two Subsections derive sufficient conditions forπδ
w
→ δ0 and for

Var
{

[Yδ]t|σ
}

→ 0, respectively. These two relations together with Condition A imply

that
[Yδ]

p
→ σ2+. (0.16)

We will refer to the case where (0.16) is satisfied by saying that the modelfor Y is
volatility memoryless.

0.7.1 pidelta to pi

Suppose thatl <∞ and let

Ψδ (u) =

∫ u

0

ψδ (v) dv and Ψ̄δ (u) =

∫ l+δ

l+δ−u

ψδ (v) dv,

so thatc (δ)
−1

Ψδ is the distribution function, sayΠδ, of πδ.
Next, fork = 1, 2, ..., let

ck (δ) =

∫ kδ

(k−1)δ

ψδ (u) du

=

∫ δ

0

ψδ ((k − 1) δ + u) du

= δ

∫ 1

0

ψδ ((k − 1 + u) δ) du
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i.e.

ck (δ) = δ

∫ 1

0

{g ((k − 2 + u) δ) − g ((k − 1 + u) δ)}
2
du. (0.17)

We must now distinguish between the casest < l andt ≥ l.
Suppose first thatt ≥ l. Letk∗ = max {k : kδ ≤ l}. Then, by (0.17), for1 < k ≤ k∗

ck (δ) = δ3
∫ 1

0

g′ ((k − 2 + u+ θk (u)) δ)
2
du

where theθk (u) satisfy0 ≤ θk (u) ≤ 1. Sinceg is convex and decreasing this implies,
providedk∗ ≤ k ≤ k∗ wherek∗ > 2, that

ck (δ) ≤ δ3g′ ((k − 2) δ)2 ≤ δ3g′ ((k∗ − 2) δ)2 .

Therefore, for anyε ∈ (2δ, l) with 1 < ⌊ε/δ⌋ < k∗ we have

Ψδ (k∗δ) − Ψδ (ε) ≤

k∗

∑

k=⌊ε/δ⌋+1

ck (δ)

≤ δ3 (k∗ − ⌊ε/δ⌋) g′ (⌊ε− 2δ⌋)
2

≤ (l − ε+ δ) g′ (⌊ε− 2δ⌋)
2
δ2

so that
Πδ (k∗δ) − Πδ (ε) ≤ (l − ε+ δ) g′ (⌊ε− 2δ⌋)

2
δ2c(δ)−1.

Consequently, asδ → 0,
Πδ (k∗δ) − Πδ (ε) → 0.

It follows that if πδ converges to a probability measureπ thenπ is necessarily a linear
combination of the delta measures at0 andl.

Furthermore,

Ψδ (l + δ) − Ψδ (k∗δ) = ck∗+1 (δ) + ck∗+2 (δ)

where

ck∗+1 (δ) =

∫ (k∗+1)δ

k∗δ

ψδ (v) dv

=

∫ l

k∗δ

{g (v − δ) − g (v)}
2
dv

+

∫ (k∗+1)δ

l

g2 (v − δ) dv

and

ck∗+2 (δ) =

∫ l+δ

(k∗+1)δ

g2 (v − δ) dv.
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So, combining, forπδ → δ0 to hold we must require that

c (δ)
−1
∫ l

k∗δ

{g (v − δ) − g (v)}
2
dv → 0

and

c (δ)
−1
∫ l+δ

l

g2 (v − δ) dv → 0.

But the first relation follows from the smoothness ofg, so to guaranteeπδ
w
→ δ0, when

t ≥ l, we therefore only need to add

Condition B c (δ)
−1 ∫ l+δ

l
g2 (v − δ) dv → 0 asδ ↓ 0 �

Remark 5 Condition B is equivalently to having

∫ l

l−δ g
2(v)dv

∫ δ

0
g2(v)dv

→ 0,

as follows from the above discussion. In particular, it suffices to haveg (v) → 0 as
v ↑ l. �

Remark 6 In casec (δ)−1 ∫ l+δ

l
g2 (v − δ) dv → λ ∈ (0, 1) we obtainπδ → (1 − λ) δ0+

λδ1. �

Whent < l, for anyε ∈ (2δ, t) with 1 < ⌊ε/δ⌋ < n,

Ψδ (t+ δ) − Ψδ (ε) ≤

n
∑

k=⌊ε/δ⌋+1

ck (δ)

≤ (t− ε+ δ) g′ (⌊ε− 2δ⌋)
2
δ2

which tends to0 at the order ofδ2. To obtainπδ
w
→ δ0 we therefore only need to add

the assumption that
Ψδ (l + δ) − Ψδ (t+ δ) = o (c (δ)) . (0.18)

Now,

Ψδ (l + δ) − Ψδ (t+ δ) =

∞
∑

k=n+1

ck (δ) .

Thus, letting

c̄k (δ) =
ck (δ)

c (δ)
(0.19)

we have that (0.18) is implied by

Condition C
∑∞

k=n+1 c̄k (δ) → 0 as δ ↓ 0. �
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0.7.2 Conditional Var to 0

We now establish conditions under which the conditional variance of the normalised
realised quadratic variation tends to0 asδ → 0, i.e.

Var{[Yδ]t|σ} → 0. (0.20)

Suppose first thata = 0.
Let ∆n

j Y = Yjδ − Y(j−1)δ. Then

Var{[Yδ]t|σ} =
δ2

c (δ)
2







n
∑

j=1

Var{
(

∆n
j Y
)2

|σ} + 2

n
∑

j=1

n
∑

k=j+1

Cov{
(

∆n
j Y
)2
, (∆n

kY )
2
|σ}







where, forj < k,

Cov{∆n
j Y∆n

kY |σ} = E
{(

Yjδ − Y(j−1)δ

) (

Ykδ − Y(k−1)δ

)

|σ
}

=

∫ ∞

0

φδ ((k − j) δ + u)φδ (u)σ2
jδ−udu.

Let K (σ) = sup−l≤s≤t σ
2
s . As σ is assumed càdlàg,K (σ) < ∞ a.s.. Hence, by the

Cauchy-Schwarz inequality,

∣

∣Cov{Yjδ − Y(j−1)δ, Ykδ − Y(k−1)δ|σ}
∣

∣ ≤ K (σ)

(∫ ∞

0

ψδ (u) du

)1/2
(

∫ ∞

(k−j)δ

ψδ (u) du

)1/2

.

Now, recall that for any pairX andY of normal, mean zero random variables we have

Cov{X2, Y 2} = 2Cov{X,Y }2. (0.21)

Therefore

Var{[Yδ]t|σ} ≤ 2K (σ)2
δ2

c (δ)2



lδ−1c (δ)2 + 2c (δ)
n−1
∑

j=1

n
∑

i=j+1

∫ ∞

(i−j)δ

ψδ (u) du





= 2K (σ)
2
δ



l + 2
δ

c (δ)

n−1
∑

j=1

n
∑

i=j+1

∫ ∞

(i−j)δ

ψδ (u) du




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Here

n−1
∑

j=1

n
∑

i=j+1

∫ ∞

(i−j)δ

ψδ (u) du =

n−1
∑

j=1

n−j
∑

i=1

∫ ∞

iδ

ψδ (u) du

=

n−1
∑

ν=1

ν
∑

i=1

∞
∑

k=i

ck+1 (δ)

=
n−1
∑

ν=1

∞
∑

k=1

ck+1 (δ)
ν
∑

i=1

1≤k (i)

=

n−1
∑

ν=1

(

ν
∑

k=1

kck+1 (δ) + ν

∞
∑

k=ν

ck+2 (δ)

)

=

n−1
∑

k=1

(n− k) kck+1 (δ) +

∞
∑

k=1

ck+2 (δ)

k∧(n−1)
∑

ν=1

ν

=

n−1
∑

k=1

{

(n− k) kck+1 (δ) +
1

2
(k + 1)kck+2

}

+
(n− 1)n

2

∞
∑

k=n

ck+2 (δ)

With the notation (0.19) we thus have

Var{[Yδ]t|σ} ≤ 2K (σ)
2
δ



l + 2δ

n−1
∑

k=1

(n− k) kc̄k+1 (δ) + 2δ

∞
∑

k=1

c̄k+2 (δ)

k∧(n−1)
∑

ν=1

ν





= 2K (σ)2 lδ

+2K (σ)
2
δ2

n−1
∑

k=1

{

(n− k) kc̄k+1 (δ) +
1

2
(k + 1) kc̄k+2

}

+2δK (σ)
2 (n− 1)n

2

∞
∑

k=n

c̄k+2 (δ) .

Here

δ2
n−1
∑

k=1

{

(n− k) kc̄k+1 (δ) +
1

2
(k + 1) kc̄k+2

}

≤ Cδ

n
∑

k=1

kc̄k (δ)

and

δ2
(n− 1)n

2

∞
∑

k=n

c̄k+2 (δ) ≤ C

∞
∑

k=n+1

c̄k (δ) .
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Consequently, whena = 0, for (0.20) to be valid it suffices to have

δ
n
∑

k=1

kc̄k (δ) → 0 and
∞
∑

k=n+1

c̄k (δ) → 0. (0.22)

Condition C will ensure the second limit result, and we now introduce

Condition D δ
∑n

k=1 kc̄k (δ) → 0 as δ ↓ 0. �

Provideda = 0, for (0.20) to be valid it suffices that Conditions C and D to hold.

Next we show that the convergenceVar{[Yδ]t|σ} → 0 also holds ifa is not0 pro-
vided Condition A is fulfilled too. In casea 6= 0, Var{[Yδ]t|σ} is a sum of two terms,
one as above fora = 0 while the other is

4
δ2

c (δ)2

n
∑

k=1

∫ ∞

0

ψδ (v)σ2
kδ−vdv

(∫ ∞

0

χδ (v) akδ−vdv

)2

(0.23)

which is bounded above by4HK where

H = lim sup
k,δ

δ

c (δ)

∫ ∞

0

ψδ (v) σ2
kδ−vdv

and

K =
δ

c (δ)

n
∑

k=1

(∫ ∞

0

χδ (v) akδ−vdv

)2

.

Here
∫ ∞

0

ψδ (v)σ2
kδ−vdv ≤ Cc (δ)

where the constantC depends ont andσ. HenceH → 0. Furthermore,

n
∑

k=1

(∫ ∞

0

χδ (v) akδ−vdv

)2

≤ C
n
∑

k=1

(∫ ∞

0

|χδ (v)| dv

)2

= Cδ−1

(∫ ∞

0

|χδ (v)| dv

)2

whereC, again, depends ont anda. Hence Condition A impliesK → 0.

0.7.3 Summing up

Suppose first thatt < l < ∞, which is the most interesting case from the viewpoint of
turbulence modelling. If

c (δ)−1

(∫ ∞

0

|χδ (v)| dv

)2

→ 0 (0.24)

∞
∑

k=n+1

c̄k (δ) → 0 (0.25)
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and

δ

n
∑

k=1

kc̄k (δ) → 0 (0.26)

then
πδ → δ0,Var{[Yδ]|σ} → 0 and[Yδ]

p
→ σ2+. (0.27)

If l ≤ t then the additional assumption that
∫ l

l−δ g
2(v)dv

∫ δ

0
g2(v)dv

→ 0 (0.28)

is required. The latter is, in particular, fulfilled ifg(v) → 0 for v ↑ l. In case (0.28) is
violated but (0.24), (0.25) and (0.26) hold andπδ

w
→ π for someπ, necessarily of the

form π = λδ0 + (1 − λ)δl for someλ ∈ (0, 1), then

[Yδ]t
p

−→ λσ2+
t + (1 − λ)

(

σ2+
t−l − σ2+

−l

)

. (0.29)

0.7.4 Examples

Recall Conditions A-D:

c (δ)−1

(∫ ∞

0

|χδ (v)| dv

)2

→ 0 (0.30)

c (δ)
−1
∫ l+δ

l

g2 (v − δ) dv → 0

∞
∑

k=n+1

c̄k (δ) → 0 (0.31)

δ

n
∑

k=1

kc̄k (δ) → 0. (0.32)

In this Section we suppose thatq = g. Then Condition A has the form

c (δ)
−1
c1 (δ)

2
→ 0. (0.33)

Example Suppose thatt = l and g (v) = e−λv1(0,l) (v) (a non-semimartingale
case). Then

ψδ (v) = e−2λv



















1 for 0 ≤ v < δ
(

eλδ − 1
)2

for δ ≤ v < l

e2λδ for l ≤ v < l + δ

0 for l + δ ≤ v

.

Here we find
c1 (δ) =

1

2λ

(

1 − e−2λδ
)

∼ δ
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while for k = 2, ..., n

ck (δ) =
1

2λ

(

eλδ − 1
)3
e−2kλ ∼

λ2

2
e−2kλδ3.

Moreover we have
cn+1 (δ) =

1

2λ

(

1 − e−2λδ
)

∼ e−2λlδ,

whereasck (δ) = 0 for k > n+ 1. Finally, c (δ) ∼ δ(1 + e−2λl) and

cn+1(δ)c (δ)
−1
∫ l+δ

l

g2 (v − δ) dv →
(

1 + e2λl
)−1

.

So, Conditions A, C and D are met. But Condition B is not and we have thatπδ → π,
where

π =
1

1 + e−2λl
δ0 +

1

1 + e2λl
δ1,

and thus
[Yδ]

p
−→ σ2+

t −
(

1 + e2λl
)−1

σ2+
−t .

�

Example Let g (v) = vα (1 − v)
β

1(0,1)(v) with − 1
2 < α andβ ≥ 1. The first

inequality ensures existence of the stochastic integralg ∗ σ • B, and ifα < 0 then we
are in the nonsemimartingale situation. In showing thatπδ → δ0 and [Yδ]

p
→ σ2+ it

suffices to consider the case where− 1
2 < α < 0, β = 1 andnδ = t. Let γ = −α, and

supposet < 1.
We find

c0 (δ) =

∫ δ

0

u−2γ (1 − u)
2
du

= (1 − 2γ)−1 δ1−2γ (1 +O (δ))

and, fork = 1, 2, ..., n− 1,

ck (δ) = δ

∫ 1

0

[

((k + u) δ)
−γ

− ((k + u) δ)
1−γ

− ((k + u− 1) δ)
−γ

+ ((k + u− 1) δ)
1−γ
]2

du

= δ1−2γ

∫ 1

0

[

(k + u)
−γ

− (k + u− 1)
−γ

− δ
{

(k + u)
1−γ

− (k + u− 1)
1−γ
}]2

du

while

cn (δ) = δ3−2γ

∫ 1

0

[

(n+ u)
1−γ

− (n+ u− 1)
1−γ
]2

du

= δ3−2γn2−2γ

∫ 1

0

[

(

1 +
u

n

)1−γ

−

(

1 +
u− 1

n

)1−γ
]2

du

= O
(

δ2
)
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andck (δ) = 0 whenk > n. It follows, in particular, that

c1 (δ) = O
(

δ1−2γ
)

;

furthermore, since for1 < k < n and0 ≤ u ≤ 1

∣

∣

∣(k + u)
−γ

− (k + u− 1)
−γ
∣

∣

∣ ≤ γ (k − 1)
−γ−1

and
∣

∣

∣(k + u)
1−γ

− (k + u− 1)
1−γ
∣

∣

∣ ≤ (1 − γ) (k − 1)
−γ

we have (whenδ < 1)

ck (δ) ≤ δ1−2γ (k − 1)
−2γ−2

[γ + (1 − γ) δ (k − 1)]
2

≤ δ1−2γk−2γ−2

(

1 −
1

k

)−2γ−2

≤ Cδ1−2γk−2γ−2.

Consequently,
c (δ) = O

(

δ1−2γ
)

while for 1 < k < n
kc̄k (δ) ≤ Ck−2γ−1

so that
n−1
∑

1

kc̄ (δ) ≤ C.

We conlude that the Conditions A-D are satisfied and hence that[Yδ]t
p
→ σ2+

t . �

0.8 Tempo-spatial setting

Above only the case of time-wise behaviour at a single point in space was considered.
In the real turbulence setting, space and the velocity vector are three dimensional. The
general modelling framework specifies the velocity and intermittency fieldsas

Yt (x) = µ+

∫

At(x)

g (t− s, |ξ − x|)σs (ξ)W (dξ, ds)

+

∫

Ct(x)

q (t− s, |ξ − x|) as (ξ) dξds

and

σ2
t (x) =

∫

Dt(x)

h (t− s, |ξ − x|)L (dξ, ds)
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HereYt is a vector process of dimensiond (d = 0, 1, 2 or 3), g, q andh are deter-
ministic matrices of dimensiond × k, σs (ξ) ≥ 0 andas (ξ) are random field matrices
of dimensionk ×m on R

3 × R, W is anm-dimnsional white noise onR3 × R, L is
anm-dimnsional nonnegative Lévy basis or exponential of a Lévy basison R

3 × R,
andAt (x), Ct (x) andDt (x) are (homogeneous)ambit sets, i.e. At (x) is of the form
At (x) = A+ (x, t) where

A =
{

(ξ, s) : s ≤ 0, c−s ≤ ξ ≤ c+s
}

for some functionsc−· andc+· with c−s ≤ 0 andc+s ≥ 0; and similarly forCt (x) and
Dt (x).

In this space-time setting the key questions (analogous to those discussed above) are
substantially more intricate, major differences occurring already for thecase of a one-
dimensional space component. Here only a particular aspect of this will be discussed.

For simplicity we consider the case where the spatial dimension is1 andYt (x) is
one-dimensional, i.e.d = k = m = 1.

0.9 Ambit processes

Now, letτ = {τ (w) : w ∈ R}, with τ (w) = (ξ (w) , s (w)), be a smooth curve inR×R

such thats (w) is increasing inw ands(R) = R, and let

Xw = Ys(w) (ξ (w))

with Y defined as in Section 0.8. The processX = {Xw}w∈R
is said to be anambit

process.
Under the specific assumptions made earlier

Xw =

∫

A+τ(w)

g(t− s, x− ξ)σs (ξ)W (dξds)

+

∫

D+τ(w)

q(t− s, x− ξ)as (ξ) dξds

and we now consider the questions of whether the quadratic variation[X·] exists, as the
probability limit of the realised quadratic variation

[Xδ]w =

⌊w/δ⌋
∑

j=1

(

Xjδ −X(j−1)δ

)2
,

and whether[X·]w =
∫ w

0 σ2
s(φ) (ξ (φ)) dφ. A comprehensive treatment of these ques-

tions will not be attempted here, and we restrict the discussion to outlining a setting
where the curveτ and the ambit setA are ‘aligned’ in a specified sense. A general
formula is then available for the quadratic variation. Moreover, under certain condi-
tions ong and A,Xw is representable as the differenceXw = X+

w − X−
w between

two q-orthogonal semimartingales; however, such cases are not of prime interest in the
context of turbulence and we shall not discuss them further here.
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0.9.1 Alignment

Definition The curveτ and the ambit setA, with rectifiable and parametrised bound-
aryC = {c (γ) : γ ∈ Γ}, are said to bealigned if the following conditions are satisfied.
Let c⊥ denote the transversal ofċ, i.e. c⊥ = (ċ2,−ċ1).

(i) For all w there exists a partition ofC into two setsC+
w andC−

w such thatτ̇ (w) ·
c⊥ (γ) ≥ 0 for all γ with c (γ) ∈ C+

w while τ̇ (w) · c⊥ (γ) ≤ 0 for all γ with
c (γ) ∈ C−

w .

(ii) The subsetsΓ+
w andΓ−

w of Γ corresponding toC+
w andC−

w are connected.

(iii) For allw the curve lengths ofC+
w andC−

w are positive.

The setsC+
w andC−

w constitute the ‘front’ and the ‘rear’ ofAt(w) (x (w)) as(x (w) , t (w))
moves along the curveτ .

Figures 0.1 and 0.2 illustrate a case of nonalignment and one of alignment, respec-
tively.

0.9.2 QV under alignment

Suppose the curveτ and the ambit setA are aligned, and thatA is convex and bounded.
Then, under suitable conditions, the quadratic variation[X·] of X exists as the limit in
probability of the realised quadratic variation[Xδ] and

[X·]w − [X·]w0
=

∫ w

w0

∫

C

g2 (−c1 (γ) ,−c2 (γ))σ2 (c (γ) + τ (u)) ċ⊥ (γ) · τ̇ (u) dγdu.

In other words:

d [X·]w =

∫

C

g2 (−c1 (γ) ,−c2 (γ))σ2 (c (γ) + τ (u)) ċ⊥ (γ) · τ̇ (w) dγdw

which can be rewritten as

d [X·]w
dw

=

∮

A+τ(w)

g2 (τ (w) − (ξ, s))
2
σ2

s (ξ) dξds.

A detailed discussion of the pertinent conditions will be given elsewhere. Here we
just mention that a conceptually important ingredient for the proof is the following pure
analysis result (which is likely to be known but to which we have not been able to find
a reference).

Let m = 2 and letτ (w) be a curve inR2 as before, and assume thatτ and the
boundary curvec of the ambit setA are both continuously differentiable. Furthermore,
suppressingw in the notationτ (w), let
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xw = yτ =

∫

A+τ

H (τ, v) dv

where the functionH : R × R → R is assumed to be integrable on all setsA + τ and
such thatH (t, x) is continuously differentiable with respect tot for almost allx (with
respect to Lebesgue measure).

Proposition The differential ofyτ alongτ is

dyτ =

∫

C

H (τ, c+ τ) dc⊥ · dτ +

∫

A+τ

dτH (τ, v) dv · dτ

wheredc⊥ = (dc2,−dc1) is the transversal ofdc.

Sketch of proof. Suppose for simplicity thatyτ can be rewritten as

yτ =

∫ b+τ1(w)

a+τ1(w)

∫ u(ξ)+τ2(w)

l(ξ)+τ2(w)

H (τ, ξ, η) dηdξ

Then, by ordinary rules of calculus, and using anticlockwise orientation for curvilinear
integrals, we find

dyτ =

∫ b+τ1(w)

a+τ1(w)

d

∫ u(ξ)+τ2(w)

l(ξ)+τ2(w)

H (τ(w), ξ, η) dηdξ

=

∫ b+τ1(w)

a+τ1(w)

H (τ, ξ, u(ξ) + τ2(w)) dτ2dξ

−

∫ b+τ1(w)

a+τ1(w)

H (τ, ξ, l(ξ) + τ2(w)) dτ2dξ

+

∫ b+τ1(w)

a+τ1(w)

∫ u(ξ)+τ2(w)

l(ξ)+τ2(w)

dτH (τ, ξ, η) dηdξ · dτ

= −

∫

C+τ

H (τ, ξ, η) dξdτ2 +

∫

A+τ

dτH (τ, v) dv · dτ

=

∫

C

H (τ, c+ τ) dc⊥ · dτ +

∫

A+τ

dτH (τ, v) dv · dτ.

0.10 Conclusion

In the purely temporal setting, so far we have assumed thatσ⊥⊥B. In joint work with
José Manuel Corcuera and Mark Podolskij (Barndorff-Nielsen etal (2009)) this con-
dition has been substantially weakened. This more refined analysis - whichuses the
theory of multipower variation and recent powerful results of Malliavin calculus due to
Nualart, Peccati et al - has shown:

• In wide generality,[Yδ]
p
→ σ2+
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• Under certain conditions a feasible CLT for[Yδ] can be established.
• The results can be further extended to consistency and feasible CLTs for multi-

power variations, in particular for bipower variation.

Extensions of these results to the tempo-spatial regimes will be of key interest but the
inclusion of a spatial component makes the issues considerably more challenging, as
the discussion in Sections 0.8 and 0.9 will have indicated.

We are indebted to Jose Manuel Corcuera for a careful reading of themanuscript
and accompanying helpful comments.
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Figure 0.1 Illustration of the concept of alignment with a triangular ambit set. The
curveτ and the triangular ambit set are not aligned.

Figure 0.2 Illustration of the concept of alignment with a triangular ambit set. The
curveτ and the triangular ambit set are aligned.
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