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Brownian Semistationary Processes and
Volatility/Intermittency

Ole E. Barndorff-Nielsen and Jurgen Schmiegel

Abstract. A new class of stochastic processes, termed Brownian sginisary processe$(S), is
introduced and discussed. This class has similaritiesaioahBrownian semimartingale®88§.M),
but is mainly directed towards the study of stationary psses, and3SS processes are not in
general of the semimartingale type. We focus on semimaatiingnonsemimartingale issues and
on inference problems concerning the underlying volgtilitermittency process, in the nonsemi-
martingale case and based on normalised realised quadagtition. The concept @SS processes
has arisen out of an ongoing study of turbulent velocity fieldd is the purely temporal version of
the general tempo-spatial framework of ambit processe |dtter, which may have applications
also to the finance of energy markets, is briefly considerédea¢nd of the paper, again with refer-
ence to the question of inference on the volatility/intetemicy.
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0.1 Introduction

This paper discusses stochastic processes{Y;}, . of the form

t t
Vimpt [ gt-smdbt [ att-sads (0.1)
wherey is a constantB is Brownian motion,g andq are nonnegative deterministic
functions onR, with ¢ (t) = ¢(¢t) = 0 for ¢t < 0, ando anda are cadlag processes.
Wheno anda are stationary then so 8. Accordingly we shall refer to processes of
this type aBrownian semistationary (BSS) processes. It is sometimes convenient to
indicate the formula fot” as

Y=p+grxoceB+qxae Leb. (0.2)

whereLeb denotes Lebesgue measure.
We consider thé8SS processes to be the natural analogue, for stationarity related
processes, of the clagsS M of Brownian semimartingales

ot t
Y, :/ o.dBy Jr/ asds. (0.3)
0 0

In the present paper the processeanda will, unless otherwise stated, be taken to
be stationary, and we then referd@s thevolatility or intermittency process. The term
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intermittency comes from turbulence, and in that scientific field intermittefayspm
key role, similar to that of (stochastic) volatility in finance.

In turbulence the basic notion of intermittency refers to the fact that thggiea
turbulent field is unevenly distributed in space and time. The present j{sapart of a
project with aim to construct a stochastic process model of the field ofitehectors
representing the fluid motion, conceiving of the intermittency as a posgindam
field with valueso, (x) at positiongx, ¢) in space-time. However, most extensive data
sets on turbulent velocities only provide the time series of the main comp¢iren
the component in the main direction of the fluid flow) of the velocity vectorsahgle
location in space. In the present paper the focus is on this latter case, ®edtions
0.8 and 0.9 some discussion will be given on the further intriguing isthatsarise
when addressing tempo-spatial settings. For a detailed discussiB§&fand the
more general concept of tempo-spatial ambit processes, in thextohteirbulence
modelling, we refer to Barndorff-Nielsen and Schmiegel (2004),nBarff-Nielsen
and Schmiegel (2007), Barndorff-Nielsen and Schmiegel (20@andorff-Nielsen
and Schmiegel (2008b) and Barndorff-Nielsen and Schmiegel8(00There it is
shown that such processes are able to reproduce main stylized faatsuwént data.

In general, as we shall discuss in Section 0.3, models of3th& form are not
semimartingales. One consequence of this is that various useful taekrdgveloped
for semimartingales, such as the calculation of quadratic variation by lébgnd
those of multipower variation, need extension or modification.

The recently established theory of multipower variation (Barndorff-Nielst al
(2006a), Barndorff-Nielsen et al (2006b) and Jacod (2008a3)so Barndorff-Nielsen
and Shephard (2003), Barndorff-Nielsen and Shephard (28@4ihdorff-Nielsen and
Shephard (2006a), Barndorff-Nielsen and Shephard (2006u)d8rff-Nielsen et al
(2006c¢) and Jacod (2008hb)) was developed as a basis for infeogrrcunderBS M
models and, more generally Ito semimartingales, with particular focusfereirce
about the integrated squared volatility™ given by

ot
O’t2+:/ o2ds. (0.4)
0

In the present paper the focus is similarly on inferencesfor. Specifically we shall
discuss to what extent (a suitable normalised version of) realisedajicadariation of
Y can be used to estimaté ™.

It is important to realise that, as regards inference dn, there may be substantial
differences between cases whgie positive on all 0f0, o) and those wherg(t) = 0
for ¢ > [ for somel € (0, c0). This will be discussed in detail later.

In semimartingale theory the quadratic variat{®f of Y is defined in terms of the
Ito integral Y ¢ Y, as[Y] = Y2 — 2Y e Y. In that setting[Y] equals the limit in
probability ass — 0 of therealised quadratic variation [Y5] of Y defined by

[t/6] )
Wsl, = > (Yis — Yij-1)s) (0.5)
j=1

where|t/d] is the largest integer smaller than or equal &
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However, the question of wheth@f;] has a limit in probability - and what that limit
is - is of interest more broadly than for semimartingales, and in particalaB$S
processes. For any process= {Y;},., we shall usgY’] to denote the limit, when it
exists, i.e.

Y], = p-lim [¥5], .
6—0
Thus, in cas&” € BSM we havelY] = [Y].!

We abbreviate realised quadratic variatiorRQV and writeQV for [Y7].

The paper is organised as follows. Brownian semistationary procassestro-
duced in Section 0.2 and related non-semimartingale issues are cedsit&ection
0.3. Section 0.4 introduces a conceptgedrthogonality of stochastic processes and
considers the computation of QV in some semimartingale difference.dasgsction
0.5 we turn to the increments of Brownian semistationary processeforsed de-

fines a normalised versidir;] of RQV, and Section 0.7 derives sufficient conditions
for the convergence in probability ¢¥;] to o>*. Extensions to the tempo-spatial set-
ting is discussed in Sectione 0.8 and 0.9. Some indications of ongoingfuvthrk

and open problems are given in the concluding Section 0.10.

0.2 BSS processes

We have defined the concept of Brownian semistationary proce8§e3 és processes
Y = {Yi},cp Of the form

t ot
Yi=pu+ / g(t — s)osdBs + / q(t — s)asds (0.6)
where, in the context of the present paper, the procesaada are taken to be station-
ary. The integrals in (0.6) are to be understood as limits in probability for —oc of

the integrals
t

t
/ g(t — s)osdBs + / q(t — s)asds

u

which are assumed to exist, the first defined for each fixasl an Ito integral. This
of course poses restrictions on which functignendq are feasible, including square
integrability of g.

The focus of the present paper is on inference about the integratacksiolatility
ot given by (0.4). In particular, we shall discuss to what extent reatisedratic vari-
ation of Y’ can be used to estimaté ™. Note that the relevant question here is whether
a suitably normalised version of the realised quadratic variation, andeetsgarily
the realised quadratic variation itself, converges in probability and law.

As a modelling framework for continuous time stationary processes dufigation
(0.6) is quite general. In fact, the continuous time Wold-Karhunen dposition say$

10f course, for semimartingal@s we have the more general result that
[Y]; = p-lim;| o [Y7]

wherer denotes a subdivision @, ¢|, | 7| is the maximal span in the subdivision, aridis ther-discretisation
of Y over the interval0, t].
2See Doob (1953) and Karhunen (1950)
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that any second order stationary stochastic process, possibly covalexi, of mean
0 and continuous in quadratic mean can be represented as

t
a:/ o (t—s)d=, + Vi

where

- the deterministic functio is an, in general complex, deterministic square inte-
grable function

- the proces& has orthogonal increments wiE1{|dEt|2} = wdt for some con-
stanteww > 0

- the procesd/ is nonregular (i.e. its future values can be predicted by linear
operations on past values without error).

Under the further condition that,crsSp {Z; : s < t} = {0}, the function¢ is real
and uniquely determined up to a real constant of proportionality; andathe s there-
fore true of= (up to an additive constant).

0.3 BSS and semi - nonsemimartingale issues

If Y € BSS thenY may or may not be of the semimartingale type. This Section
discusses criteria for either of these cases.
0.3.1 Semimartingale cases

We begin by recalling a classical necesssary and sufficient conditientadKnight
(1992), for the procesy to be a semimartingale, valid in the special simple situation
wheres = 1 anda = 0, i.e. where the process is of the form

Y, = /t g (t —s)dBs. (0.7)

— 00

Knight's Theorem says tht;), ., is a semimartingale in theF”) ,_  filtration if and
only if - N

g(t):c—i—/otb(s)ds (0.8)
for somec € R and a square integrable functibn
Example An example of some particular interest is where
g(t) =t for te(0,00)

and some\ > 0. In order for the integral (0.7) to exist,is required to be greater than
—%, and forg to be of the form (0.8) we must have= 0 or o > % In other words,
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the nonsemimartingale cases are (—3,0) U (0,3]. O

Generally, one may ask under what conditions moving average pexebthe form

Xo= [ (g(t=5)~h(-9)dB.,
with g andh deterministic, are semimartingales. More specifically, wheXig, .., a
(F7),>,-seminartingale, wher&;" is thes-algebra generated HyX,,s < t}. Con-
structive necessary and sufficient conditions for this are given ircentepaper by
Basse, see Basse (2007a).

More generally still is the question of when a procésss a Gaussian semimartin-
gale. Also for this case a necessary and sufficient criterion has Ié@ined by Basse,
in Basse (2008), cf. also Basse (2007b) which discusses the $peptesentation of
Gaussian semimartingales.

At a further level of generalisation, Basse and Pedersen, in Bass@etersen
(2008), consider processé&sof the general form

Xfi[ (6 (t— ) — b (—s)) dL,

where L is a (two-sided) nondeterministic Lévy process with characteristic triplet
(7,02,1/), ¢ and are deterministic functions and the integral exists, in the sense
of Rajput and Rosinski (1989). These authors establish varioussegeconditions
on (v,02,v) andg, ¢ in order for(X;),, to be an(F}),. -semimartingale.

Now, turning to the generd#SS case, we first argue formally, as if the differential
of Y exists. From (0.6),

dY; = g(0+)04dB; + {g* o e By + q(0+) a; + ¢+ a e Leb, }dt

suggesting that; can be reexpressed as

t t
Y,=Yy+g (0+)/ 0sdBy —|—/ Ads
0 0

with
A=gxceB+q(0+)a+ ¢*ae Leb.

This will indeed be the case provided the following conditions are satistedl({rthat
we have assumed thatanda are stationary):

(i) g(0+)andgq (0+) exist and are finite.
(i) ¢ is absolutely continuous with square integrable derivajive
(i) The procesg(—-)o. is square integrable

(iv) The procesg(—-)a. is integrable.
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In view of the results by Knight and Basse, mentioned above, thesdicmsdmust
be close to necessary as well.

We shall here not further discuss affirmative conditions¥oto be of the semi-
martingale type. Instead we turn to cases whérean be written as a linear combi-
nation of semimartingales which are orthogonal, in a sense that will b&isdeand
have different filtrations.

0.4 RQV and linear combinations of semimartingales

While the focus will be on cases where a givBAS processY can be rewritten as
YT —Y~, where bothY ™ andY — are semimartingales, we begin by considering the
broader issue of existence and calculatiorjYof whenY is a linear combination of
g-orthogonal processegorthogonality being defined below.

0.4.1 General considerations

Suppose that a proce¥s= {Y;} is representable in law as a linear combinafior-
Y’ +Y" of some processas’ andY” of interest, of semimartingale type or not. Then,
defining[Yy, Y] and[Y’, Y] by

[t/4]
Y3, = > (s = Ymns) (V5 = Y-ns)
j=1

and
Y, Y"] = P 111011 Y5, Yy'],

we have
V5] = [Y5] + [Y5'] + 2 [V, Y5']

and hence, provided the limit exists (in probability),
Y] =[]+ Y] + 2, Y.
We will write this symbolically as
d[Y]=d[Y/|+d[Y"] +2d[Y/,Y"].
In case[Y/,Y”] = 0 we say thatt” andY” areg-orthogonal and express this by
writing
dY’dy” = 0.

Then
Y] = [Y/]+[Y"].

In particular, ifY” andY” are both semimartingales, in general with different own
filtrations, and g-orthogonal then

Y]=[¥]=["]+["]
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andd [Y'] may be calculated as
d[Y], = (dY))" + (@),

In this case we may defin®” asdY’ + dY"” and then, as in the usual semimartingale
world, we have

Y], = /O (dYs)? ds.

An elementary instance of thi§ = Y/ + Y} with Y/ = B; andY;” = —B,_, and
whereB = { B} is Brownian motion on the real line.
These considerations are extendable to settings whieiea linear combination

Y = fYt(c)M (de) of mutually g-orthogonal process&s®) and where) is a deter-
ministic, possibly signed, measure. We shall not here discuss spemifiecal condi-
tions for this; however an example is given in the next Subsection.

0.4.2 Some3SS cases

Let & be the class of functions of the form (0.8). dfe & then for anyu > 0 the
functionh (-) = g (- + ) also belongs t&. This has the important consequence that
if g is of the formg#1 4 with A = (0, 1) for somel > 0 andg* € & thenY itself is not

a semimartingale but it is the difference between two semimartingalesfispgc

Yo=Y, Y

where

it
Yt+:u+/ g(t—s)osdBs+q+aeLeb

— 00

and

t
Y, = / g(t—s+1)os—1dBs—_y.

— 00

BothY* andY ~ are semimartingales but with different filtrations, nam{avyf
and{F2,} .. MoreoverY* andY ~ are g-orthogonal, and hence

View
teR”

d[v], = (dv;)”+ (dv;7)*
More generally, suppose thahas the form
9= [ mt-gam(e)
0

for agp € & and where) is a function of bounded variation dh, . In this case we
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have
¢
Y, = / g (t—s)osdBs
= / / go (t —s—c)dM (c) o5dBs
0
t
= / / go (t —s —c¢)os,dBsdM (c)
0 [eS)
e} t—c
= // o (t —c—s)osdBsdM (c)
0
- [ Tvoaue)
0
where

t
}/t(C) - / 9o (t - 5) O—sfchsfc

showing thatr” is a linear combination of g-orthogonal semimartingales with different
filtrations (namely, conditional o the filtration of Y'(<) is {72 .}, ..)

0.5 Increment processes

Again, suppose that= ¢g#1(, ; for somel > 0 andg# € &. For any givert we define
the increment processX,,; }, ., by

Xiult = Yiqu — Y2

t+u t
= /t g(t+U7S)O'5dBS+/ {g(t+u—3s)—g(t—s)}osdBs

— 00

t+u t
+/t q(t—i—u—s)asds—i—[ {g(t+u—3s)—q(t—s)}asds.

It will be convenient to rewriteX,,_,, as
0

Xt\t u / ¢u - JertdBert +/ Xu (*U) aUthdU (09)
where¢,, andy,, are defined by
g(v) for 0<v<uw
bu (v) =
gw)—gw—u) for u<v<oo
and
q(v) for 0<v<uw
Xu (V) =

g(v) —qv—u) for u<v<oo
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From now on we assume thét, «) is independent o3 and thata is adapted to
the filtration 77. This, together with (0.9), implies in particular that the conditional
variance ofY; — Y;_, given the process takes the form

B {0 v?ie) = [T ot ([Tr@anw)

where
g% (v) for 0<v<u

Yu (v) =

{g(v—u)—g@)}* for u<v<oo

Remark 1 Note thatg, (v) = ¥, (v) = xu(v) = 0 for v > [ + u while for
I <v<l+uwehavep, (v) =g —u)’andy, (v) =qv—u). O

Let -
c(u) /0 Yy, (v) do. (0.10)

Remark 2 Trivially,

5 §
c(0) Z/ s (v) do :/ g% (v)dv
0 0
implying that if g(0+) > 0 thenc () cannot tend t® faster tharny. O

Remark 3 We have
2 _
c(u) =2[g|" 7 (u)
wherer = 1 — r with r being the autocorrelation function &f. Furthermore,

B{, v’} = E{of}e
+E{a3}/0°o /wau (v) Xu () @ (fv — w]) dvdu

wherep is the autocorrelation function af [

0.6 Normalised RQV

We now define th@ormalised RQV as

W%[st]-

The question we wish to address here is whether and under what cosdition
converges in probability ta**. Concerning the related question of a central limit
theorem forYs], see Section 0.10.
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In the present paper we shall largely restrict the discussion to quitéarefigums
of the weight functiory, assuming in particular thatis positive on a finite interval
(0,1) only. Specifically, we now assume that the functipis positive, continuously
differentiable, convex and decreasing on an integal) where0 < [ < oo and that
g (t) = 0 outside that interval. Also, we require thaeinda are stationary and cadlag
and, as before, thatis adapted to the natural filtration ef Without loss of generality
we taket/§ to be an integer. so thatt = nd. Below C' denotes a constant that is
independent of. but whose value may change with the context.

0.7 Consistency

To discuss the question of whéry] 2 o2 we first note that, by (0.9),

n 0 5
Z </ o5 (—v) O’U+k5dBv+k§)
=1 \J—o0
0

n0
+22/ b5 (— U)Uv+k6dBv+k6/ Xs (=) avqrsdv
k=177

- —oo

+ i </OOO Xs (—v) au+k5dv)

k=1

2

It follows that

E{Eaﬂw}[f3{5§:a@_v}W5@M)+(m®1D5@o (0.11)
k=1

where
Y5 (v)
c(0)

//Xa Xs (w {52%5 v s — w}dvdw

Thusrs is an absolutely continuous probability measur&@r + ). Furthermore,

u%mngc(émmﬂmmog

where the constarit depends o,/ andt.
This leads us to introduce

dv

w5 (dv) =

and

Condition A ¢ (8) ™" (f5 [xs (v)| dv)® — 0. O
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Remark 4 Note that in this connection if is a positive decreasing function then

/Ooom (U)|dv:2/06q(v)dv. (0.12)
O
Suppose thats converges weakly, as— 0, to a probability measureon|0, ], i.e.
s — . (0.13)
Then, if Condition A holds we obtain from (0.11) that
E {tho} = /:o (02%, — o) 7 (dv). (0.14)
In particular, ifr = dy, the delta measure atthen

E {mtb} — ot (0.15)

ot
204 _ 2
o; 7/ ogds.
0

The following two Subsections derive sufficient conditions fgr % &, and for
Var {WJU} — 0, respectively. These two relations together with Condition A imply
that

where

5] 2 o2 (0.16)

We will refer to the case where (0.16) is satisfied by saying that the niod#l is
volatility memoryless.

0.7.1 pideltato pi
Suppose that < oo and let

u 1+6
Uy (u) = / s (v)dv and s (u) = / s (v) do,
0 I+6—u
so thatce (5)’1 U is the distribution function, sais, of .
Next, fork = 1,2, ..., let

ko

e (0) = /( s (u) du

k—1)5

8
/0 ¥s ((k —1)0 +u) du

5/0 b5 (k—1+u)6) du
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o (8) = 5/0 {g((k—2+u)8) —g((k—1+u)d)}?du. (0.17)

We must now distinguish between the cases/ andt > I.
Suppose firstthat> [. Letk* = max {k : k6 < }. Then, by (0.17), fot < k < k*

Ch (5)253/019'((/€—2+u+9k (1)) 6)* du

where th&);. (u) satisfy0 < 0, (u) < 1. Sinceg is convex and decreasing this implies,
providedk. < k < k* wherek, > 2, that

e (6) < 89 ((k —2)0)* < 8% (k. — 2)6)*.
Therefore, for any € (24,1) with 1 < |¢/d] < k* we have

L

Us (k70) = Ws(e) < > cx(d)

k=le/5]+1
5% (k" — [¢/6]) g’ (|e — 24))
(I—c+0)g (le —20])%6°

IN

N

so that
s (k*6) — 15 () < (I — e+ 0) ¢ (le — 26])% 62c(8) L.

Consequently, a& — 0,
H5 (k*(S) - H5 (E) — 0.

It follows that if 75 converges to a probability measuréhenr is necessarily a linear
combination of the delta measuregatnd!.

Furthermore,
where
(k*+1)8
wn® = [ www
*5
! 2
= {g(v—=20)—g(v)} dv
k*6
(k*+1)8
+/ g% (v —6)dv
l
and

I+6
Crryo (0) = / g% (v —6)dv.
(k*+1)6
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So, combining, forrs — &g to hold we must require that

@ [ o= =g @) dv—0

and
I+6
6(5)71/ g*(v—6)dv — 0.
!

But the first relation follows from the smoothnessypo to guarantegs — &, when
t > 1, we therefore only need to add

Condition B ¢(8)™" [/ g2 (v —8)dv -0 ass |0 O
Remark 5 Condition B is equivalently to having
l
Jisg*(0)dv 0
Jy 9?(v)dv

as follows from the above discussion. In particular, it suffices to gv@ — 0 as
vl O

Remark6 Incase:(§)"" ”592 v—20)dv — X € (0,1)weobtaints — (1 — \) dg+
Ay, O :
1-

Whent < [, for anye € (24,t) with 1 < |¢/d] < n,

n

Us(t+08)—Ts(e) < Y. a(d)
k=|e/5]+1

< (t—e+0)g (le —26])° 62

which tends ta at the order ob2. To obtainrs — &, we therefore only need to add
the assumption that

Us(I4+06)—Ts(t+0)=o0(c(d)). (0.18)
Now,
Us(140) = Us (t+6) = Y er(d).
k=n-+1
Thus, letting ”
_ CL )
e (0) = ) (0.19)

we have that (0.18) is implied by

ConditonC 7% G (6) —0 as 6]0. O
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0.7.2 Conditional Var to O

We now establish conditions under which the conditional variance of thaalsed
realised quadratic variation tendst@ss — 0, i.e.

Var{[Ys],|c} — 0. (0.20)

Suppose first that = 0.
Let A?Y =Yjs — Y(j_1)5- Then

Var{[Y],|0} = CEST)Q {Zvar{(A;%y)ﬂa}mz > Cov{(A7Y)?, (A}Y)? |a}}
j=1 j=1k=j+1

where, forj < k,

Cov{ATY ALY |0} = E{(Yjs — Y-1s) (Yas — Ye-1)s) o}

/0 s ((k — 3)8 + u) s (w) 0%y du

Let K (0) = sup_;c,<, 02. Aso is assumed cadlady (o) < co a.s.. Hence, by the
Cauchy-Schwarz inequality,

oo

oo 1/2 1/2
|Cov{Yjs — Y1) Yis — Ye-1yslo}| < K (o) (/ Y5 (u) du) (/ Vs (u) du) :
0 (

k—3j)6
Now, recall that for any paiX andY of normal, mean zero random variables we have
Cov{X?,Y?} = 2Cov{X,Y}>. (0.21)

Therefore

IN

vs) 2 i —1e 2 c Sy - w) du
Var{[Y3],|o} 2K (o) o7 (15 6> +2c() Y > /@-j)g%( )d )

j=1i=j+1

j=1i=j+1

2 RS
2K (0)%6 l+26(5)z > /(i_j)éz/}(;(u)du)
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Here

Jj= 11 j+1

/(l —3)o

n—1ln—j

B AEABE

]1117’

n—1 v

)9) )L

v=1 i=1 k=1

n—1 oo

> Y ()X 1k

v=1 k=1

n—1

n—

k=1
n—1)n —
+( 5 ) ;CkJrQ((S)

With the notation (0.19) we thus have

Var{mtb}

Here

and

n

IN

—1

52 Z {(n — k) kéry1 (0) + % (k+1) k:ck+2} < CéZkEk (0)

k=

1

n—1 o)
) (z +26 (n—k)keer1 () +20> Gria(6) Y v
k=1 k=1

2K (0)* 16

n—1

Z (n — k) kekgr (0) + Z cr+2 ()
k=1

Z <Z kcg41 (6) + v Z Clh+2 (5))
k=v

kA(n—1)

> v
v=1

Z {(n — k) kepyr (0) + % (k+1) k:ck+2}

kA(n—1)

v=1

+2K (0)°6° {(n — k) kg1 (8) + % (k+1) k5k+2}

+20K (o

s(n—1)n

k=1

E Crt2 (

k=1

Z Crr2 (0) < C Z

|
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Consequently, whea = 0, for (0.20) to be valid it suffices to have

8> ke (6)—0 and > & (5) —0. (0.22)
k=1 k=n+1

Condition C will ensure the second limit result, and we now introduce
ConditonD  §),_, kéx () -0 as §10. O
Provideda = 0, for (0.20) to be valid it suffices that Conditions C and D to hold.
Next we show that the convergenter{[Y;],|c} — 0 also holds ifa is not0 pro-

vided Condition A is fulfilled too. In case # 0, Var{[Ys],|c'} is a sum of two terms,
one as above fat = 0 while the other is

% kz: /000 Y5 (v) ops_pdv (/OOO xs (v) aka_vdv)Q (0.23)

which is bounded above byH K where

H = hmsup / Vs (v) ops_,dv

K= 2 ([T o)

k=1

and

Here -
| wswats o< e
0

where the constarit depends om ando. HenceH — 0. Furthermore,

S ([ v ae) <cz(/ pa@lae) =5 ([Thalan)

k=1

where(', again, depends ananda. Hence Condition A implieg — 0.

0.7.3 Summing up
Suppose first that < I < oo, which is the most interesting case from the viewpoint of
turbulence modelling. If

2

e ([ hawlar) —o (0.24)

oo

k=n+1
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and .
5> ke (6) >0 (0.26)
k=1
then L L
75 — 0o, Var{[Ys]|o} — 0 and[Ys] & o2+, (0.27)
If | <t then the additional assumption that

fll,(; g2(U)d’U
- 0
Jo 92 (v)dv

is required. The latter is, in particular, fulfilled§fv) — 0 for v 1 1. In case (0.28) is

violated but (0.24), (0.25) and (0.26) hold angd % = for somer, necessarily of the
formm = Ajp + (1 — N\)d; for somer € (0, 1), then

(0.28)

V3], 5 Aot + (1= N) (071, = 07F). (0.29)

0.7.4 Examples
Recall Conditions A-D:

e ([ o) dv)2 ~0 (0.30)

I+6
0(5)71/ g>(v—0)dv —0
l

oo

> @ (8) =0 (0.31)
k=n-+1
b i ke (6) — 0. (0.32)
k=1

In this Section we suppose that g. Then Condition A has the form
c(6) ey (6) — 0. (0.33)

Example Suppose that = [ andg(v) = e *"1(, (v) (& non-semimartingale
case). Then

1 for 0<wv<$é
2
s (0) = =2 (e —1)" for os<v<l .
2o for I<v<l+96
0 for I+6<w

Here we find )
a (0) = o3 (1 — 6_2’\5) ~ 9
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while fork =2,....n

Moreover we have )
cnt1 (0) = N (1—e7) ~ e,

whereas:; (§) = 0 for k > n + 1. Finally, ¢ (6) ~ §(1 +e~2M) and

1+ ;)
Cng1(8)c(8)7! /l 9> (v—23)dv— (1+ 62>‘l) .

So, Conditions A, C and D are met. But Condition B is not and we haverthat =,
where

A i*w %0t 7 +1e2M o1,
and thus
Vs] 2 02t — (14 €)' o2t
O

Example Letg(v) = v*(1—v)" 11 (v) with -1 < a andg > 1. The first

inequality ensures existence of the stochastic integrat ¢ B, and ifa < 0 then we
are in the nonsemimartingale situation. In showing that— ¢, and [Y;] L o2t it

suffices to consider the case wheré < o < 0, 3 = 1 andnd = t. Lety = —a, and
suppose < 1.
We find

é
co(0) = /0 w2 (1 —u)’du
= (1-29)7 "7 (1+0(9)

and, fork =1,2,...,n—1,

c (0) = 5/0 [((kz+u)5)—”—((k+u)5)1—7—((k;+u_1)5)—v+((kﬂ_l)(;)l—vrdu
57/0 [rw) ™ = ru-D7 =6 {tk+w)' 7 =k +u-1)""}] du

while

cn(6) = &7 /01 {(n +u)' T = (n4u— 1)1_7}2du
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andcy (0) = 0 whenk > n. It follows, in particular, that
¢ (6)=0(8"72);
furthermore, since for < k <nand0 <u <1

[t = kb1 <y 1)

and
‘(HU)H —(ktu— 1)1*7] <Ay (k-1)7"

we have (whem < 1)

(d) < V(-1 y+ (1—9) (k- 1)

—2v—2
6172'yk72772 1— l B
k

IN

S 051_27k_27_2.

Consequently,
c(6)=0(""*)

whileforl <k <n
ke (0) < Ck=> 1

so that

We conlude that the Conditions A-D are satisfied and hencéitkiat” o?". O

0.8 Tempo-spatial setting

Above only the case of time-wise behaviour at a single point in spaceavasdered.
In the real turbulence setting, space and the velocity vector are threasional. The
general modelling framework specifies the velocity and intermittency faedds

Y, (z) = u+/A()g(ts,|§x|>as(5)W<d£,ds>

+/ g(t— 5.]€ — ) a (€) deds
Ci(z)

and

Jf )= h(t—s,|§ —x|)L(d,ds
<>/Dt(z)< € — 2|) L(d¢.ds)
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HereY; is a vector process of dimensiand = 0,1,2 or 3), g, ¢ andh are deter-
ministic matrices of dimensioa x k, o5 (£) > 0 anda, (£) are random field matrices
of dimensionkt x m onR? x R, W is anm-dimnsional white noise o> x R, L is
anm-dimnsional nonnegative Lévy basis or exponential of a Lévy hasiR® x R,
and A4; (x), C¢ (x) and D; (z) are (homogeneous)bit sets, i.e. A; (x) is of the form
Ay () = A+ (x,t) where

A:{(g’s);3§0,c;§§§02_}

for some functions~ andc’ with ¢; < 0 andcf > 0; and similarly forC; (z) and
Dt (I’)

In this space-time setting the key questions (analogous to those dischssejlare
substantially more intricate, major differences occurring already focélse of a one-
dimensional space component. Here only a particular aspect of thiseadisloussed.

For simplicity we consider the case where the spatial dimensi¢raisdY; (x) is
one-dimensional, i.el =k =m = 1.

0.9 Ambit processes

Now, letT = {7 (w) : w € R}, with 7 (w) = (£ (w) , s (w)), be a smooth curve iR x R
such that (w) is increasing inv ands(R) = R, and let

Xy = s(w) (6 (w))

with Y defined as in Section 0.8. The process= { X}, IS said to be ammbit
process.
Under the specific assumptions made earlier

X, = /‘ gt — 5,2 — ) (€)W (déds)
A+7(w)

+/‘ gt — 8,2 — E)as (€) deds
D7 (w)

and we now consider the questions of whether the quadratic var[afipaxists, as the
probability limit of the realised quadratic variation

lw/s]
2
(Xl = D (Xis — Xg-ns)
j=1
and whethefx.] = [ Uf(aﬁ) (£ (¢))do. A comprehensive treatment of these ques-

tions will not be attempted here, and we restrict the discussion to outliningilagse
where the curve- and the ambit setl are ‘aligned’ in a specified sense. A general
formula is then available for the quadratic variation. Moreover, undeaicecondi-
tions ong and A, X, is representable as the differen&g, = X7 — X, between
two g-orthogonal semimartingales; however, such cases are nota imterest in the
context of turbulence and we shall not discuss them further here.



BSS processes 21

0.9.1 Alignment

Definition The curver and the ambit sed, with rectifiable and parametrised bound-
aryC = {c(v) : v € I'}, are said to baligned if the following conditions are satisfied.
Let c* denote the transversal ¢fi.e. ¢t = (¢2, —¢1).

(i) For allw there exists a partition af' into two setsC;! andC,, such thatr (w) -
ct(y) > 0 for all v with ¢ (y) € CF while 7 (w) - ¢t (y) < 0 for all v with
cly)eC,.

(i) The subset§;, andT';, of I corresponding ta@’;; andC;, are connected.

(i) For allw the curve lengths of’} andC,, are positive.

The sets”;) andC, constitute the ‘front’ and the ‘rear’ o, (x (w)) as(x (w) , ¢ (w))
moves along the curve

Figures 0.1 and 0.2 illustrate a case of nonalignment and one of alignraspec-
tively.

0.9.2 QV under alignment

Suppose the curveand the ambit sed are aligned, and that is convex and bounded.
Then, under suitable conditions, the quadratic variaion of X exists as the limit in
probability of the realised quadratic variatifk;] and

LKMLKMU/w[g2<cmw,<aw»a%cw>+7w»&ww-+wnme
In other words:
MXLfaég%—qmm—@owwﬁwmo+rw»aww-+mwmmu

which can be rewritten as

'w:f ¢ (r (w) — (€,5)) 0 (€) déds.
A+7(w)

A detailed discussion of the pertinent conditions will be given elsewhezee We
just mention that a conceptually important ingredient for the proof is thaimg pure
analysis result (which is likely to be known but to which we have not beéntaliind
a reference).

Let m = 2 and letr (w) be a curve inR? as before, and assume thatind the
boundary curve of the ambit setd are both continuously differentiable. Furthermore,
suppressing in the notationr (w), let
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Ty = Yr = H (1,v)dv
A+T

where the functior : R x R — R is assumed to be integrable on all sdts- - and
such thatH (¢, x) is continuously differentiable with respectddor almost allz (with
respect to Lebesgue measure).

Proposition  The differential ofy, alongr is
dyTZ/H(T,C—I—T)dCJ‘-dT—I—/ d;H (r,v)dv -dr
C A+T1
wheredct = (dcg, —de;) is the transversal afe.

Sketch of proof. Suppose for simplicity that. can be rewritten as

b+71 (w) u(£)+7—2(u7)
- / / (r,€,m) diydé

+711(w) J1(&)+T2(w)

Then, by ordinary rules of calculus, and using anticlockwise orientatioaurvilinear

integrals, we find
b+71 (w) u(€)+72(w)
/ d/ H (1(w),&,m) dndg
a+71(w) UE)+T2(w)

dy;

b+71(w)

_ t/ H (7, &, u(€) + ma(w)) dradg

a+71 (w)

b+71 (w)
—/ H (7, £,1(6) + m2(w)) dradg

+71(w)

b+71 (w) &) +12(w
+/ / d +H(1,&,m)dnd¢ - dr
a+7i(w) JUE)+T2(w)

— [ H(r e dedn + / A, H (r,v) dv - dr
CHrt A+T

/H(T,C—I—T)dcl-dT-i-/ d,; H (r,v)dv - dr.
C A+T

0.10 Conclusion

In the purely temporal setting, so far we have assumedsthiaB. In joint work with
José Manuel Corcuera and Mark Podolskij (Barndorff-Nielseal ¢€2009)) this con-
dition has been substantially weakened. This more refined analysis - whéshthe
theory of multipower variation and recent powerful results of Malliavilcwls due to
Nualart, Peccati et al - has shown:

« In wide generality[Y;] & o2*
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« Under certain conditions a feasible CLT faf;] can be established.

« The results can be further extended to consistency and feasible OLrsift-
power variations, in particular for bipower variation.

Extensions of these results to the tempo-spatial regimes will be of keyshtarethe
inclusion of a spatial component makes the issues considerably malfenging, as
the discussion in Sections 0.8 and 0.9 will have indicated.

We are indebted to Jose Manuel Corcuera for a careful reading ehéneiscript
and accompanying helpful comments.
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Figure 0.1 lllustration of the concept of alignment with a triangular ambit set. The
curver and the triangular ambit set are not aligned.
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Figure 0.2 lllustration of the concept of alignment with a triangular ambit set. The
curver and the triangular ambit set are aligned.
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